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The superfamily of G protein-coupled receptors (GPCRs) includes at least 800 seven-transmembrane receptors that participate in  
diverse physiological and pathological functions.  GPCRs are the most successful targets of modern medicine, and approximately 36% 
of marketed pharmaceuticals target human GPCRs.  However, the endogenous ligands of more than 140 GPCRs remain unidentified, 
leaving the natural functions of those GPCRs in doubt.  These are the so-called orphan GPCRs, a great source of drug targets.  This 
review focuses on the signaling transduction pathways of the adhesion GPCR family, the LGR subfamily, and the PSGR subfamily, and 
their potential functions in immunology, development, and cancers.  In this review, we present the current approaches and difficulties 
of orphan GPCR deorphanization and characterization.
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Introduction
GPCRs represent the largest superfamily and most diverse 
group of mammalian transmembrane proteins.  The main 
characteristic feature of these proteins is that they share a 
common seven-transmembrane (7TM) configuration.  GPCRs 
have attracted a great deal of interest owing to their numerous 
physiological and pathological roles in transducing extracel-
lular signals into intracellular effector pathways through the 
activation of heterotrimeric G protein by binding to a broad 
range of ligands, including proteins[1], peptides[2], organic com-
pounds[3, 4], and eicosanoids[5].  This makes GPCRs and their 
signal transduction pathways important specific targets for a 
variety of physiological functions and therapeutic approaches, 
ranging from the control of blood pressure, allergic response, 
kidney function, hormonal disorders, and neurological dis-
eases to the progression of cancer[6].  Owing to the features of 
GPCR structure and function, approximately 36% of currently 
marketed drugs target human GPCRs[7].  GPCRs have huge 
potential in biomedical research and drug development.  

Human GPCRs can be divided into five main families on the 
basis of phylogenetic criteria, Glutamate, Rhodopsin, Adhesion, 

* To whom correspondence should be addressed. 
E-mail jluo@bio.ecnu.edu.cn (Jian LUO); 
           mliu@ibt.tamhsc.edu (Ming-yao LIU)
Received 2011-12-12    Accepted 2011-12-28  

Frizzled/Taste2, and Secretin[8].  Among the five GPCRs families, 
Rhodopsin is the most studied.  It comprises the largest group 
of GPCRs.  Notably, in recent years, the leucine-rich repeat-
containing G-protein coupled receptor (LGR) subfamily, part 
of Rhodopsin, have displayed enormously important physi-
ological functions in knockout mice studies especially LGR4 
and LGR5.  Olfactory receptors are also members of Rhodopsin 
family of GPCRs and are mainly expressed in sensory neu-
rons of olfactory system.  These form a multigene family.  The 
PSGR subfamily belongs to the olfactory receptor group.  The 
family has restricted expression in human prostate tissues and 
is upregulated in prostate cancer.  The second largest GPCR 
family, with 33 members, is the Adhesion family.  This fam-
ily is very special because of its members’ secondary struc-
tures, with distinctive long N-termini containing adhesion 
domains[8].  Limited studies have shown that Adhesion GPCRs 
are involved in the signaling of cell adhesion, motility, embry-
onic development, and the immune system.  There are still 
GPCRs for which the natural ligands remain to be identified.  
These are called orphan GPCRs.  

LGRs and PSGR belong to Rhodopsin subfamily and they 
represent as classical GPCRs in structure and signal transduc-
tion.  On the other hand, Adhesion GPCRs are novel, and their 
structures and signal transduction are distinct to the classical 
GPCRs.  In this review, we focused our discussion on LGR 
subfamily, PSGR subfamily, and adhesion GPCRs family.  We 
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also discussed current screening systems for the deorphaniza-
tion and characterization of the orphan GPCRs.

