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Abstract

Voice disorders are medical conditions that often result from vocal abuse/misuse which is referred

to generically as vocal hyperfunction. Standard voice assessment approaches cannot accurately

determine the actual nature, prevalence, and pathological impact of hyperfunctional vocal

behaviors because such behaviors can vary greatly across the course of an individual’s typical day

and may not be clearly demonstrated during a brief clinical encounter. Thus, it would be clinically

valuable to develop non-invasive ambulatory measures that can reliably differentiate vocal

hyperfunction from normal patterns of vocal behavior.

As an initial step towards this goal we used an accelerometer taped to the neck surface to provide

a continuous, non-invasive acceleration signal designed to capture some aspects of vocal behavior

related to a common manifestation of vocal hyperfunction; vocal cord nodules. We gathered data

from 12 female adult patients diagnosed with vocal fold nodules and 12 control speakers matched
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for age and occupation. We derived features from weeklong neck-surface acceleration recordings

by using distributions of sound pressure level and fundamental frequency over five-minute

windows of the acceleration signal and normalized these features so that inter-subject comparisons

were meaningful. We then used supervised machine learning to show that the two groups exhibit

distinct vocal behaviors that can be detected using the acceleration signal.

We were able to correctly classify 22 of the 24 subjects, suggesting that in the future measures of

the acceleration signal could be used to detect patients with the types of aberrant vocal behaviors

that are associated with hyperfunctional voice disorders.
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I. Introduction

THIS paper presents initial results from an ongoing project that is aimed at developing

ambulatory monitoring of laryngeal voice production (phonation) into an effective clinical

tool. In particular, we hope to improve the assessment of voice disorders associated with

daily vocal abuse/misuse (e.g., yelling) referred to generically as vocal hyperfunction. Vocal

nodules (depicted in Figure 1) are one of the common manifestations of vocal

hyperfunction, which arise secondarily to chronic tissue trauma on the surface of the vocal

cords (folds).

The primary role of vocal hyperfunction in this diagnosis is difficult to determine because

the associated vocal fold pathology is most probably the result of long-standing and

inconsistent behaviors whose effect is cumulative over time. In addition, once pathological

changes in vocal fold tissue have taken place, their very presence alters vocal function in

ways that require additional effort to maintain phonation. Thus, separating primary

hyperfunction (initial cause of the disorder) from reactive hyperfunction (reaction to the

presence of pathology) is not easily achieved.

The work reported here is part of an ongoing project intended to gain insight into these

complex relationships by analyzing data collected from an accelerometer (ACC) placed on

the neck. In this study, we analyzed data from patients suffering from vocal hyperfunction

with associated vocal fold nodules. In future studies we intend to also examine subjects who

have had nodules surgically removed, but before they have undergone voice therapy (vocal

re-training). Clinical experience and previous work [2] suggests that these subjects will

display persistent post-surgical hyperfunctional behaviors that are not confounded by the

presence of vocal fold pathology and would eventually result in a recurrence of vocal

nodules if the behaviors are not ameliorated by voice therapy.

In this paper, we show that by using supervised machine learning techniques we can build a

classifier to distinguish between patients with vocal nodules and matched control subjects.

Section II presents clinical background relevant to the problem of tracking voice use–related

measures. Section III describes our data collection methods, novel features, and
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classification algorithms. Section IV summarizes the classification performance of a logistic

regression model and a support vector machine. We discuss the contributions of particular

features for potential clinical application in Section V, limitations are listed in Section VI

and we summarize our work in Section VIII.

II. Background

A. Clinical Background on Vocal Hyperfunction

An estimated 6.6% of the United States’ working-age population suffers from a voice

disorder at any given point in time [1]. Such disorders are caused by a malfunctioning of the

vocal folds in the larynx and can have a devastating effect on the ability of individuals to

speak, sing, and/or project their voice. Associated economic losses can be significant

because of increases in healthcare costs and reductions in occupational productivity.

Many voice disorders are chronic or recurring conditions that are likely to result from faulty

and/or abusive daily patterns of vocal behavior, referred to generically as vocal

hyperfunction. While the general impact of hyperfunctional disorders on vocal function has

been described based on laboratory studies [2, 3] and clinical evaluations, critical aspects of

voice use may not be captured in such brief assessment periods. Clinicians employ an

assessment protocol that includes a patient’s self-report and self-monitoring, which are

subjective and prone to unreliability when assessing the prevalence and persistence of vocal

behaviors during diagnosis and management [4, 5]. The diagnosis of some common voice

disorders could be enhanced by the ability to unobtrusively monitor and quantify

hyperfunctional vocal behaviors as individuals go about their normal daily activities.

