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As described elsewhere in this
issue, a major hurdle for clin-
ical trials in the critically ill or
injured is the difficulty of ac-

curate and timely diagnosis, coupled with
the difficulties of predicting and monitor-
ing the response to therapy. There are a

host of probabilistic tools available (e.g.,
Acute Physiology and Chronic Health
Evaluation III) based on clinical examina-
tion and physiologic parameters. These
tools perform well when defining the out-
come of groups of patients at the time of
admission, but as reported in numerous
studies, are less reliable at defining or
classifying individuals. What the current
tools lack is resolution at the level of the
individual, a measure of heritable predis-
position to a given clinical trajectory, and
an account of the individual’s response to
therapy. Today, it is possible to both eval-
uate an individual’s genetic susceptibility
to disease and measure their physiologic
response to therapy using multiplexed
molecular assays. The biological assump-
tions underlying these efforts are that 1)
predisposition is determined to a greater
or lesser degree by our genetics and 2)
the host response can be measured
and/or predicted and/or individualized at
the molecular level. The promise of mo-
lecular monitoring is that it will be pos-
sible to get preliminary data as patients
are admitted, and with a few repeated
measures, answer the questions “what is
going on?” and “how are they going to
do?” (1–5).

In recent articles, we proposed an in-
vestigative strategy—functional genom-

ics coupled with systems biology—for ap-
plying genome-wide technology to the
study of critical illness and injury (4–6).
This strategy proposes using information
at the genome (DNA) level to discover
predisposition to a given outcome, and
uses data at the transcriptome (RNA) and
proteome (protein) levels to make diag-
noses and gauge the response to therapy
(prognoses). These data in turn can be
linked to physiologic data and clinical pa-
rameters using systems approaches to
mathematically describe the host response
to critical illness or injury. Associated with
these high-throughput genomic technol-
ogies are a number of theoretical and
technical challenges that have delayed
their widespread implementation in the
clinical setting. These include: 1) the re-
quirement for investigators with diverse
skill sets to develop effective communi-
cation and methodologic strategies, 2)
the accumulation of sufficient technical
expertise and experience to generate
high-quality data, and 3) the develop-
ment and application of data storage and
analysis tools (4–6). Given the complex-
ities of these interactions, the relatively
meager resources available to individual
investigators, and the need to share ex-
periences and build collaborations, there
exists a need for focused scientific discus-
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What if there was a rapid, inexpensive, and accurate blood
diagnostic that could determine which patients were infected,
identify the organism(s) responsible, and identify patients who
were not responding to therapy? We hypothesized that systems
analysis of the transcriptional activity of circulating immune
effector cells could be used to identify conserved elements in the
host response to systemic inflammation, and furthermore, to
discriminate between sterile and infectious etiologies. We review
herein a validated, systems biology approach demonstrating that
1) abdominal and pulmonary sepsis diagnoses can be made in
mouse models using microarray (RNA) data from circulating
blood, 2) blood microarray data can be used to differentiate
between the host response to Gram-negative and Gram-positive
pneumonia, 3) the endotoxin response of normal human volun-

teers can be mapped at the level of gene expression, and 4) a
similar strategy can be used in the critically ill to follow septic
patients and quantitatively determine immune recovery. These
findings provide the foundation of immune cartography and dem-
onstrate the potential of this approach for rapidly diagnosing
sepsis and identifying pathogens. Further, our data suggest a new
approach to determine how specific pathogens perturb the phys-
iology of circulating leukocytes in a cell-specific manner. Large,
prospective clinical trails are needed to validate the clinical utility
of leukocyte RNA diagnostics (e.g., the riboleukogram). (Crit Care
Med 2009; 37[Suppl.]:S16–S21)
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sions apart from mainstream critical care
and trauma meetings. Two opportunities
for intensivists to explore systems biology
are the National Institutes of Health an-
nual Functional Genomics of Critical Ill-
ness and Injury Symposium and the So-
ciety for Complexity in Acute Illness.

