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Abstract

Background: For the analysis of spatio-temporal dynamics, various automated processing methods have been
developed for nuclei segmentation. These methods tend to be complex for segmentation of images with crowded
nuclei, preventing the simple reapplication of the methods to other problems. Thus, it is useful to evaluate the
ability of simple methods to segment images with various degrees of crowded nuclei.

Results: Here, we selected six simple methods from various watershed based and local maxima detection based
methods that are frequently used for nuclei segmentation, and evaluated their segmentation accuracy for each
developmental stage of the Caenorhabditis elegans. We included a 4D noise filter, in addition to 2D and 3D noise
filters, as a pre-processing step to evaluate the potential of simple methods as widely as possible. By applying the
methods to image data between the 50- to 500-cell developmental stages at 50-cell intervals, the error rate for
nuclei detection could be reduced to ≤ 2.1% at every stage until the 350-cell stage. The fractions of total errors
throughout the stages could be reduced to ≤ 2.4%. The error rates improved at most of the stages and the total
errors improved when a 4D noise filter was used. The methods with the least errors were two watershed-based
methods with 4D noise filters. For all the other methods, the error rate and the fraction of errors could be reduced
to ≤ 4.2% and ≤ 4.1%, respectively. The minimum error rate for each stage between the 400- to 500-cell stages
ranged from 6.0% to 8.4%. However, similarities between the computational and manual segmentations measured
by volume overlap and Hausdorff distance were not good. The methods were also applied to Drosophila and
zebrafish embryos and found to be effective.

Conclusions: The simple segmentation methods were found to be useful for detecting nuclei until the 350-cell
stage, but not very useful after the 400-cell stage. The incorporation of a 4D noise filter to the simple methods
could improve their performances. Error types and the temporal biases of errors were dependent on the methods
used. Combining multiple simple methods could also give good segmentations.
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Background
Advances in optical technology have allowed the de-
velopment of various kinds of microscopic techniques,
including confocal laser scanning microscopy, multi-
photon excitation microscopy and digital scanned light-
sheet microscopy [1]. Along with the advances in
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microscopy, advances in biological labeling, such as
the green fluorescent protein (GFP), and digitization
technology, have resulted in rapidly growing numbers
of intracellular images acquired in digital forms [2].
3D time-lapse imaging of fluorescently labeled nuclei

has allowed the spatio-temporal positions of cells to be
tracked, and this has helped to explain targeting phe-
nomena in terms of cellular dynamics [3]. Thus far, nu-
clei tracking had been performed manually; however, in
recent years, computational techniques have been deve-
loped for automatic cell tracking. The computational
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methods allow many cells to be tracked over a long time
period and also allow the cellular dynamics to be ana-
lyzed quantitatively [4-6]. In general, the computational
methods consist of segmentation and association pro-
cesses [7,8]. Segmentation is the process of partitioning
a digital image into multiple sets of pixels, each set cor-
responding to a specific object of the image, and, in ef-
fect, locating the object boundaries [9]. Association is
the process of identifying and linking segmented cells
from frame to frame in the image sequence to obtain
cell trajectories [7]. The accuracy of the association is
highly dependent on the accuracy of the segmentation;
thus, improvements in the accuracy of the segmenta-
tion process will help increase the accuracy of nuclei
tracking.
The accuracy of nuclei segmentation is affected by

various factors. The simplest is a low quality image (i.e.,
an image with a low S/N (signal-to-noise) ratio) in which
it is difficult to distinguish dimmer nuclei from back-
ground noise. Fluctuation of intensities within a nuclear
region as the result of imperfect staining or intrinsic
intra-cellular characteristics can cause over- or under-
segmentation of the region [10]. Fluctuation of inten-
sities outside nuclear regions (background), caused by
uneven illumination, can also cause segmentation prob-
lems [10,11]. Although there are many other factors,
crowded nuclei are especially problematic [9,12,13]. Ma-
ny of the current methods can accurately segment
images with widely spaced nuclei; however, error rates
increase for images with crowded nuclei [4,6]. Crowded
nuclei are tightly clustered, making it difficult to locate
the boundaries [10]. In images with crowded nuclei, nu-
clei with lower intensities are often hidden by surround-
ing brighter nuclei [14] and segmentation methods for
such images tend to be complex [15]. Although the
complex segmentation methods are accurate for a par-
ticular problem, when applied to other problems, great
effort is required to adequately understand and modify
the original method. In addition, the computational cost
of these complex methods is often very high [15].
On the other hand, simple methods do exist, and

if their parameters can be adequately tuned, they
may be able to provide sufficiently accurate segmen-
tation. There are many advantages in using the sim-
ple methods:

– Researchers unfamiliar with image processing can
understand and use the methods, thereby allowing
the important field of bioimage informatics to evolve
and diverge.