There are two types of vocal hyperfunction that can be differentiated from each other and

from normal voice production: 1) adducted hyperfunction, which contributes to chronic

vocal fold tissue trauma and the formation of growths, such as nodules, that may cause a

disordered voice quality (Figure 1); and 2) non-adducted hyperfunction, which contributes

to vocal fatigue and a disordered voice quality in the absence of vocal fold tissue damage

[2].

B. Smartphone-Based Voice Health Monitoring

Our group recently reported on the development of a platform for unobtrusive non-invasive

ambulatory voice monitoring that uses a neck-placed miniature ACC as the phonation sensor

and a smartphone as the data acquisition platform [6]. This device collects the unprocessed

accelerometer signal and daily calibration recordings from speakers. The raw accelerometer

signal is collected at an 11,025 Hz sampling rate, 16-bit quantization, and 80-dB dynamic

range to obtain frequency content of neck surface vibrations up to 5000 Hz.

Accelerometer data are preferable to acoustic recordings because 1) continuous daily

recording of the acoustic signal raises privacy concerns, 2) the ACC signal is less affected

by external acoustic noise sources [7], and 3) the ACC signal captured below the larynx is

easier to analyze than the oral signal because the resonances of the respiratory system are

relatively time-invariant compared to the vocal tract resonances that are continuously altered

during speech production by movements of the articulators (tongue, lips, and jaw) [8].
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C. Acoustically-Inspired Measures of Vocal Hyperfunction

Previous ACC-based ambulatory monitoring approaches have estimated basic acoustic

parameters to quantify voice use, including fundamental frequency (F0, related to pitch),

sound pressure level (SPL, related to loudness) and phonation time [9], [10]. Analogous to

noise dosimetry for hearing health, vocal dose measures incorporate F0 and SPL over long

periods of time to estimate the total exposure of vocal fold tissue to potentially damaging

forces (e.g. shear stresses) associated with vibration [10].

The prevailing view is that vocal fold tissue can be damaged by accumulating cycles of

vibration and repeated collision between the two vocal folds without sufficient recovery

time [11]. However, prior preliminary results suggest that long-term averages of these voice

use measures do not capture the difference between high-voice users with disorders such as

nodules and high-voice users with normal voices [12]. In a similar way, average measures

were not significantly different between the paired subjects in the current study. Although

average vocal measures have been found to distinguish various types of teachers in

occupational and non-occupational contexts [13-16], such differences have not been

investigated between individuals with and without voice disorders. Thus to differentiate

patients with nodules from their control subjects in the current study, we augmented ACC-

derived features to capture both average and extreme characteristics of vocal behavior.

III. Methods

A. Data Collection

All subjects were monitored over the course of one week using the voice health monitor [6].

Data were gathered from 12 pairs of trained adult singers. All subjects were female with an

average age of 21.6 years (SD = 2.7 years). The subjects were instructed to wear the device

during all waking hours; strict compliance was not a pre-condition for data inclusion. For

example, if a subject wore the device for only four hours on one day, we did not exclude

data from that day from analysis. Each subject pair comprised a patient diagnosed with vocal

fold nodules and a vocally normal subject matched for age (within 5 years). The severity of

the nodules and associated abnormalities in voice quality varied across patients. Diagnoses

were based on a team evaluation (laryngologist and speech-language pathologist) at the

Center for Laryngeal Surgery and Voice Rehabilitation at the Massachusetts General

Hospital that included (1) a complete case history, (2) endoscopic imaging of the larynx, (3)

Voice-Related Quality of Life (V-RQOL) questionnaire [17], (4) Consensus Auditory

Perceptual Evaluation of Voice (CAPE-V) assessment [18], and (5) aerodynamic and

acoustic assessments of vocal function.

B. Feature Extraction

After each week of recording, data were downloaded from the smartphone and pre-

processed to yield voice use features. Daily accumulation of voice use was quantified by F0,

SPL, and three vocal dose measures: phonation time, cycle dose, and distance dose [10].