Orphan GPCRs 
The first GPCR to be identified was rhodopsin in 1878.  It 
was later proven that rhodopsin consists of the GPCR protein 
opsin and a reversibly covalently bound cofactor, retinal[9, 10].  
After completion of the human genome sequence in 2004[11, 12], 
the number of human GPCRs increased to about 800 based on 
the screening approaches, such as low-stringency hybridiza-
tion[13], PCR-derived methods[14], and bioinformatic analyses[15].  
Besides the olfactory receptor family, more than 140 GPCRs 
have not yet been linked to endogenous ligands.  These are the 
so-called orphan GPCRs (Figure 1)[16].  

Biological functions of the LGR subfamily 
LGRs 4–8 are members of the rhodopsin GPCR family, which 
can be divided into two groups, LGRs 4, 5, and 6 and LGRs 
7 and 8 in terms of their natural ligand.  R-spondins have 

recently been identified as the ligands for LGRs 4, 5, and 6[17].  
LGRs 7 and 8 are relaxin family peptide (RXFP) receptors[18].  
According to sequence similarity, LGRs 4, 5, and 6 are closely 
related to each other, showing almost 50% identities.  The 
three orphan receptors have a substantially large N-terminal 
extracellular domain (ECD) composed of 17 leucine rich 
repeats (LRR) (Figure 2)[19].  Lgr4, also known as Gpr48, has 
been reported to have many physiological functions by the 
generation of knockout mice.  The loss of Lgr4 results in devel-
opmental defects in many areas, including intrauterine growth 
retardation associated with embryonic and perinatal lethal-
ity[20], abnormal renal development[21], defective postnatal 
development of the male reproductive tract[22], ocular anterior 
segment dysgenesis[23], bone formation and remodeling dys-
function[6], impaired hair placode formation[24], and defective 
development of the gall bladder and cystic ducts[25].  Lgr5 
has been proven to be a marker of gastrointestinal tract and 
hair follicle stem cells[26, 27].  Knockout of Lgr5 in mice leads 
to total neonatal lethality accompanied with ankyloglossia 
and gastrointestinal distension[28].  Lgr6 also has been shown 
to be a stem cell marker in hair follicles, and Lgr6-positive 
stem cells have been found to produce all cell lineages of the 
skin[29].  LGR4 and LGR5 are also highly expressed in several 
types of cancers.  LGR5 is up-regulated in human colon and 
ovarian tumors and promotes cell proliferation and tumor 
formation in basal cell carcinoma[30, 31].  Overexpression of 
LGR4 enhances cervical and colon cancer cell invasiveness 
and metastasis[32].  However, despite their critical function in 
development and cancer, LGR4 and LGR5 will still be con-
sidered orphan receptors until R-spondins reported to func-
tion as their natural ligands can be proven to regulate Wnt/
β-catenin signaling pathway.  Some observations of Lgr4 and 
Lgr5 knockout mice have been strongly relevant to Wnt/
β-catenin signaling[33, 34].  This suggests that LGR4 and LGR5 
could be involved in the Wnt pathway.  One author stated that 

Figure 1.  Percentage of the orphan GPCRs in GPCR superfamily.  GPCRs 
constitute a large transmembrane family of more than 800 members.  
Among them, 6% are utilized as drug target in clinical applications, and 
30% are natural ligand receptors.  However, 49% are olfactory receptors 
(most of them are orphan GPCRs), and 15% are orphan GPCRs.  (Data 
were summarized from a review paper[122])

