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Abstract

We introduce Sailfish, a computational method for quantifying the abundance of previously 

annotated RNA isoforms from RNA-seq data. Because Sailfish entirely avoids mapping reads, a 

time-consuming step in all current methods, it provides quantification estimates much faster than 

do existing approaches (typically 20 times faster) without loss of accuracy. By facilitating frequent 

reanalysis of data and reducing the need to optimize parameters, Sailfish exemplifies the potential 

of lightweight algorithms for efficiently processing sequencing reads.

RNA-seq has become the de facto standard technique to measure gene expression, and it is 

commonly the first step in an analysis of differential expression among multiple samples1. 

However, the throughput of technologies used to generate transcriptomic sequencing reads 

is accelerating faster than the speed of the computers used to analyze these data. The 

growing repository of data from archived experiments invites reanalysis in the light of new 

discoveries, but existing methods are too time-consuming to allow frequent reanalysis. The 

divide between data-acquisition and data-analysis capabilities will only increase as RNA-seq 

is adopted for clinical use2. Finally, the sensitivity of existing methods to parameter choices 

can affect analysis time and accuracy and can make a priori selection of the appropriate 

parameters difficult. We must develop efficient, lightweight algorithms with few parameters 

that minimize unnecessary computation.

Existing approaches to abundance estimation first use read-mapping tools, such as Bowtie3, 

to determine potential locations from which the RNA-seq reads originated. Mapping the 

reads can require substantial computational resources and often leads to complicated models 

that try to account for read bias and error during inference, further adding to the time spent 
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on analysis. Finally, some reads, known as multireads4,5, can map to multiple, sometimes 

many, different transcripts. This ambiguity complicates the estimation of transcript 

abundances. Given read alignments, some of the most accurate transcript quantification tools 

estimate relative abundance using expectation-maximization (EM) procedures5,6,7, where 

reads are first assigned to transcripts, and these assignments are then used to estimate 

transcript abundances, and these steps are repeated until convergence. In practice, both steps 

can be time consuming. Even when exploiting the parallel nature of the problem, mapping 

the reads from a reasonably sized RNA-seq experiment can take hours.

Recent tools, such as eXpress7, aim to reduce the computational burden of isoform 

quantification by substantially altering the EM algorithm. Even for such advanced 

approaches, performing read alignment and processing the large number of alignments that 

result from ambiguously mapped reads remains a bottleneck and fundamentally limits the 

scalability of these approaches. Read-mapping is a complex problem, and the results of 

existing approaches depend on a host of parameters that affect how errors, gaps, and 

mismatches are tolerated. These parameters are not always easily interpretable, and they can 

affect both the resources required for alignment and the results of downstream analysis.

Sailfish, our software for isoform quantification from RNA-seq data, is based on the 

philosophy of lightweight algorithms, which make frugal use of data, respect constant 

factors and effectively use concurrent hardware by working with small units of data where 

possible. Sailfish avoids mapping reads entirely (Fig. 1), resulting in large savings in time 

and space, and substantially reducing parametric complexity. A key technical contribution 

behind our approach is the observation that transcript coverage can be accurately estimated 

using counts of k-mers occurring in reads instead of alignments of reads. This results in the 

ability to obtain accurate estimates more than an order of magnitude faster than existing 

approaches, often in minutes instead of hours. For example, for the data described in Figure 

2, Sailfish is > 25 times faster than the next fastest method while providing estimates of 

equal accuracy. This accuracy is possible, despite independent counting and assignment of 

k-mers, because of an expectation maximization procedure that introduces a statistical 

coupling between k-mers.

Although the use of k-mers for the purpose of transcript quantification has not been reported 

previously, recent work8 has shown that using k-mers directly for other RNA-seq-based 

tasks can be as or more effective than traditional approaches. By working with k-mers, we 

can replace computationally intensive read mapping with the much faster and simpler 

process of k-mer counting. We also avoid any dependence on read-mapping parameters. 

Yet, our approach is still able to handle sequencing errors because only the k-mers that 

overlap the erroneous bases will be discarded or mis-assigned, whereas the rest of the read 

can be processed as if it were error-free. One can view the k-mer counting mechanism as a 

proportional assignment of a read to a set of potential loci, with the strength of the 

assignment varying with the number of k-mers in the read that match the locus. Sailfish has 

only a single explicit parameter, the k-mer length. Longer k-mers may result in less 

ambiguity, which makes resolving their origin easier, but may be more affected by errors in 

the reads (Supplementary Fig. 1). Further, many of our data structures can be represented as 

arrays of atomic integers (Online Methods). This allows our software to be concurrent and 
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lock-free where possible, leading to an approach that scales well with the number of 

available CPUs (Supplementary Fig. 2). Additional benefits of the Sailfish approach are 

discussed in Supplementary Note 1.