Phonation time reflects the total duration of voiced frames and is computed in terms of time

and percentage of total time. Cycle dose is the number of vocal fold oscillations during a
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period of time. Distance dose estimates the total distance traveled by the vocal folds,

combining cycle dose with F0 and estimates of vibratory amplitude based on SPL.

We took a similar approach to prior work in pre-processing the ACC signal by extracting F0

(in Hz) and SPL (in dB SPL) from non-overlapping frames of 50 ms in duration [6, 19]. For

each frame, SPL was computed using calibration factors for each sensor to map ACC level

to acoustic SPL. F0 was estimated from the first peak in the time-based autocorrelation

function. From these values, we used a simple voice activity detection method that defined

voiced frames as consisting of plausible ranges of SPL (62–130 dB SPL) and F0 (50–500

Hz) [20].

Given SPL and F0 point estimates for each voiced frame each day, we segmented these time

series into non-overlapping 5-minute windows. We calculated the three vocal dose measures

(phonation time, cycle dose, and distance dose) over each window using the F0 and SPL

from voiced frames. We then treated the SPL and F0 time series within each window as a

distribution and calculated their mean, skewness, kurtosis, 5th percentile, and 95th percentile

values. These values (5 descriptive statistics for F0 and SPL distributions and 3 vocal dose

measures) formed the 13 “basis features.”

In addition, we created 13 “normalized features” to indicate how far subjects strayed from

their baseline behavior. Each basis feature was converted into units of standard deviation

based on that feature’s baseline distribution over an average hour in the first half of the day.

For example, the cycle dose distribution in a particular 5-minute window would be

converted to a normalized cycle dose by subtracting the mean and dividing by the standard

deviation of the cycle dose time series over the first half of the day. The 13 normalized

features are similar in content to the basis features, but can be compared meaningfully across

subjects and days.

Figure 2 summarizes the feature extraction algorithm in pseudocode. The 13 baseline

features and 13 normalized features were calculated in every 5-minute window with more

than 10% of the frames voiced (15,345 windows total) and were combined into a single 26-

dimensional feature vector (time-ordering was ignored). See Table I for a detailed listing of

the proportion of data available from each subject after frames were discarded. As shown,

the retained data tended to be evenly balanced across subject pairs.

C. Discrimination using Hypothesis Testing

We examined feature correlations across all subjects to determine whether any feature had a

Pearson’s correlation coefficient higher than 0.9 with at least one other feature. If a pair of

correlated features were identified, the feature that was most correlated with the remaining

features was eliminated, leaving 17 features (see Table II). We did not use orthonormal

dimensionality reduction techniques because we believe that the interpretability of the

features is critical for clinical application. Note that the resulting 17-feature vector is not

designed to detect underlying physiological problems, but rather to capture hyperfunctional

vocal behaviors that are typically associated with vocal fold nodules.

Ghassemi et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Statistical differences between distributions were tested using the Kolmogorov–Smirnov

(K–S) statistic [21] and with a p-value modified with the Bonferroni correction for multiple

hypothesis tests (p < 0.0019) [22]. The K–S statistic converges to zero for large datasets if

the samples come from the same empirical distribution.

D. Classification using Machine Learning Techniques

We approached our task as a binary classification problem. Each of the 15,345 windows was

labeled as positive or negative depending on whether it was associated with a patient or

control subject, respectively (51% of windows came from the patient group). This approach

ignored the fact that subjects with vocal fold nodules exhibit inconsistent degrees of

hyperfunctional behaviors during the day. There may also be instances where vocally-

normal subjects exhibit some degree of hyperfunctional behavior, but we expect fewer of

these based on the lack of vocal pathology.

L1-norm regularized logistic regression [23] and support vector machine (SVM) [24]

models were trained for the binary classification problem. We used a neutral cost function

for classifier training (i.e. the cost of a misclassification is the same regardless of the

underlying label). We first divided data using leave-one-out-cross-validation (LOOCV) to

generate 12 datasets, each consisting of 11 training pair and one test pair. All windows from

the 11 training pairs (22 subjects total) were then subdivided using 5-fold cross-validation

(1/5th validation and 4/5ths training in each fold). The training data in each fold was used to

select optimal beta values for the logistic regression model and slack parameters for the soft-

margin linear kernel SVMs. From these five trained models (one per fold) the best model

was selected based on best area under the ROC curve (AUC) model performance on the

validation set. Pseudocode describing this procedure is given in Figure 3.