– It is easy to interpret the results of a
segmentation process by studying the applied
processing method, which is informative for
manual curation.
– Small improvements in segmentation accuracy
may not contribute much to the work, in which
case, the accessibility of the method is more
important.

– In some cases, the total processing time using a
simple method followed by manual curation is
shorter than the processing time using a high-
performance complex method, because when
selecting a suitable complex method for a particular
problem from among many similar methods, a
certain amount of time needs to be spent to first
understand them. Furthermore, even after using a
complex method, the segmentation is rarely
perfectly accurate and manual curation is almost
always necessary, although fewer errors are always
better.

It is, therefore, worth evaluating the effectiveness of
simple segmentation methods against images with crow-
ded nuclei. The watershed algorithm is a popular simple
method [7,10,16]. Combined with various pre- and/or
post-processing and/or modifications of the watershed
algorithm itself, it has been applied to segmentations of
nuclei in a variety of organisms and against images of
various qualities [10,13,17-19]. We selected watershed
methods with easy to understand forms as part of the
present study. Local maxima detection is another popu-
lar and frequently used method [14,17,20] that we also
included in our study. We aimed to evaluate the best
performances of the selected methods using a wide range
of parameters.
Although it is uncommon for nuclei segmentation, we

used a 4D noise filter (i.e., a spatio-temporal filter
[21,22]) in addition to 2D and 3D noise filters for pre-
processing to derive as much potential as possible from
the simple methods. If 4D noise filtering improves seg-
mentation accuracy, it may be applied to other methods.
To evaluate the degree of crowded nuclei that can be

segmented accurately by the simple methods, we needed
image data that contained variations in the crowdedness
of the nuclei. Furthermore, for a precise comparison of
the segmentation results, the images needed to be recor-
ded under the same conditions. During the embryonic
development of Caenorhabditis elegans, nuclei get more
crowded as development proceeds, because the total
number of cells increases while the total size of the em-
bryo is almost stable. Thus, we selected the 4D re-
cording of C. elegans embryonic development taken by
Santella et al. [14], because it contains 3D images of
GFP-labeled embryos recorded at one minute intervals
from the 2- to ~540-cell stages, making it well suited for
the aim of this study.
To evaluate the general effectiveness of the simple

methods, we also applied the methods to early and late
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stage embryos of Drosophila and zebrafish and evaluated
the accuracy of nuclei detection.

Results
Processing scheme
We created a three-step processing scheme to select the
simple methods efficiently (Figure 1). Step 1: Select a 2D
or 3D difference of Gaussian (DoG) filter for pre-
processing. Step 2: Select one of the following segmenta-
tion methods: intensity watershed (Int), distance water-
shed (Dst), hybrid watershed (Hyb), multiple watershed
(Mul), local maxima seeded watershed (LocWat) or local
maxima based region detection (LocReg). Step 3: Select
size thresholding for post-processing. By combining the
different options in steps 1–3, 12 different methods were
obtained. We named each method based either on both
the DoG filter and the name of segmentation method or
on the name of the segmentation method alone; for
example, 3D-Int or Int for the method that consisted
of a 3D DoG filter, intensity watershed (Int) and size
thresholding.

Error rate for nuclei detection at each developmental
stage
We developed a computer program to execute the scheme
and applied it to the image data. Sample segmenta-
tion surface images for 50-, 350- and 500- cell stages
and 3D reconstruction for 350-cell stage are available
as Additional file 1: Figure S1, Additional file 2:
Figure 1 Diagram of the three-step processing scheme used to
select the segmentation methods. DoG, difference of Gaussian.
Figure S2, Additional file 3: Figure S3 and Additional
file 4: Figure S4. The program is available at http://
sourceforge.net/projects/simpleseg/. The center coordi-
nates of the obtained segmented nuclear regions were
compared with the ground truth reported by Santella
et al. [14]. The error rate for each developmental stage
was calculated as the sum of the false positive rate and
false negative rate. The error rate was calculated iteratively
for all the parameter sets in each method. Finally, we se-
lected the error rate for each method as the minimum
value of all the error rates for that method.
In almost every case, the method with the 3D DoG fil-