Figure 2.  LGR subfamily GPCRs.  The Type A LGRs includes the follicle-stimulating hormone receptor (FSHR), the luteinizing hormone receptor (LHR) 
and the thyroid-stimulating hormone receptor (TSHR).  The Type B LGR comprises three members, Gpr48/LGR4, LGR5, and LGR6 which remain orphan 
GPCRs at the present time.  By contrast, Type C LGRs have only two members, LGR7 and LGR8 which have been demonstrated to be the relaxin family 
receptors.  Type A contains 9 LRRs in the ectodomain, whereas Type B contains 17 LRRs.  By contrast, Type C has an N-terminal LDL receptor-like 
cysteine-rich domain not found in other LGRs.  7TM, seven-transmembrane; LDL, low-density lipoprotein; LRR, leucine-rich repeat; LGR, leucine-rich 
repeat-containing G-protein-coupled receptor; FSHR, follicle-stimulating hormone receptor; LHR, luteinizing hormone receptor; TSHR, thyroid-stimulating 
hormone receptor.
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R-spondins-Lgr4 induced the signal transduction pathway in 
a manner independent of G proteins[17].  However, two inde-
pendent groups have reported that Lgr4/Gpr48 is associated 
with the Gαs-cAMP pathway by generating constitutively 
active forms of Lgr4/Gpr48[23, 35].  Therefore, the existence of 
endogenous ligands for the activation of classical G-protein 
coupled signaling pathways for Lgr4/Gpr48 is still a ques-
tion.  LGR7 and LGR8 share 54% identity.  Besides 10 LRRs 
motif, LGR7 and LGR8 also have an LDL class A (LDLa) motif 
in the N-terminal, which is an important domain for signal 
transduction (Figure 2).  Traditionally, relaxin/LGR7 has been 
thought to be a hormone receptor for pregnancy and parturi-
tion[18].  Recently, it has been reported that relaxin/LGR7 also 
has significant function in non-reproductive organs, such as 
the heart, and even plays a role in cancer growth and metas-
tasis[36].  Insulin-like peptide 3 (INSL3), which is a ligand of 
LGR8, is highly expressed in the Leydig cells of the testis and 
knocking out Insl3 in mice generates a cryptorchid phenotype.  
However, reports have been conflicting with respect to LGR8 
mutations related to human cryptorchidism[18].  The role of 
INSL3 in human adult male is still not clear.

PSGRs subfamily in prostate cancer
Mammalian olfactory receptors, which are the members of the 
Rhodopsin family of GPCRs and mainly expressed in sensory 
neurons of the olfactory epithelium in the nose, are used to 
sense the chemical environment[37].  Recently, some olfactory 
receptors have also been found in other organs.  For example, 
MOR23 is expressed both in the olfactory epithelium and 
in sperm and functions as a chemosensing receptor during 
sperm-egg communication, thereby modulating fertilization 
in the reproductive system[38].  The new olfactory receptor 
family members PSGR1 and PSGR2 have been found to have 
restricted expression in human prostate tissues, as shown by 
Northern blot and real-time PCR analysis of over 20 different 
human tissue types[39–41].  PSGR subfamily expression increases 
significantly in the epithelial cells of prostate intraepithelial 
neoplasia (PIN) patients and in prostate cancer patients rela-
tive to non-cancerous controls and benign prostatic hyperpla-
sia tissues, suggesting that the PSGR subfamily may play an 
important role in early prostate cancer development[42].  The 
PSGR subfamily has been proven to be strongly associated 
with the clinical parameters (clinical stages, Gleason scores, 
recurrence status, and metastasis) and its members could 
serve as biomarkers for prostate cancer[42, 43].  PSGR subfamily 
transcripts even can be used as diagnostic markers in urine[44].  
It has also been reported that PSGR expression detection 
together with the well-known prostate cancer marker prostate-
specific antigen (PSA), prostate cancer gene 3 (PCA3), and 
α-methylacyl-CoA racemase (AMACR) can increases diagnos-
tic specificity in the detection of prostate cancer[43–45].  Recently, 
Neuhaus EM et al reported that through intracellular Ca2+ flux 
using a bank of steroid hormones and through odorant-related 
compound screening, certain steroids and β-ionone have been 
proven to be active ligands for PSGR[46].  PSGR-induced Ca2+ 

signaling was found to require the involvement of endog-

enous Ca2+-selective transient receptor potential vanilloid type 
6 (TRPV6) channels[47].  Incubation of prostate cancer cells with 
β-ionone inhibits cell proliferation[46].  This suggests that PSGR 
signaling is also involved in prostate cancer cell progression.  