The chosen models were used to classify windows in the test set; in Section IV, we report

the test set AUC, F-score, accuracy, sensitivity (Sens), specificity (Spec), positive predictive

value (PPV), and negative predictive value (NPV). We also used the models to classify all

windows from all subjects with a classification threshold of 0.5. We then examined the

proportion of windows classified as positives for each subject, and used this to classify each

patient as a positive or negative case.

IV. Results

Figure 4 illustrates differences between the distributions of measures of extreme vocal

behavior: F0 5th percentile and F0 95th percentile. There are statistically significant

differences in how much the nodule and normal group vary from each other, which is

reflected in the K-S statistic reported for the figure. There were distributional differences for

the basis features and normalized features between subjects in the nodules group and those

in the control group. In our dataset there was no statistically significant difference between

the phonation time of subjects with nodules and those without. It also was not a

discriminative feature (using regularization techniques) when building any of the

discriminative classifiers used.
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Table III summarizes the performance of each measure to classify hyperfunction in the

twelve subject pairs. The maximum number that the “association count” field can have is 12.

This occurs when that particular variable (row) has a statistically significant effect (p-value

< 0.05, absolute average odds ratios ≥ 1.05) in each subject pair during the testing phase.

Many associations persisted across all subject pairs rather than in only a few pairs and also

tended to agree well on the magnitude of the association. The 95% confidence interval is

from the lowest bound across pairs to the highest bound across pairs.

Logistic regression performance had an average AUC of 0.705, F-score of 0.630, and

accuracy of 0.660 (Sens. 0.499, Spec. 0.806, PPV 0.719, NPV 0.621) across the twelve

subject pairs. The performance of the linear SVM was not substantially different (AUC of

0.708, F-score of 0.650).

After all test data predictions, we applied a classification threshold of 0.5 to the logistic

regression model output to determine whether a window was positive or negative. We then

examined the proportion of 5-minute windows classified as positives in each subject.

Applying this method, there is a clear separation between patients and controls as seen in

Figure 5.

To clarify whether a single day of data could be used, we selected only the first day of data

available from all subjects and trained classifiers in the same manner as above. We applied

the same classification threshold of 0.5 to the logistic regression model output, and only 17

of the 24 were correctly classified. From this result, we believe that subjects do not

necessarily produce their most distinguishing behaviors on any given single day a device

was used. A primary reason we have chosen a week is to gain a full understanding of subject

behaviors and habits as they go about their routines.

V. Discussion

We found several features that could be used for patient identification using our long-term

mobile monitoring approach. Model performance indicates that features were more

important than the learning technique in decision boundary determination. Many significant

differences between the patients and their matched normals appear to be related to extreme,

rather than average, behaviors. This is supported by normalized features accounting for

several of the most important features, indicating that behavior straying from an individuals’

baseline behavior may be more important than their absolute behavior. This is an important

difference from previous work that focused on averages to differentiate subjects with and

without voice disorders [12].

In general the positive predictive value was higher than the sensitivity in all subject pairs. As

mentioned in Section III D, our approach to labeling all windows from a patient as positive

ignored the fact that subjects with vocal fold nodules exhibit inconsistent degrees of

hyperfunctional behaviors during the day. Based on our low sensitivity and high positive

predictive value we believe that there are roughly three clusters of data: one with data

mostly from controls, one with data mostly from patients, and one mixed. A mixed cluster
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“near” the control cluster with more patients than controls would pull the classifier decision

boundary towards the positive class.

The simplest reason a feature would be a good predictor of either class is a correlation with

the outcome. However, some measures were predictive of vocal fold nodules but were not

correlated with the outcome on their own. This indicates that these measures did not have a

direct linear relationship with the class label, but instead were important biasing factors once

other variables were taken into account.

Subjects with vocal fold nodules on average had a Normalized F0 Mean that was higher

relative to the first half of their day. Positive subjects also had a peaky un-normalized F0

distribution (higher F0 Kurtosis), and a normalized SPL with a heavier right side tail (higher

Normalized SPL Skew). These observations could be interpreted to mean that subjects with

vocal fold nodules tend to deviate from their baseline F0 and SPL as their days progressed,

possibly reflecting increased difficulty in producing phonation.