ter gave a lower error rate than same method with the
2D DoG filter. The few exceptions were the methods as-
sociated with the 2D-Hyb method applied between the
400- to 500-cell stages (Additional file 5: Figure S5). In
the rest of the study, we evaluated only those methods
that included the 3D DoG filter.
The error rates for some of the methods could be re-

duced to ≤ 2.2% at every developmental stage between
the 50- to 350-cell stages (Figure 2a). The Hyb method
produced the lowest error rates between the 50- to 300-
cell stage and the Dst method gave the lowest error rate
for the 350-cell stage. The error rates for the other
methods could be reduced to ≤ 4.2% between the 50- to
350-cell stages. On the other hand, for the 400- to 500-
cell stages, the lowest error rates were from 6.6% to
10.2%. Between the 50- to 250-cell stages, the different
methods produced the highest error rates at different
stages. Between the 300- to 500-cell stages, the LocReg
method produced the highest error rate.

Total errors throughout the developmental stages
The total number of errors throughout all the stages was
calculated as the sum of the false positives and false
negatives for all the stages. The errors were calculated
iteratively for all the parameter sets in each method.
Finally, we selected the total number of errors as the
minimum value of all the errors in each method. We
calculated the errors only for the 50- to 350-cell sta-
ges (Figure 2b) because most of errors arose between
the 400- to 500-cell stages and, when they were in-
cluded, the results for the earlier stages were skewed.
The total number of nuclei counted during the 50- to
350-cell stages was 1,410.
The total number of errors could be reduced to 40

(2.8%) by the Dst and to 43 (3.0%) by the Hyb methods
(Figure 2b). For the other methods, the total errors
could be reduced to ≤ 56 (4.0%). The stage that contri-
buted the most to the number of total errors differed
depending on the method used: using the Int, Mul,
LocWat and LocReg methods, it was the 350-cell stage;
using the Hyb method, it was the 50-cell stage; and
using the Dst method, it was the 250-cell stage.

http://sourceforge.net/projects/simpleseg/
http://sourceforge.net/projects/simpleseg/


Figure 2 Detection accuracy of the methods with a 3D DoG filter. (a) Error rate at each developmental stage. The inset is from the 50- to
200-cell stages. (b) Cumulative number of total errors between the 50- to 350-cell stages.

Azuma and Onami BMC Bioinformatics 2013, 14:295 Page 4 of 11
http://www.biomedcentral.com/1471-2105/14/295
Effectiveness of the 4D DoG filter
4D DoG filters were made by extending the 3D DoG fil-
ters to the temporal direction. Temporal length cannot
be decided by the resolution ratio, so we added one to
five temporal lengths to each 3D DoG filter, independent
of the spatial size of the filter; one temporal length cor-
responds to one min.
By applying the methods with the 4D DoG filter, we

found that the error rates were improved for most devel-
opmental stages (Figure 3a). Improvements were espe-
cially remarkable at the 450- and 500-cell stages (2.2%
and 1.8%, respectively). For the earlier stages, the im-
provements were no greater than 0.3%. As a result, the
4D-Dst and 4D-Hyb methods produced the lowest error
Figure 3 Detection accuracy of the methods with a 4D DoG filter. (a)
200-cell stages. The lowest error rates at each stage for all the methods wi
Cumulative number of total errors between the 50- to 350-cell stages. The
(gray bar).
rates at most stages, even when compared with the
methods with the 3D DoG filter.
The total number of errors throughout the 50- to 350-

cell stages was also improved for all the methods with
the 4D DoG filter (Figure 3b). The improvements ranged
from 6 (12%) to 14 (25%), and as a result, the 4D-Dst
and 4D-Hyb methods gave the lowest number of total
errors, even when compared with the methods with the
3D DoG filter. For the other methods with the 4D DoG
filter, the total errors ranged from 34 (2.4%) to 44 (3.1%).