Sailfish works in two phases: indexing and quantification (Fig. 1). A Sailfish index is built 

from a particular set of reference transcripts (a FASTA sequence file) and a specific choice 

of k-mer length, k. The index consists of data structures that make counting k-mers in a set 

of reads and resolving their potential origin in the set of transcripts efficient (Online 

Methods). The most important data structure in the index is the minimal perfect hash 

function9 that maps each k-mer in the reference transcripts to an integer identifier such that 

no two k-mers share an identifier. Pairing the minimum perfect hash function with an 

atomically updateable array of k-mer counts allows k-mers to be counted even faster than 

with existing advanced lock-free hashes such as that used in Jellyfish10. The index also 

contains a pair of look-up tables that allow fast access to the k-mers appearing in a specific 

transcript as well as the transcripts in which a particular k-mer appears, both in amortized 

constant time. The index only needs to be rebuilt when the set of reference transcripts or the 

choice of k changes.

The quantification phase of Sailfish takes as input the above index and a set of RNA-seq 

reads and produces an estimate of the relative abundance of each transcript in the reference, 

measured in Reads Per Kilobase per Million mapped reads (RPKM), K-mers Per Kilobase 

per Million mapped k-mers (KPKM), and Transcripts Per Million (TPM); see Online 

Methods for the definitions of these measures. First, Sailfish counts the number of times 

each indexed k-mer occurs in the set of reads. Owing to the index, this process is efficient 

and scalable (Supplementary Fig. 2). Sailfish then applies an expectation-maximization 

(EM) procedure to determine maximum likelihood estimates for the relative abundance of 

each transcript. Conceptually, this procedure is similar to the EM algorithm used by RSEM6, 

except that k-mers rather than fragments are probabilistically assigned to transcripts, and a 

two-step variant of EM is used to speed up convergence. The estimation procedure first 

assigns k-mers proportionally to their occurrence in the transcripts. These initial allocations 

are then used to estimate the expected coverage for each transcript (Online Methods, Eqn. 

3). In turn, these expected coverage values alter the assignment probabilities of k-mers to 

transcripts (Online Methods, Eqn. 1). Using these basic EM steps as a building block, we 

apply a globally convergent EM acceleration method, SQUAREM11, that substantially 

increases the convergence rate of the estimation procedure by modifying the parameter 

update step based on the current solution path and the estimated distance from the fixed 

point (Online Methods, Alg. 2).

We reduce the number of variables that need to be fit by the EM procedure by collapsing k-

mers into equivalence classes, where two k-mers are equivalent if they occur in the same set 

of transcript sequences with the same rate (Online Methods). The idea of data reduction by 

equivalence classes has been explored in the context of reads12,13. Using k-mer equivalence 

classes has the added benefit that the classes can be computed based solely on the reference 

transcriptome without considering the read data. This reduction in variables substantially 

reduces the computational requirements of the EM procedure (Supplementary Note 1).
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Once the EM procedure converges, the estimated abundances are corrected for systematic 

errors due to sequence composition bias and transcript length using a regression approach 

similar to a previous method14, though using random forest regression instead of a 

generalized additive model. This correction is applied after initial estimates have been 

produced rather than at a read mapping or fragment assignment stage, requiring fewer 

variables to be fit during bias correction.

We compared Sailfish to RSEM6, eXpress7 and Cufflinks5 using both real and synthetic 

data. Accuracy on real data was quantified by the agreement between RNA-seq–based 

expression estimates computed by each piece of software and qPCR measurements for the 

same sample (human brain tissue (HBR) in Fig. 2 and Supplementary Fig. 3, and universal 

human reference tissue (UHR) in Supplementary Fig. 4). The qPCR measurements for these 

samples were performed as part of the Microarray Quality Control Study15; RNA-seq 

experiments were later performed on the same samples23. Abundance measurements for 

qPCR are given at the resolution of genes. To compare these measurements with the 

transcript-level estimates, we summed the estimates for all isoforms belonging to a gene. We 

compare predicted abundances using correlation coefficients and, on the synthetic data, root-

mean-square error (RMSE) and median percentage error (medPE) (Supplementary Note 2). 

Taken together, these results show that the speed of Sailfish does not sacrifice accuracy (Fig. 

2).

To show that Sailfish is accurate at the isoform level, we generated synthetic data using the 

Flux Simulator18, which allows versatile modeling of various RNA-seq protocols 

(Supplementary Note 3). Unlike synthetic data used in previous work6,7, the procedure used 

by the Flux Simulator is not based on the generative model underlying our estimation 

procedure. Sailfish remains accurate at the isoform level (Fig. 2, Supplementary Figs. 5 and 

6). We also find that Sailfish is robust to differences in the underlying set of reference 

transcripts used for quantification (Supplementary Fig. 7), and that it remains accurate when 

applied to a collection of highly similar genes (Supplementary Table 8).