The vocally normal group had an SPL distribution with a heavier tail on the right side

(higher SPL Skew), and their SPL and F0 levels normalized to the first half of their day had

longer, heavier right-hand tails (Normalized F0 Kurtosis, Normalized SPL Kurtosis,

respectively). This observation could be interpreted to mean that control subjects tended to

have brief F0 deviations that were mostly bringing their lower pitches higher, rather than

their higher pitches even higher. It also suggests that even when control subjects exhibited

higher SPL ranges, they tended to stay within their baseline.

It was striking that some of the most heavily weighted features in predicting the presence of

nodules (SPL Kurtosis and F0 Kurtosis) were mirrored by the corresponding normalized

feature being strongly weighted towards the opposite prediction. The opposite was true of

SPL Skew: the feature itself is associated with vocal normalcy, but the normalized feature

was associated with vocal fold nodules. One possible explanation for these results is that

patients with vocal fold pathology such as nodules progressively increase muscle activation

levels during the course of the day to maintain a functional loudness level in the face of

increasing fatigue and dysphonia. This corresponds to the daily “vicious cycle” that has been

observed clinically and described in the literature for hyperfunctional voice disorders [2].

Under these conditions the effort to support inefficient voicing leads to fatigue and a

progressive increase in muscle activity that tenses the vocal folds and is reflected by an

increase in F0 [25]. The increasing trend of F0 over the day has also been reported

previously during controlled, laboratory recordings of teachers before and after a work day

[26] and is hypothesized to be related to vocal fatigue.

Our assessment provides an approach to address the fragility of traditional clinical

assessments. Instead of a single vocal snapshot, we are able to capture potentially

hyperfunctional behavior that is representative of at-work and/or at-home voice use. Model

performance on classifying windows was reasonable (AUC 0.705, accuracy 0.660), and we

were also able to obtain separation between the classes for 22 of 24 subjects. A window-

based classification would be most useful in a real-time biofeedback application designed to

reduce nodule-associated behaviors, whereas a subject-based classification would be
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relevant in a screening test for vocal nodules. An important question for exploration is

whether individuals with nodules who exhibit associated behavior early in the day are at

greater risk for increased damage. This should become clearer as additional speaker data are

obtained for analysis.

VI. Limitations

As noted previously, it is not possible to determine the extent to which differences observed

in the vocal behavior of patients with vocal nodules preceded (primary hyperfunction) or

followed (reactive hyperfunction) the formation of the nodules.

Many of the subjects in our study were students of performing arts programs, and our

collection periods may have included substantial episodes of singing. It is possible that

periods of singing played a factor in our ability to successfully classify subjects.

We performed analysis on 24 subjects, which is a small sample size. Our findings must be

replicated on larger datasets once they become available.

VII. Conclusion

In this work, we used distributional features of SPL and F0 derived from a non-invasive

accelerometer signal to classify 5-minute windows as belonging to a subject with normal

voice or to a subject diagnosed with vocal fold nodules. We evaluated these features on 12

patients with vocal fold nodules and 12 matched control subjects. We identified several

correlations related to subject class and were able to separate 22 of the 24 subjects based on

the proportion of 5-minute windows classified as positive.

Wearable voice monitoring systems have the potential to provide relevant, real-time

information about speaker vocal status by providing reliable and objective measures of voice

use during an individual’s day. Large-sample data collection from patients and subjects with

normal voices over long periods of time is warranted to provide further opportunity to

explore potential behavioral targets.
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Fig 1.
Endoscopic images of the larynx of (A) a normal subject and (B) a subject with nodules. The

vocal folds for B are shown in an open state to illustrate the location of vocal fold nodules

that develop due to tissue trauma.
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Fig 2.
Pseudocode describing the feature extraction procedure. Variables are in italics. The NaN

indicators allow unvoiced frames to be ignored in the calculation of distributional features.

Features are not computed for windows with less than 10% voiced frames.
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Fig 3.
Pseudocode describing the training and model selection procedure. Variables are in italics

and matrix indexing uses brackets.
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Fig 4.
Distributions of 5-minute derived values of (A) F0 5th Percentile and (B) F0 95th Percentile

over all days from all subjects. These features had a probability less than 0.001 of the two

populations being drawn from the same distribution (K–S test).
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Fig 5.
Proportion of 5-minute windows classified as positive by the best logistic regression model.