Size of the DoG filter
We investigated the relationship between the spatial
length of the 4D DoG filter and the total number of
Error rate at each developmental stage. The inset is from the 50- to
th a 3D DoG filter are shown (gray line with triangle markers). (b)
number of total errors by the methods with a 3D DoG filter is shown
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errors throughout the developmental stages (Figure 4a).
For reference, the nuclear diameter was about 4.5 μm
for the 50-cell stage and about 2 μm for the 500-cell
stage. There were fewer false positives using the Int,
LocWat and LocReg methods with filters of larger spa-
tial sizes; conversely, there were fewer false negatives
using the Dst and Hyb methods with filters of larger
spatial sizes. The error rates produced by the methods
with the smallest spatial filter length (2 μm) were the
highest.
We also investigated the relationship between the

temporal length of the 4D DoG filter and the total
number of errors throughout the developmental sta-
ges (Figure 4b). There were fewer false positives using
the LocReg method without the 2 min temporal length fil-
ters. There were fewer false negatives using the Dst and
Hyb methods with the larger temporal length filters than
the other methods.

Evaluation by volume overlap and Hausdorff distance
To further evaluate the segmentations, we calculated the
volume overlap and Hausdorff distance between manu-
ally segmented nuclear regions and the computational
results. The volume overlap between the computational
results and the corresponding manually segmented nu-
clear regions was defined as:

O Rc;Rmð Þ ¼ S Rc∩Rmð Þ
S Rcð Þ þ S Rmð Þð Þ=2

Where Rc is the computationally segmented nuclear
region and Rm is the manually segmented nuclear region.
The ∩ operator takes the intersection of two regions.
S(•) is the volume of the region [16]. The Hausdorff
distance is used to determine the degree of resemblance
between two objects that are superimposed on one
Figure 4 Relationship between error type and 4D DoG filter size. Num
represented. (a) Minimum number of errors throughout the stages in each
each temporal size. The bars marked ‘3D’ indicate the methods using a 3D
another [23]. The Hausdorff distance between the pixel
set within the computationally segmented nuclear region
C={c1, …cp} and the pixel set within the manually seg-
mented nuclear region M = {m1, …mp} was defined as

H C;Mð Þ ¼ max h C;Mð Þ; h M;Cð Þð Þ

where

h C;Mð Þ ¼ max
c∈C

min
m∈M

∥c−m∥

and ∥⋅∥ is the distance of the points of C and M [23].
We randomly selected 20 nuclei from the embryos at
each developmental stage and manually segmented their
regions. The volume overlap and the Hausdorff distance
were calculated between the manually segmented regions
and the computationally segmented regions with the
least error rates at each developmental stage (Figure 5
for methods with 3D DoG filters and (Additional file 6:
Figure S6) for methods with 4D DoG filters). The mean
volume overlap varied from ~10% to ~70% and the
Hausdorff distance varied from ~2 to ~4.5 μm by the
methods and developmental stages. For reference, the nu-
clear diameter was about 4.5 μm for the 50-cell stage and
about 2 μm for the 500-cell stage. The nuclear regions
were larger when determined by the Int, LocWat and
LocReg methods and smaller when determined by the Dst
and Mul than manually segmented regions at most de-
velopmental stages (Figure 6 and Additional file 7:
Figure S7). For any given developmental stage, the
nuclear region determined by the Hyb method could
be larger or smaller than that determined manually
(Additional file 7: Figure S7). The sizes of the regions
in the Int and LocWat were almost same as those in
the denoised images (Figure 6).
ber of false positives (red) and number of false negatives (blue) are
spatial size. (b) Minimum number of errors throughout the stages in
DoG filter.