The ongoing challenge of accurately
diagnosing infection in the intensive care
unit—differentiating sterile from infec-
tious causes of systemic inflammation—
motivates a search for molecular diagnos-
tics (7). Recent advances in genome
sequencing, robotics, and miniaturiza-
tion have significantly expanded the
search for biomarkers; a number of strat-
egies (both new and old) are being eval-
uated (7–9). The human tissue that is
most easily accessible for longitudinal
profiling is peripheral (circulating) blood.
To this end, we have been testing a sys-
tems approach to develop a novel strategy
for blood immunomonitoring (4, 5), what
we now call immune cartography. An
early example, the riboleukogram (10), is
described herein. The hypothesis is that
changes in circulating leukocyte RNA can
be used to quantitatively determine the
inflammatory response and thereby im-
prove sepsis diagnostics and prognostics.
We also expect that these data will inform
dynamic models of the host response and
identify functional modules and gene tar-
gets for further study.

In Vitro and Animal Studies

There is substantial preclinical data
supporting RNA diagnostics in critical ill-
ness and the use of systems approaches to
identify new gene targets. In 2001, stud-
ies using cultured human cells suggested
that instead of a single marker (e.g., in-
terleukin-6), a suite of molecular mark-
ers could be used to better describe the
cellular response to inflammatory stim-
uli. The authors concluded that human
leukocytes in vitro alter RNA transcrip-
tional profiles in response to diverse types
of pathogens, including bacteria, fungi,
and yeast. Importantly, the leukocyte re-
sponses observed exhibited both generic
and pathogenic-specific responses to
these agents (11–13). Thus, depending on
the question to be answered, leukocyte
expression profiles can be queried to
search for generic changes in response to
diverse agents, pathogen-specific re-
sponses, or both (14).

The in vitro reports described above
suggested that genome-wide profiling of
transcription holds promise as a molecu-

lar diagnostic tool, capable of generating
profiles from leukocytes that are sensi-
tive, specific, and timely for pathogen de-
tection (6). We hypothesized that leuko-
cyte gene expression profiles obtained
using DNA microarrays could be used to
predict septic states; in particular, distin-
guishing between sterile and infectious
sources of systemic inflammation, a com-
mon conundrum in caring for the criti-
cally ill or injured (15). We tested this
hypothesis in an in vivo model, subject-
ing C57BL/6 male mice to cecal ligation
and puncture or to intraperitoneal lipo-
polysaccharide. Control mice had sham
laparotomy or injection of intraperitoneal
saline, respectively. A classification model
was developed and tested on blood sam-
ples from septic mice (15, 16). Classifiers
were constructed using data from a train-
ing data set of 26 Affymetrix GeneChip
microarrays (Santa Clara, CA). The error
rate of the classifiers was estimated on
seven deidentified microarrays, and then
on a subsequent cross-validation for all
33 blood microarrays. All seven of the
de-identified microarrays (100%) were
correctly classified. Considering all 33
microarrays, nested cross-validation esti-
mates of classification accuracy of diag-
nosing sepsis from mouse blood was
94.4%. We concluded that sepsis induces
changes in mouse blood gene expression
that can be used to diagnose sepsis apart
from noninfectious causes of systemic in-
flammation (15). Lists of genes with sig-
nificant changes in expression between
study and control groups were used to
identify nine mouse common response
genes for peritonitis, six of which were
mapped into a single network using con-
temporary pathway analysis tools. Given
that this list of nine genes was based on
changes in relative RNA abundance
across a number of cell types, the net-
work analysis performed served as an ex-
ploratory tool, validating in silico the role
of six of the nine genes in canonical path-
ways for inflammation, apoptosis, and
signal transduction: inhibitor of DNA
binding 2, calgranulin A and B (S100A8
and S100A9), interferon regulatory factor
7, lipocalin 2, and formyl peptide recep-
tor-like 1.

In the follow-up study, we hypothe-
sized that the circulating leukocyte re-
sponse to infection could not only differ-
entiate between infected and noninfected
states but could also be used to differen-
tiate between the host response to infec-
tious agents, and to mathematically rep-
resent the host response to infectious

perturbations (10). We used a transla-
tional research paradigm wherein mouse
data indicated a novel clinical strategy to
apply at the bedside. Murine peripheral
blood leukocyte transcriptional responses
at 24 hrs were examined to identify genes
that could distinguish between different,
clinically relevant insults: pneumococcal
pneumonia, Pseudomonas pneumonia,
and Pseudomonas lipopolysaccharide
pneumonitis. We then used those genes
to test whether there was a conserved
transcriptional response to pulmonary
infectious challenge. Lastly, we deter-
mined whether the human orthologs to
these murine genes were informative
with regard to the onset of infection in
critically ill patients (see “Clinical Stud-
ies” section). Our results from this single
time point mouse model demonstrated
that 219 probe sets from mouse buffy
coat reliably differentiated between the
host response to these prototypical
Gram-negative and Gram-positive in-
sults. Leaving out one cross-validation
resulted in an estimated classification ac-
curacy of 93%. This result suggested that
the transcriptional activity of buffy coat
may be diagnostic not only for the onset
of infection but also for the type of bac-
terial pathogen.