Adhesion GPCR family 
GPCRs in the Adhesion family have a relative long N-terminal 
domain, which contains many so-called adhesion domains 
(Figure 3).  These adhesion domains only existed in some 
adhesion molecules, such as integrins, cadherins, and selec-
tins; and the domains are thought to have adhesive proper-
ties.  Another striking characteristic of all the Adhesion GPCRs 
is that there is a GPS (GPCR proteolytic site) domain linking 
the 7TM region to the extracellular domain, which acts as an 
autocatalytic site[48, 49].  As a novel GPCRs family, most of the 
members are orphan and only a few of them have been identi-
fied as having natural ligands and functions.

Adhesion GPCRs in immunology
Immune response is coordinated by an assortment of mem-
brane receptors, including TLRs, integrins, lectins, the Ig 
superfamily, selectins, and GPCRs, which are found on leuko-
cytes[10, 50, 51].  The first Adhesion GPCR to be discovered, epider-
mal growth factor-like module containing mucin-like recep-
tor protein 1 (EMR1, F4/80 receptor), which is an epidermal 
growth factor (EGF)-seven transmembrane (7M) receptor, have 
a predominantly leukocyte-restricted expression pattern[52].  
Though the expression of Emr1 is restricted, the function of 
this receptor remained unknown until the generation of Emr1 
knock-out mice.  The mouse model indicates that Emr1 is criti-
cal to the induction of CD8+ regulatory T-cells in peripheral 
tolerance[53].  Besides EMR1, the EGF-TM7 subfamily includes 
EMR2, EMR3, EMR4, and CD97, all of which belong to the 
Adhesion GPCR family.  Unlike the highly specific expression 
of EMR1, the other EGF-TM7 receptors are expressed largely 
in myeloid cells (monocytes, macrophages, neutrophils, and 
dendritic cells) and in some lymphoid cells (T and B cells)[54].  
Chondroitin sulfate has recently been identified as the ligand 
for EMR2 and CD97, which mediate cell attachment[55].  CD97, 
the leukocyte activation antigen, also has been shown to bind 
to the  complement regulatory protein DAF/CD55 (decay 
accelerating factor) and the longest splice variant of CD97 
has the highest capacity to bind to CD55-expressing cells.  
Although CD97 and EMR2 differ by only 3 amino acids (in the 
EGF domain), the activity of EMR2 binding to CD55 is signifi-
cantly weaker[56, 57].  The precise function of the CD97-CD55 
interaction is still not fully understood.  Using knock-out mice 
and x-ray crystallography, Abbott RJ et al demonstrated that T 
cells and complement regulatory activities of CD55 occur on 
opposite faces of the molecule, suggesting that the CD97-CD55 
complex might simultaneously regulate both the innate and 
adaptive immune responses[58, 59].  EMR3 has been reported as 
a marker for mature granulocytes, and it can interact with the 
ligand that expresses at the surface of monocyte-derived mac-
rophages and activated human neutrophils[60, 61].  EMR4 has 
been reported to interact with a cell surface protein as a ligand 
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on A20 B-lymphoma cells[62].  