Figure 5 Volume overlap and Hausdorff distance for segmentations produced by the methods with 3D DoG filters. Volume overlap (a)
and Hausdorff distance (b) between the manually segmented nuclear regions and the nuclear regions segmented by the methods with 3D DoG
filters. They were calculated for 20 representative nuclei and averaged for each embryo. Error bars, SEM.
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Application of the simple methods to embryonic images
of other organisms
We evaluated the effectiveness of the methods against
embryonic images of other organisms. Image data of
fluorescently labeled nuclei were provided by Santella
et al. [14] for Drosophila stage eight and eleven, which
we termed early and late stages, respectively, and the
zebrafish “1 K cell” and “14-19 somites” stages, which
were also termed early and late stages, respectively. The
data were sub volumes of the whole embryonic images,
each containing 200–400 nuclei, and the ground truth
was created by human correction of all discernible de-
tection errors in the computed result. We applied the
simple methods to the data and the obtained center co-
ordinates of segmented nuclear regions were compared
with the ground truth. The error rates could be reduced
to ≤ 5% for all the data by adequately selecting the
methods with 3D DoG filters (Figure 7). The error rates
Figure 6 Examples of overlapped images of computationally
and manually segmented regions. The same regions processed
by different methods. Denoised image, one example of the 3D-DoG
filtered images. The original and denoised images are gray scale
intensity images. For the others: white, overlapped regions; blue,
regions only within the computationally segmented regions; green,
regions only within the manually segmented regions.
were 0.3% for both early stages using the 3D-Hyb
method and were 1.9% for the late stage of Drosophila
by the 3D-LocWat method and 1.8% for the late stage
of zebrafish by the 3D-Mul method. For these two or-
ganisms, the 4DDoG filter did not improve the detec-
tion accuracy for any of the methods (Additional file 8:
Figure S8).

Discussion
Evaluating the effectiveness of the detection ability
We constructed a computational method to evaluate the
ability of the simple segmentation methods for images
with various degrees of crowded nuclei. We applied the
method to nuclear images at different developmental
stages of C. elegans, in which nuclei get more crowded
as development proceeds. The error rate for nuclei
detection could be reduced to ≤ 2.1% at every stage
until the 350-cell stage and the fraction of total errors
throughout the stages until the 350-cell stage could
be reduced to ≤ 2.4%. On the other hand, the error rates
increased rapidly after the 400-cell stage, and the mini-
mum error rates for each stage after the 400-cell stage
were 6.0% to 8.4%. Thus, the results of our study suggest
that, when the parameters are fine-tuned, the simple
methods are effective for detecting nuclei until the 350-
cell stage. The 350-cell stage is the second-to-last stage of
embryonic cell division, and cell tracking to this stage has
been used to measure and analyze reporter expressions
with cellular resolution [24], suggesting that tracking until
this stage can produce useful results.
Among all the methods, the 4D-Dst and the 4D-Hyb

methods were the most effective, because one or other
of them gave the lowest error rates at most of the stages
and both gave the lowest number of total errors.
The simple methods were also effective for detection

of nuclei in the Drosophila and zebrafish embryonic
images. In these cases, the error rates of some methods



Figure 7 Detection accuracy for embryonic images of Drosophila and zebrafish. Error rates calculated by the methods with 3D DoG filters
for each developmental stage of Drosophila embryo and zebrafish embryo.
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decreased at the late stages compared with the early
stages. In the late stage images, many nuclei became
smaller and spot-like, which could have reduced over-
segmentation, resulting in improved error rates. None of
the methods were effective for both stages of the Droso-
phila and zebrafish embryos, unlike the case of C. elegans.
However, the combination of the Hyb and LocWat gave
good results for both the organisms (Figure 7). Thus,
combining multiple simple methods could be a good way
to generate accurate results.

Comparison with a high-performance method
According to the study by Santella et al. [14], the error
rates for nuclei detection that their method produced
were 0.25% at around the 180-cell stage, about 0.5% be-
tween the 180- and 350-cell stages and about 3% for the
350- to 500-cell stages. The error rates produced by 4D-
Hyb were 0.3% for the 200-cell stages, 0.3% to 2.1% for
the 200- to 350-cell stages and 1.5% to 8.4% for the 350-
to 500-cell stages (Figure 3a). The total errors, calculated
as the fraction of the number of errors in the number of
nuclei present at the particular stage, throughout the
stages were 1.0% for the 200-cell stage and 1.0% to 4.0%
for the 200- to 350-cell stages using 4D-Hyb. The me-
thod that Santella et al. [14] used was a high-performance
method that can reduce the number of errors. When
methods that give lower error rates are required, their
high-performance program will be useful, especially when
no manual curation is implemented.