To complement the system classifica-
tion tools described above, we also ex-
plored the use of network analysis to
identify regulatory nodes and new gene
targets of interest to sepsis investigators
(“molecular cartography”) (17). For ex-
ample, mouse gene expression profiles
were used to examine the mechanisms
responsible for the beneficial effect of
bcl-2 overexpression on outcome from
sepsis. We reported that splenocyte gene
interaction network analysis implicated
bim as a key player (node) in the apopto-
sis module, responsible in part for the
beneficial effect of bcl-2 on survival in
both pneumonia and cecal ligation and
puncture models of sepsis (18). Subse-
quent study of targeted gene deletion of
bim by our colleague Dr. Richard Hotch-
kiss confirmed its central role in the
mouse sepsis model, as bim knock-outs
experienced significantly less apoptosis
and improved sepsis survival (19).

Collectively, these blood and spleen
gene expression data from mouse models
of sepsis corroborate early reports from
in vitro leukocyte studies, demonstrating
that microarray gene expression profiles
are exquisitely sensitive tools that can be
used to identify both generic and patho-
gen-specific host responses. Further-
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more, these reports provide proof-of-
feasibility that systematic analysis of
changes in leukocyte RNA abundance can
classify systemic inflammatory states and
identify new gene targets. A major limi-
tation of these single time point studies,
however, is their failure to provide a
context within which to identify the
(mal)adaptive transitions in the host re-
sponse that occur during the onset, pro-
gression, and resolution of disease. The
human studies described below address
this limitation and explore the potential
of genomics and systems biology for clin-
ical diagnostics and prognostics in the
intensive care unit.

Normal Volunteer Studies

The systemic response to critical ill-
ness or injury has been characterized by
an early inflammatory phase followed by
a compensatory anti-inflammatory phase,
based on reports from both patients and
animal models (20, 21). This suggests
that time series data are required to best
model (and thereby understand) critically
ill states. It has been postulated that the
relative magnitude and duration of these
phases (whether secondary to trauma,
sepsis, cardiogenic shock, etc.) will deter-
mine whether the patient develops organ
dysfunction, influencing the likelihood of
subsequent complications and recovery
(4, 22, 23). “Mixed” inflammatory states
(components of both proinflammatory
and anti-inflammatory phases) have also
been recognized, adding to the difficulty
of classifying the host response (4). Thus,
the ability to accurately and rapidly mon-
itor the dynamics of the host immuno-
inflammatory response has been an ex-
plicit goal of shock researchers. The
clinical relevance of these efforts is indi-
cated by recent reports demonstrating
that more accurate immune classifica-
tion, including an estimate of the risk of
death, would likely improve the efficacy
of anti-inflammatory therapies (24, 25).

The Inflammation and Host Response
to Injury Program is a large-scale collab-
orative research grant funded by the NIH
to explain differences in the host re-
sponse to blunt trauma and burn injury.
Before embarking on patient studies,
normal human volunteers were used to
develop blood sampling and processing
protocols for microarray analysis. In a
collaborative project, we discovered that
gene expression profiling results can be
confounded by differences in blood pro-

cessing protocols, but, when standard-
ized, can provide highly reproducible
data that are informative with regard to
human health and disease (6, 26). We
hypothesized that circulating leukocyte
gene expression profiles over time could
be used first to mathematically quantify
the human response to a prototypical in-
flammatory stimulus, and then to apply
such an approach to the clinical setting.
Intravenous endotoxin was used to vali-
date this approach in a preclinical model
and to study the dynamics of the systemic
inflammatory response (27). As reported
previously by Calvano et al, endotoxemia
in normal volunteers produced a mild,
reproducible, self-limited inflammatory
state with flu-like symptoms (28, 29).
Four normal subjects were treated with a
reference dose of endotoxin; four addi-
tional normal subjects were studied sim-
ilarly after injection of intravenous nor-
mal saline (placebo control). Using the
protocols described above, whole genome
expression profiling was performed on
circulating leukocytes at 0, 2, 4, 6, 9, and
24 hrs after intravenous challenge. Two
previous reports described the data min-
ing methods applied to this dataset, in-
cluding a network-based analysis of infor-
mational gene lists (27, 30). The results
provided a global view of innate immune
system tolerance and new insight into the
dysregulation of leukocyte energy functional
modules and translational machinery.