Adhesion GPCRs in development
The most extensively studied Adhesion GPCRs in embryonic 
development are the so-called 7TM-cadherin subfamily (Celsr/
Flamingo/Starry night).  All the members of this subfamily 
posses extracellular domains containing nine atypical cad-
herin repeats which have linked the combination of EGF-like 
and laminin G-like domains[63].  The 7TM-cadherins are an 
evolutionarily conserved gene subfamily with homologues 
discovered from ascidians to mammals[63].  In mammals, the 
subfamily comprises 3 genes, Celsr1, Celsr2, and Celsr3.  There 
are 4 genes (fmila, fmilb, fmi2, and fmi3) in zebrafish and only 
one homologue, called flamingo and starry night, in Drosophila.  
Drosophila studies provide us with a distinct function view of 
Flamingo/Starry night as a core planar polarity protein[64].  Its 
functions include regulating dendrite extension from sensory 
neurons[65, 66], modulating target selection by photorecep-
tor axons[67], accelerating axon advance from sensory and 
motor neurons[68], and limiting ectopic neuromuscular junc-
tion formation and maintenance of motor axon terminals[69].  
Gene knockout and knockdown of 7TM-cadherins has also 
confirmed this observation in vertebrates.  7TM-cadherins 

regulate morphogenetic movements, neural tube closure, ori-
entation of sensory hair cells in inner ear, and hair follicle pat-
terning[63, 70–73].  Recently, Adhesion GPCRs Gpr124 and Gpr126, 
which are not 7TM-cadherins, have been shown to regulate 
the development of different tissues in mice.  Gpr124 affects 
CNS-specific angiogenesis and Gpr126 affects Schwann cells 
to initiate myelination[74–77].  This suggests that more members 
of this family may be involved in development and that this 
may be due to the adhesive or other properties of N-terminal 
domains.  

Adhesion GPCRs in cancers
Because cell adhesion molecules have a vital role in cancer 
progression, it is reasonable to speculate that Adhesion GPCRs 
also play important functions in cancer progression and 
metastasis.  Leukocyte Adhesion GPCR EMR2 has been proven 
to be overexpressed in human breast cancer and is associ-
ated with patient survival[78].  CD97 is involved in tumor-
environment interactions and mediates tumor invasion[79].  It 
has been reported that the 7TM-cadherin receptors may also 
be involved in human cancers, such as gastric cancer, lung 
cancer, and melanoma[80].  Interestingly, unlike other Adhesion 
GPCRs, GPR56 has been shown to suppress some cancer cell 

Figure 3.  Schematic diagram of the extracellular 
N-terminal domain within the Adhesion GPCRs.  The 
extracellular N-terminal domains of 33 Adhesion 
GPCRs was predicted by the RPS-BLAST against the 
conserved domain database (CCD).  CA, cadherin 
domain; calx-beta, domain found in Na+–Ca2+ 
exchangers; CUB, resembles the structure of 
immunoglobins; EAR, epilepsy-associated repeat; 
EGF-Lam, laminin EGF-like domain; EGF, epidermal 
growth factor domain; HBD, hormone-binding 
domain; herpes-gp2, resembles the equine herpes 
virus glycoprotein gp2 structure; GBL, galactose-
binding lectin domain; Ig, immunoglobulin domain; 
OLF, olfactomedin domain; LamG, laminin G domain; 
LRR, leucine-rich repeat domain; PTX, pentraxin 
domain; Puf, displays structural similarity to RNA-
binding protein from the Puf family; SEA, domain 
found in sea-urchin sperm protein; SIN, resembles 
the primary structure of the SIN component of the 
histone deacetylase complex; TSP1, thrombospondin 
domain. C-type lectin, similar to the C-type lectin 
or carbohydrate-recognition domain; GPS, GPCR 
proteolytic site domain.
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growth and metastasis through interacting with tissue trans-
glutaminase (TG2)[81, 82].  