Effectiveness according to the situation
We used two indicators to measure the detection ac-
curacy of the methods, the error rate at each stage and
the total number of errors throughout the designated
stages. Depending on the purpose of the study, the best
indicator can be used. The error rate is suitable when
the initiation time of the target phenomenon is already
known and its duration is short, for example, for cell
tracking during gastrulation [25]. The total number of
errors is suitable when either the initiation time of the
target phenomenon is unknown or its duration is long;
for example, for a new phenomenon that is not under-
stood well or for the statistical analysis of the dynamics
of cells over a long period of developmental stages.
The total number of errors, not only is the total number

of errors important, but also from which stage to which
stage the errors were generated. For example, for manual
curation, it is desirable to have fewer errors in the late de-
velopmental stages than in early stages because, for images
that are not crowded, curation is easy. However, to track
cells for as long as possible, it is desirable to have fewer
errors in the early developmental stages than in the late
stages because data from the later stages could be unneces-
sary. Although the 4D-Dst and 4D-Hyb methods produced
a similar number of total errors, more errors were in the
early stages with the Dst method. Thus, the Dst method
may be more suitable for studies that can tolerate errors in
the early stages. The Hyb method may be more suitable
for situations that allow for errors in the late stages.
Errors consist of false positives and false negatives,

and the negative effect of each will differ in different
situations. For example, for manual curation, false nega-
tives are unfavorable because it is frequently more dif-
ficult to add overlooked nuclei than to remove false
positives. However, for the statistical analysis of many
nuclei using many images, false positives are unfavorable
because false negatives will not affect the analysis if the
overlooked nuclei have no characteristics that could
influence the analysis. To reduce false positives, the
4D-LocReg method with larger spatial and temporal



Azuma and Onami BMC Bioinformatics 2013, 14:295 Page 8 of 11
http://www.biomedcentral.com/1471-2105/14/295
length filters could be the method of choice. Meanwhile,
to reduce false negatives, the 4D-Dst and 4D-Hyb me-
thods with filters of larger spatial and temporal lengths
would be favorable (Figure 4).

Evaluation of the similarity of segmented regions
We used two indicators to measure the degree of resem-
blance between the computationally segmented nuclear
regions and the manually segmented ones. The indica-
tors showed that many mismatches existed between the
sets. The mismatches were mainly generated from the
denoising process in the computational segmentation,
where the DoG filters were applied, resulting in blurred
images (see Figure 6). As a result, the segmented regions
generated by Int and LocWat were similar to the blurred
images because they use the intensity of these images
directly. The LocReg method also uses the intensity dir-
ectly, but also uses a pre-defined distance from the local
maxima. Thus, its segmented regions were partially simi-
lar to those of the denoised images. On the other hand,
the segmented regions generated by the Dst and Mul
methods were smaller than those of denoised images.
This was caused by the local thresholding process in-
cluded in those methods, where the lower intensity region
at the edge of each nuclear region is removed as back-
ground. The volume overlaps for the Hyb method varied
considerably by developmental stage (Figure 5). The Hyb
method generates an image by summation of an intensity
image and a local thresholded image in a certain ratio.
The segmented images either resemble the denoised or
the local thresholded images, depending on the ratio.
Currently, many nuclei tracking methods use only nu-

clear positions for their temporal association; thus, ac-
curate detection of nuclear positions is sufficient for this
purpose. However, information concerning the similarity
of segmented regions would help the temporal associ-
ation of nuclei, especially when the positions of nuclei
largely alter between adjacent time points. In this case,
segmented regions do not necessarily need to be similar
to the original images, but are sufficiently similar to
denoised images when they keep shape characteristics of
the original images. Int and LocWat might be the
methods of choice in this case.

Advantages of the 4D DoG filter
An example of improved detection accuracy by a 4D
DoG filter is the accurate identification of one nuclear
region by the 4D-Dst method; this region was overseg-
mented by the 3D-Dst method (Figure 8a). The inten-
sities of the pixels within this nuclear region fluctuated
(Figure 8c, panel T), and segmentation of this region
was difficult by manual inspection. To segment a region
like this, it is usual to refer to the images around the
time point. Using a similar approach, the 4D-Dst method
could accurately segment this region using information
from the images around the time point. Note that the 4D
DoG filter did not improve the S/N ratio of the image
(Additional file 9), which was 0.0481 for the image
denoised by the 3D DoG filter, and 0.0455 for the same
image denoised by a 4D DoG. Thus, the improvement by
the 4D DoG filter can be regarded as a trading the S/N ra-
tio against clarification of an ambiguous region.
An example of an increase in detection errors by a 4D