We obtained separation for 22 out of the 24 subjects.
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TABLE I
Distribution of Dataset

Subject Total
Windows

Percentage
of Data

Percentage
of Data Per

Pair

P01 310 1.84% 7.06%

N01 878 5.22%

P02 906 5.39% 11.23%

N02 983 5.84%

P03 677 4.02% 8.54%

N03 761 4.52%

P04 749 4.45% 7.50%

N04 513 3.05%

P05 751 4.46% 7.72%

N05 548 3.26%

P06 775 4.61% 9.20%

N06 772 4.59%

P07 472 2.81% 7.09%

N07 720 4.28%

P08 706 4.20% 8.37%

N08 701 4.17%

P09 803 4.77% 8.13%

N09 565 3.36%

P10 777 4.62% 8.32%

N10 623 3.70%

P11 684 4.07% 8.06%

N11 672 3.99%

P12 706 4.20% 8.78%

N12 771 4.58%
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TABLE II
Description of Features Used in Model Fitting

Feature Name Description K–S Statistic (p-value)

Distance Dose The distance travelled by the vocal folds within a
5-minute frame.

0.03 (p < 0.001)

% Phon Percent phonation time, calculated within a 5-
minute frame.

0.02 (p = 0.04)

SPL Skew Distributional skew of the sound pressure level
within a 5-minute frame.

0.10 (p < 0.001)

SPL Kurtosis Distributional kurtosis of the sound pressure level
within a 5-minute frame.

0.04 (p < 0.001)

SPL 5th Percentile 5th Percentile of the sound pressure level within a
5-minute frame.

0.09 (p < 0.001)

SPL 95th Percentile 95th Percentile of the sound pressure level within
a 5-minute frame.

0.05 (p < 0.001)

F0 Skew Distributional skew of the fundamental frequency
within a 5-minute frame.

0.06 (p < 0.001)

F0 Kurtosis Distributional kurtosis of the fundamental
frequency l within a 5-minute frame.

0.06 (p < 0.001)

F0 5th Percentile 5th Percentile of the fundamental frequency
within a 5-minute frame.

0.10 (p < 0.001)

F0 95th Percentile 95th Percentile of the fundamental frequency
within a 5-minute frame.

0.10 (p < 0.001)

Normalized Distance
Dose

Normalized Distance Dose 0.04 (p < 0.001)

Normalized Mean F0 Normalized Mean Fundamental Frequency 0.07 (p < 0.001)

Normalized SPL Skew Normalized Sound Pressure Level Skew 0.05 (p < 0.001)

Normalized SPL Kurtosis Normalized Sound Pressure Level Kurtosis 0.06 (p < 0.001)

Normalized SPL 5th

Percentile
Normalized Sound Pressure Level 5th Percentile 0.05 (p < 0.001)

Normalized F0 Skew Normalized Fundamental Frequency Skew 0.05 (p < 0.001)

Normalized F0 Kurtosis Normalized Fundamental Frequency Kurtosis 0.05 (p < 0.001)
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TABLE III
Model Performance Across the Twelve Subject Pairs, Sorted By Decreasing Mean Odds
Ratio

Association Counts Mean Multivariate Associations

Variable Hyperfunction Normal Beta
Mean (SD)

Odds Ratio
Mean (95% CI)

SVM Weight
Mean (SD)

Normalized Mean F0 12 0 0.37 (0.09) 1.45 (1.21–1.89) 2.83 (0.78)

Normalized SPL Skew 12 0 0.36 (0.07) 1.44 (1.30–1.80) 11.87 (1.30)

SPL Kurtosis 12 0 0.27 (0.09) 1.31 (1.05–1.62) 9.79 (3.25)

F0 Kurtosis 12 0 0.13 (0.03) 1.14 (1.06–1.27) 15.09 (3.22)

Normalized Distance Dose 12 0 0.13 (0.04) 1.14 (1.08–1.32) 3.88 (0.93)

Normalized SPL 5th Percentile 0 12 −0.34 (0.08) 0.71 (0.54–0.86) −2.61 (0.41)

Normalized SPL Kurtosis 0 12 −0.38 (0.09) 0.68 (0.52–0.84) −8.35 (2.49)

Normalized F0 Kurtosis 0 12 −0.64 (0.06) 0.53 (0.44–0.63) −21.46 (1.90)

SPL Skew 0 12 −1.28 (0.21) 0.28 (0.17–0.44) −6.16 (0.80)
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