Signal transduction mediated by Adhesion GPCRs
Most Adhesion GPCRs are orphan receptors, which is the main 
reason whether or not Adhesion GPCRs are involved in G pro-
tein signaling.  In addition, the complicated structure of Adhe-
sion GPCRs, comprising both largely ECD and 7TM domains, 
make it possible for Adhesion GPCRs to go through the signal-
ing pathway in a G-protein-independent manner[83].  For exam-
ple, Gpr124 regulates angiogenic sprouting into neural  tissues 
through TGF-beta pathway in mouse[76].  BAI1 can function as 
an engulfment receptor in response to “eat me” signal phos-
phatidylserine, which leads to BAI1 directly bind and activate 
the ELMO/DOCK180/RAC module[84].  It has been reported 
that GPR124 and GPR125 can interact with several viral onco-
proteins by its cytoplasmic PDZ domain.  And the rat Ig-Hepta 
(GPR116) has been shown to form a homodimer that is linked 
by disulphide bonds.  Moreover, this receptor undergoes two 
proteolytic cleavages, and cleaved product in the SEA domain 
might act as a ligand to bind to GPR116[85–87].  Therefore, these 
7TM receptors may mediate G-protein independent signaling 
pathway in cellular functions.

Though some Adhesion GPCRs go through G-protein- 
independent pathways, others have been proven to go 
through the classic G-protein-dependent pathway.  Lectome-
din receptor-1 was co-purified with the Gαo

[88].  Also, GPR56 
has been shown to form a complex with Gq/11 and G12/13 in the 
neural progenitor cells[89, 90].  Gpr126 modulates Schwann cells, 
initiating myelination by classic cAMP pathway[74].  Latrophi-
lin, which is activated by the ligand LTX, can transduce the 
intercellular Ca2+ signal pathway.  These observations indicate 
that this family can transmit signals through both classical 
G-protein-dependent and G-protein-independent mecha-
nisms.  

Deorphanization strategy
GPCRs are the most prominent family of pharmacological 
targets in biomedicine[91].  The deorphanization of orphan 
GPCRs is one of the most important missions in orphan GPCR 
research.  Deorphanization is the process of identifying ligands 
that are highly selective for orphan GPCRs.  In general, the 
standard assays are radio-ligand binding, calcium flux, GTPγ 
binding, and modulation of cAMP levels[92–98].

With the development of molecular technology, several lines 
of approaches have been used for deorphanization.  The first, 
according to the sequence and function similarity, ligands of 
the identified receptors are used to examine GPCRs with iden-
tical sequences or domains.  This sequence similarity strategy 
resulted in the identification of the ligands of Edg3 and Edg5, 
whose sequences are similar to that of the S1P receptors, 
with >50% amino acid identity[99–101].  The function similar-
ity strategy lead to the identification of the ligands of Lgr5 
homologues, R-spondins, which stimulate the growth of intes-
tinal stem cells[17].  However, this approach must be carefully 
evaluated because its predictions are not always accurate.  For 

example, alkyl imidazole functions as dual histamine H3/H4 
receptor ligands, while histamine H3/H4 receptors share very 
little sequence identity[102, 103].  Although the EGF domain of 
CD97 and EMR2 share 97% identity, only CD97 shows high 
affinity with CD55 but not with EMR2.  The second strategy 
used to identify natural ligands works by determining the 
expression profile relationship between receptor and the puta-
tive ligand.  This technique led to the identification of the 
receptors of RDC7 and RDC8 as adenosine A1 and A2A recep-
tors, all of which are highly transcribed in the brain cortex, 
thyroid follicular cells, and testis[104, 105].  The third technique is 
used to identify GPCRs that have specific expression profiles 
and distinct cytoplasm signal pathways.  This method uses 
extracts of tissues that contain potential ligands to screen by 
the GPCRs mediated signaling assays.  Some hormone pro-
teins, such as nociptin, orexins, apelin, prolactin, and ghrelin, 
were successfully identified using this strategy[106–109].  The 
fourth strategy has been used successfully to deorphanize 
Adhesion GPCRs.  It involves engineering recombinant soluble 
extracellular regions of Adhesion GPCRs with an Fc-fragment 
in N-terminal and biotinylation signal at the C-terminal.  This 
acts as probe to screen the extracellular matrix components.  
This led to the identification of certain ligands for myeloid 
cell Adhesion GPCR[51, 110].  In recent years, the so-called reverse 
pharmacology strategy has also been used to identify the 
ligands of orphan GPCRs[98].  This is carried out by expressing 
these orphan GPCRs in eukaryotic cells by DNA transfection 
and then coupling them to ligands to examine the binding 
affinity of the cells and ligands[111, 112].  With this approach, 
many peptide hormones, including ghrelin, which stimu-
lates hunger; kisspeptin and metastin, which are involved 
in puberty development and cancer metastasis; orexin and 
hypocretin, which mediate food intake and induce wakeful-
ness and energy expenditure, have been discovered within the 
last decade[113].  However, the successful application of reverse 
pharmacology method depends on three major elements: suf-
ficient orphan receptor expression, high-quality ligands and 
robust screening assays to detect receptor activation[114, 115].  
Fortunately, with development of membrane protein expres-
sion and purification techniques, neuropeptides and synthetic 
ligands have been applied to large-scale screening[116].  Of the 
three elements outlined above, choosing an appropriate detec-
tion assay is the most problematic.  