In a complementary analysis, we
tested the ability of these microarray data
(27) to classify the responses of the vol-
unteers, providing information that po-
tentially would be useful in a clinical set-
ting (Fig. 1). In doing so, a number of
computational challenges were encoun-
tered typical of applying genomics to
clinical studies (6), including noisy mea-
surements, stochastic data, low time res-
olution, few replicates, and large number
of data elements (genes). The computa-
tional methods used were reported re-
cently (10). To better visualize temporal
changes in circulating leukocyte RNA
abundance, the data were projected onto
a smaller dimensional space using a se-
ries expansion method, Karhunen-Loeve
Decomposition, a variant of principal
components analysis. A successive de-
composition was performed that easily
distinguished between temporal profiles
of the host response to the two treat-
ments, providing a novel strategy to clas-
sify systemic inflammatory states.

Clinical Studies

Given the goal of creating dynamic
models of systemic inflammation for clin-
ical use (4, 5), we began by applying this
methodology to data collected from me-
chanically ventilated critically ill pa-
tients, as reported recently (10). Specifi-
cally, we studied the temporal behavior of
time series DNA microarray data from

Figure 1. Immune cartography of systemic in-
flammation. A, Previously reported circulating
leukocyte gene expression values for 5150 probe
sets were used to map immune trajectories in
three dimensions for normal volunteers chal-
lenged with either intravenous endotoxin or nor-
mal saline (27). An interpolation scheme was
used to accommodate the uneven and sparse
sampling of leukocyte expression values over
time; the methods are described elsewhere (10).
Evident in endotoxin-treated subjects (blue
curves) is a cyclic response, coincident with the
transition in physiologic states from normalcy
(t � 0 hrs), to symptomatic systemic inflamma-
tion (t � 2–9 hrs) and recovery (t � 24 hrs).
These paths are easily distinguished from those
of the subjects treated with saline (red curves).
Similarly, the variance of trajectories over time
reflects differences between the endotoxin- and
saline-treated subjects. Intersubject differences
likely contribute to the group variances observed.
B, A hypothetical aggregate response is plotted to
describe the “expected” systemic inflammatory
response (blue curve), which begins at and re-
turns to a normal (homeostatic) state. “Unex-
pected” or abnormal responses are anticipated to
deviate from the expected path at bifurcation
points (green curve). A return to the expected
path (healing) would be achieved with successful
therapy. We submit that immune cartography is
thereby well suited for use as a monitoring tool.
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circulating leukocytes in 27 patients be-
fore, during, and after ventilator-associ-
ated pneumonia (VAP). This study was
motivated, in part, by our interest in ex-
ploring the translational research para-
digm, bringing to the bedside the mouse
pneumonia data described above. Ini-
tially, we examined the behavior of the
human orthologs to the 219 genes iden-
tified in the mouse pneumonia study
(10). Similar to the observations in Fig-
ure 1, we found that the onset of systemic
inflammation (in this case due to bacte-
rial pneumonia in patients) coincided
with translation along the axis of a prin-
cipal component. Importantly, this trans-
lation ceased after 5–6 days, coincident
with a clinical response to appropriate
antibiotic therapy. Of interest, the abun-
dance of 20 plasma cytokines (including
procalcitonin) measured in the same pa-
tient samples generated a comparable
trajectory using principal components
analysis. However, in line with previous
reports, the variance (“noise”) in plasma
cytokine abundance either examined in-
dividually or collectively was large
enough to prevent its use as a VAP diag-
nostic (10).