DoG filter is the oversegmentation of a region by the
4D-Dst method; this region was accurately segmented as
one nuclear region by the 3D-Dst method (Figure 8b).
The oversegmentation occurred because another nucleus
was touching this nuclear region at two later time points
(Figure 8d, panel T + 2).
In the Drosophila and zebrafish embryos, the error

rates of nuclei detection increased for all the methods
when using the 4D DoG filters. The time intervals were
3 min for Drosophila and 1.5 min for zebrafish, and the
positions of nuclei altered significantly. This would be
expected to lead to increased error rates. Thus, the time
interval is a critical factor for use of the 4D DoG filter.
We used the absolute intensity of temporally neighbor-

ing images for the 4D DoG filter. The 4D DoG filter can
be converted to a profile similarity function because the
temporal dimension can be considered as a measure of
voxel similarity [22]. Until now, only a few studies have
attempted to incorporate temporal information into
noise filtering for nuclei segmentation. To further de-
velop this technique, more studies are needed.

Conclusions
A research framework that can include image processing
has the potential to accelerate the understanding of bio-
logical phenomena and to create new research topics in
various fields. For example, some questions about the
development of vertebrates could be solved or tackled
more effectively by cell tracking for a certain period.
When this happens, the phenomena will be more pre-
cisely understood and, at the same time, new questions
such as the mechanics of the cellular dynamics and the
reproducibility of the phenomena at cellular resolution
will arise. Therefore, we believe that by applying simple
methods to their data, researchers in many fields will be
encouraged to use image processing to explore new ap-
plication targets. Thus, it is extremely useful to under-
stand the abilities and limitations of these methods.
We selected a 4D noise filter that was optimal for previ-

ously recorded images; however, it would be more effec-
tive to record images to suit 4D noise filtering. Although
recording the images with a shorter time interval should
improve the accuracy of segmentation, phototoxicity and
photobleaching will become problems. Thus, it is impor-
tant to estimate the segmentation accuracy depending on



Figure 8 Examples of different segmentations between methods with 3D and 4D DoG filters. The yellow circles represent nuclear regions.
(a, b) Segmentation results of the same regions by the 3D-Dst (left) and 4D-Dst (right) methods. (c, d) Time course of the original intensity
images of (a) and (b), respectively. Images denoted ‘T’ in (c) and (d) correspond to the images of (a) and (b), respectively. Images at the previous
two (T-1 and T-2) and next two (T + 1 and T + 2) time points are also shown.
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the time interval. It is desirable to progress the present
study both theoretically and experimentally. An optimal
4D filter and recording time interval could be theoretically
estimated by assuming the characteristics of cells such as
shape, cell density and migration speed, and then the ap-
plication and evaluation could be implemented experi-
mentally. Validated results could then be fed back to the
theoretical study, which could be further improved, and
the whole process would begin again.

Methods
Segmentation methods
Although the segmentation process is different in diffe-
rent studies, it usually includes a pre- and post-processing
addition to the segmentation process itself.
Pre-processing is aimed mainly at reducing noise and

various noise filters have been used [19]. By targeting
the 300-cell stage for a screening (see the Parameter
screening section), we applied the following popular and
simple 3D noise filters: Gaussian filter [10,17,18,26], me-
dian filter [18,27] mean filter [28] and DoG filter (DoG
filter) [14,20]. We found that the DoG filter produced
the best performance; therefore, we used the DoG filter
for all the pre-processing.
The following segmentation methods were implemented:

– Intensity watershed (Int): The watershed
transformation was applied to the intensity image
[10,17].

– Distance watershed (Dst): The intensity image was
binarized by local thresholding, then the binary
image was converted to the distance transformation,
and the watershed transformation was applied to the
image [10,17].

– Hybrid watershed (Hyb): The intensity image and
the distance transformed image, as described above
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for the Distance watershed, were summed in a
certain ratio into one image, and then watershed
transformation was applied [10,17].

– Multiple watershed (Mul): The intensity image was
binarized by local thresholding, then the binary
image was multiplied to the intensity image as a
foreground mask, and the watershed transformation
was applied to the masked image.

– Local maxima seeded watershed (LocWat): Local
maxima were detected as pixels with the highest
intensities within a designated distance and above a
threshold. Watershed transformation was applied to
the intensity image using the local maxima as the
‘catchment basins’ [17,29].