The rate of GPCR deorphanization decreased drastically at 
the turn of the century, suggesting some gap the processes 
exit.  Herein, we discuss several factors that may account for 
the problem.  The greatest challenge in deorphanization of 
the receptors is the limited knowledge about them, especially 
with respect to their physiological functions and their roles as 
transmitters of signal pathways.  Thus, experimental design 
is rendered difficult by the lack of signal transduction assays 
and positive controls[113].  Second, the majority of approaches 
to deorphanization rely on monitoring changes at the second 
messenger level, which is regulated by G proteins.  However, 
GPCRs can transduce signal pathways diversely, sometimes 
even beyond G proteins.  In this case, identifying the relevant 
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signaling pathway is key point to deorphanization.  For exam-
ple, some orphan GPCRs require accessory proteins for their 
activity.  This working model has been shown in calcitonin 
GPCRs, which require RAMPs (receptor activity-modifying 
proteins) for their activation.  To identify the ligand of this 
kind of GPCR, new screening assays for specific accessory 
proteins must be set up[117, 118].  Third, there is a possibility that 
some transmitters are only expressed at a particular time dur-
ing the life span or at certain specific conditions[9].  Although it 
is risky and challenging, it is necessary to find more effective 
transmitters for deorphanization and put them to use.  Lastly, 
some orphan GPCRs can form heterodimers with other GPCRs 
and function in a ligand-independent manner, and there is 
no outcome for the identification of the ligands of this kind of 
orphan GPCRs.  For example, GABABR1 and GABABR2 form 
well-known heterodimer receptors and GABABR1 is involved 
in ligand-binding, whereas GABABR2 only acts as the signal-
ing unit.  GABABR2 is an orphan receptor in the heterodimer 
complex without any known ligand[119-121].  

Perspectives in the research of orphan GPCRs
In recent years, the numbers of new orphan GPCRs have 
increased and several members have been relatively well char-
acterized.  However, the progress of orphan GPCR function 
research has been hampered by the lack of identified ligands 
and by the unique structures of the GPCR themselves.  Further 
investigation of their signaling pathways is valuable to under-
stand the physiological and pathological roles of these new 
orphan GPCRs.  The development of orphan GPCR knockout 
mice has also been shown to be a successful method for the 
characterization of their physiological and pathological func-
tions.  The knockout approach for orphan GPCRs are essential 
for our understanding of these receptor functions and their 
potential pathways.  Functional and specific antibodies can 
serve probes not only for the ligands, but also for developing 
therapies for tumors and genetic disorders in which orphan 
GPCRs are involved.  Although progress is very difficult, 
searching for the ligands of orphan GPCRs and identifying 
their physiological functions will continue.  With recent dis-
coveries of more and more orphan GPCR signaling pathways, 
understanding of their particular physiological functions and 
deorphanization for therapeutic purposes should accelerate in 
the coming years.
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