In contrast, when the leukocyte genes
were selected in patients by explicitly ac-
counting for time, a set of 85 genes were
identified whose microarray expression
levels changed consistently across all pa-
tients around the time of VAP diagnosis
(10). In addition, two other aspects of this
analysis were noteworthy. Testing for the
effect of covariates on gene expression
(including age, gender, and type of bac-
teria) identified ethnic background as
having the largest impact, as measured
by the number of genes altered in re-
sponse to VAP (�2700 genes or 32%).
These findings are strikingly similar to
those reported based on variance in gene
expression in cultured cells derived from
different ethnic groups (25% of the genes
studied in a recent report) (31). As the
sepsis mortality rate is highest for African
American males, and the reasons for this
difference remain obscure (32), further
study is indicated to gain molecular in-
sight into health disparities. These stud-
ies may also provide important new in-
sight into genetic predisposition for
sepsis. Finally, we discovered that the
variance in leukocyte gene expression as
visualized using principal components
analysis decreased significantly as the pa-
tients recovered from VAP and critical
illness. In phase space analysis, the pa-
tient-specific trajectories seemed to con-

verge, consistent with return to ho-
meostasis (what physicists would call an
attractor state, Fig. 2). This property also
can be observed in the data from normal
volunteers treated with endotoxin (Fig.
1), as those trajectories reflect health

(t � 0 hrs) then systemic inflammation
(t � 4–9 hrs) then a return back to base-
line (t � 24 hrs). In summary, circulating
leukocyte gene expression profiles can
map the dynamics of the human systemic
inflammatory response generated by both
infectious (VAP) and noninfectious (lipo-
polysaccharide) insults.

We coined the term riboleukogram to
refer to these dynamic maps of leukocyte
gene expression, in essence, an electro-
cardiogram for the immune system (10).
Riboleukograms reflect the plasticity of
immune responsiveness and suggest the
existence of an immune attractor state.
They may also provide a better under-
standing of immune health disparities
based on genotype (10, 32).

Confirmatory findings in patients have
been reported recently by others. For ex-
ample, Ramilo et al (33) used blood gene
expression analysis to develop discrimi-
native transcriptional signatures as novel
RNA diagnostics for acute infections in
138 children. Microarray patterns were
observed to differentiate between four
common pathogens—influenza A virus,
Escherichia. coli, Staphylococcus au-
reus, and Streptococcus pneumoniae—
with a diagnostic accuracy of 85%–95%.
Similarly, in 90 trauma patients with sys-
temic inflammatory response syndrome,
Johnson et al (34) were able to discrimi-
nate between those who recovered with
or without sepsis. Gene annotation and
pathway analysis tools were used in that
study to identify overrepresented mod-
ules associated with leukocyte RNA abun-
dance in septic trauma patients: innate
immunity, cytokine receptors, T-helper
cell differentiation, and protein synthesis.
Finally, Tang et al (35) tested whether
circulating neutrophil-specific gene ex-
pression profiles could identify candidate
genes in sepsis, and, in the process, found
a profile capable of diagnosing sepsis in
94 critically ill patients. They described
an expression signature of 50 genes that
identified sepsis with an adjusted predic-
tion accuracy of 82% in the validation
cohort. This molecular signature of sep-
sis was associated with functional mod-
ules of inflammation, immune regula-
tion, and mitochondrial function, a
conclusion similar to that reported based
on data from endotoxin-treated normal
volunteers (27).

All four of these clinical studies are
limited by small sample size and they
differ with regard to sampling protocols,
technology platforms, statistical meth-
ods, and the lists of informational genes

Figure 2. Riboleukograms of critically ill and
injured patients. As reported recently, application
of immune cartography in the clinical setting
provides dynamic, RNA-based graphs of the leu-
kocyte response, which we term riboleukograms
(10). A, Phase space analysis of circulating leu-
kocyte expression profiles for human genes infor-
mational for ventilator-associated pneumonia
complicating recovery. All 11 patients were
treated with the appropriate antibiotic(s) for
their infecting pathogen and all patients were
discharged from the intensive care unit. Individ-
ual patient trajectories start at various points in
space and marked heterogeneity is observed, but
all of the riboleukograms converge as they move
to the right to a common region of the graph.
Furthermore, these data suggest that a trajectory
specific for each patient (riboleukogram) could
be plotted daily based upon leukocyte RNA data,
and the distance from the attractor could be
measured indicating whether the patient was
healing or not (“genomic vital signs”). B, Start-
ing points (critically ill, blue box) and ending
points (recovery, green box) of riboleukograms
for the same 11 patients. All paths move to the
right from a larger (blue) to a smaller (green)
box. This behavior mimics that of an attractor in
the physical sciences, consistent with critical ill-
ness complicated by ventilator-associated pneu-
monia perturbing a stable immune state that
returns to homeostasis. We submit that this gen-
eral method can be used to characterize, moni-
tor, and ultimately recognize infection in pa-
tients in whom the diagnosis of sepsis is
particularly difficult to make (10).
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identified. Nevertheless, these reports
provide convincing evidence supporting
the development of circulating leukocyte
RNA profiles as novel sepsis diagnostics
in both children and adults. These tran-
scriptional signatures also provide impor-
tant insight into the host response in a
pathogen-specific and leukocyte-specific
manner.