– Local maxima based region detection (LocReg):
Each nuclear region was defined as the pixels that
were within a designated distance from the local
maxima, as described above for the Local maxima
seeded watershed, and with intensities that were
higher than a threshold [14,20].

Post-processing is aimed mainly at judging the seg-
mentation results by consulting empirical knowledge
[16] including a variety of characteristics of each region,
such as size [6,10,11,18], convexity [10,18], mean in-
tensity and intensity profile [6,26]. We selected size
thresholding because of its simplicity, short calcula-
tion time and effectiveness in the screening. The size
of each region was calculated as the number of three-
dimensionally connected (26-connected neighborhood)
pixels. Regions with sizes below the size threshold were
removed as false positives.
The spatial size of the 3D filter was adjusted to pre-

serve the actual 3D size ratio; that is, the Z length of
filters was one quarter of the XY length, because Z reso-
lution was 1 μm while XY resolution was 0.25 μm in the
recording condition.

Application
The original image data presented by Santella et al. [14]
were resampled by choosing image stacks between the
50- to 500-cell stages at 50-cell intervals. Each image
stack contained 30 z-slices. The image stack that the
number of included nuclei coincided with or exceeded
the stage for the first time was selected as the cor-
responding one. In addition to the selected image
stack at each stage, the image stacks at the previous
and next adjacent time points were also used; thus,
three image stacks at each developmental stage were
used (see Additional file 9).

Calculation of detection errors
The center coordinates were calculated for all the seg-
mented regions and compared with the ground truth
reported by Santella et al. [14]. We assumed the regions
to be correct (true positives) when the coordinates of
the region could find the nearest points in the ground
truth bi-directionally and the distances were below the
threshold (5 μm). At each stage, the error rate was cal-
culated as the summation of the false positive and false
negative rates. The error rate was adjusted by averaging
the error rates of three adjacent time points (including
the previous and next time points). Throughout the
stages, the total number of errors was calculated as the
sum of the false positives and false negatives for all the
stages up to the designated stage; the false positives and
false negatives were the mean of the three adjacent time
points (including the previous and next time points).
Parameter screening
To screen the parameters, the parameters for each
method were given a sufficiently wide range of values
and these were screened by applying them to the 300-
cell stage image stack. Parameters with low error rates
ranked in the top 10% were selected for each method
and adjusted by filling ‘gaps’. Detailed parameter infor-
mation is available (see Additional file 9).
Computation
All the analysis programs were developed on MATLAB,
including the Image Processing Toolbox and the Parallel
Computing Toolbox. The calculation was implemented
on a Windows server computer with 3.46 GHz Intel
Xeon processors (16 cores).
Additional files

Additional file 1: Figure S1. 3D reconstructions of original, DoG
filtered and segmented images at the 50-cell stage.

Additional file 2: Figure S2. 3D reconstructions of original, DoG
filtered and segmented images at the 350-cell stage.

Additional file 3: Figure S3. 3D reconstructions of original, DoG
filtered and segmented images at the 500-cell stage.

Additional file 4: Figure S4. Rotation movies for 3D reconstructions of
original, DoG filtered and segmented images at the 350-cell stage. The
z scale is a quarter of the xy scale because the image resolutions are
1 μm for z and 0.25 μm for xy.

Additional file 5: Figure S5. Figure showing the evaluation of the
12 methods built using three-step processing scheme. Error rates at each
developmental stage from the 50- to 500-cell stages.

Additional file 6: Figure S6. Volume overlap and Hausdorff distance
for the segmentations produced by the methods with 4D DoG filters.
Volume overlap (a) and Hausdorff distance (b) between the manually
segmented nuclear regions and the nuclear regions segmented by the
methods with 4D DoG filters. They were calculated for 20 representative
nuclei and averaged for each embryo. Error bars, SEM.

Additional file 7: Figure S7. Volume ratio of segmented regions.
The volume of each segmented region was divided by that of the
corresponding manually segmented region. It was calculated for 20
representative nuclei and averaged for each embryo. Error bars, SEM.
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Additional file 8: Figure S8. Detection accuracy for embryonic images
of Drosophila and zebrafish. Error rates calculated by the methods with
4D DoG filters for each developmental stage of Drosophila embryo and
zebrafish embryo.

Additional file 9: Supplementary methods. Parameter and image data
details and the method for calculating the S/N ratio.
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