Future Directions

The clinical findings above extend our
earlier mouse and normal volunteer stud-
ies, demonstrating that systems biolo-
gists can use blood leukocyte transcrip-
tional profiles to map the dynamics of
the host response and differentiate sep-
tic from sterile sources of systemic in-
flammation (15). The overwhelming
complexity of thousands of gene inter-
actions among thousands of leukocyte
contacts is thereby reduced to clinical
trajectories that can be quantified and
mapped. We suspect that immune car-
tography will provide important new bi-
ological insight into how the host bal-
ances “proinflammatory” and “anti-
inflammatory” influences during injury
and recovery, and how the concept of
“immune paralysis” might be quantita-
tively defined (4, 10). Furthermore, we
anticipate this approach will provide for
a number of important innovations as
“genomic vital signs” (5), including: 1)
dynamic RNA profiles that can help dis-
tinguish between the host responses to
various types of infecting organism, 2)
robust, patient-specific computational
models of the response to systemic in-
flammation and sepsis, and 3) phase
space models of recovery to an immu-
nologic attractor. Figures 1 and 2 pro-
vide examples of early prototypes (e.g.,
riboleukograms).

Before we get to that point, however,
there are a number of technical, compu-
tational, and experimental hurdles to
clear (6, 10, 36–38), the most important
of which is lack of standardization. This is
as big an issue for the clinicians as it is
for the experimentalists and theorists.
How can one verify the clinical utility of
new technology if systemic inflammatory
states cannot be diagnosed with cer-
tainty? A few false-positive and false-
negative findings in a small study will
ensure a negative result when testing
clinical utility. The syndromic nature of
systemic inflammatory states, thus, is
the motivation for and the challenge of
validating new sepsis diagnostics. De-

mographic differences in patient cohorts
across studies contribute an additional
level of complexity, consistent with our
data and those of others indicating that
ethnic background, age, and gender sub-
stantially increase the variance in the
gene expression signal observed (10,
31). This variance helps explain, in part,
why there is so little overlap among the
lists of genes and transcriptional pat-
terns described above as diagnostic for
sepsis. Although this may at first seem
alarming, a similar lack of concordance
was observed in early cancer studies
touting transcriptional signatures as
novel diagnostics and prognostics (39).
Nevertheless, with careful attention to
sound clinical trial design, biomarker
verification, and rigorous validation,
novel gene expression diagnostics can
be developed (37, 38). Two of the first to
receive regulatory (Food and Drug Ad-
ministration) approval are aimed at the
prognosis of breast cancer and the di-
agnosis of heart transplant rejection
(40, 41).

The experiences above in the field of
cancer emphasize the importance of mul-
tidisciplinary teams that integrate knowl-
edge of rapidly evolving technology, new
computational approaches, advances in
the basic sciences, and improvements in
patient care and trial design. For in-
stance, the challenging nature of model-
ing patient responses requires that com-
putational strategies be optimized for
noisy, under-determined data. In addi-
tion, recent reports [including that by
Tang et al (35)] suggest that additional
molecular insight and diagnostic infor-
mation will be provided by sampling pro-
tocols and technological advances that
provide rapid, leukocyte-specific, gene ex-
pression profiles (35, 42–44). How will
this information be integrated into the
development of current diagnostic tech-
nologies in the pipeline, many of which
are based on reports of gene expression
profiles from whole blood or buffy coat?
(26). We also might find (again mirroring
the experience of oncologists) that leuko-
cyte gene expression profiles lead to the
discovery of patterns that are clinically
obscure but nevertheless have important
treatment implications (45). Although
these class discovery efforts would be ex-
pected to provide vital new information of
use for sepsis clinical trials and drug test-
ing, the large patient sample sizes neces-
sary would likely take years to accrue.
Scientific reviewers of clinical grants and
manuscripts, therefore, might best pre-

pare for a decade of “descriptive science”
on how best to apply molecular profiling
and immune cartography at the bedside.
Progress in this new era of translational
research and personalized medicine will
depend on it.
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