Sailfish applies the idea of lightweight algorithms to the problem of isoform quantification 

from RNA-seq reads and in doing so achieves a breakthrough in terms of speed. By 

eliminating read mapping from the expression estimation pipeline, we improve the speed of 

the process and also simplify it considerably, eliminating the burden of choosing all but a 

single parameter from the user. Sailfish can be used in a de-novo setting for non-model 

organisms, along with other reference-free tools19,20, where some or all of the transcripts are 

assembled directly from the RNA-seq reads. The memory usage of Sailfish is similar to that 

of other tools, using 2–6 Gb of RAM during isoform quantification for the experiments 

reported here. As the size and number of RNA-seq experiments grow, we expect Sailfish 

and its paradigm to remain efficient for isoform quantification because the memory footprint 

is bounded by the size and complexity of the target transcripts not the number of reads and 

the only computation that grows explicitly in the number of reads — k-mer counting — has 

been designed to effectively exploit many CPU cores.

Sailfish is free and open-source software and is available as Supplementary Data and at 

http://www.cs.cmu.edu/~ckingsf/software/sailfish.
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Online Methods

Indexing

The first step in the Sailfish pipeline is building an index from the set of reference 

transcripts T. Given a k-mer length k, we compute an index Ik(T) containing four 

components. The first component is a minimum perfect hash function h on the set of k-mers 

kmers(T) contained in T. A minimum perfect hash function is a bijection between kmers(T) 

and the set of integers {0,1,…, |kmers(T)| - 1}. Sailfish uses the BDZ minimum perfect hash 

function9. The second component of the index is an array C containing a count C(si) for 

every si∈ kmers(T). Finally, the index contains a lookup table mapping each transcript to 

the multiset of k-mers that it contains, and a reverse lookup table mapping each k-mer to the 

set of transcripts in which it appears. The index is a product only of the reference transcripts 

and the choice of k, and thus needs only to be recomputed when either of these changes.

Quantification

The second step in the Sailfish pipeline is the quantification of relative transcript abundance; 

this requires the Sailfish index Ik(T) for the reference transcripts T as well as a set of RNA-

seq reads . First, we count the number of occurrences of each 

. Since we know exactly the set of k-mers that need to be 

counted and already have a perfect hash function h for this set, we can perform this counting 

in a particularly efficient manner, even faster than efficient hash-based approaches. For 

example, performing concurrent 20-mer lookups using 8 threads, Jellyfish10 requires an 

average of 0.35 μs/key while the minimal perfect hash requires an average of 0.1 μs/key. We 

maintain an array  of the appropriate size |kmers(T)|, where  contains the 

number of times we have thus far observed si in .

In an unstranded protocol, sequencing reads, and hence the k-mers they contain, may 

originate from transcripts in either the forward or reverse direction. To account for both 

possibilities, we check both the forward and reverse-complement k-mers from each read and 

use a majority-rule heuristic to determine which of the k-mers to increment in the final array 

of counts . If the number of k-mers appearing in h from the forward direction of the read 

is greater than the number of reverse-complement k-mers, then we only increment the 

counts for k-mers appearing in this read in the forward direction. Otherwise, only counts for 

k-mers appearing in the reverse-complement of this read are incremented in the array of 

counts. Ties are broken in favor of the forward directed reads. In a stranded RNA-seq 

protocol, the reads have a known orientation. Reads provided to Sailfish can be specified as 

originating from unstranded, forward strand or reverse strand reads, and the appropriate k-

mers are counted in each case. By taking advantage of atomic integers and the compare-and-

swap (CAS) operation provided by modern processors, which allows many hardware threads 

to efficiently update the value of a memory location without the need for explicit locking, 

we can stream through and update the counts in  in parallel while sustaining very little 

resource contention.

We then apply an expectation-maximization algorithm to obtain estimates of the relative 

abundance of each transcript. We define a k-mer equivalence class as the set of all k-mers 
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that appear in the same set of transcripts with the same frequency. In other words, let X(s) be 

a vector such that entry t of X(s) gives how many times k-mer s appears in transcript t∈T. 

Then the equivalence class of a k-mer si is given by [si] = {sj ∈kmers(T) : X(sj) = X(si)}. 

When performing the EM procedure, we will allocate counts to transcripts according to the 

set of equivalence classes rather than the full set of k-mers. We will let

(1)

denote the total count of k-mers in  that originate from equivalence class [si]. We say that 

transcript t contains equivalence class [s] if [s] is a subset of the multiset of k-mers of t and 

denote this by [s] ⊆ t.

Estimating abundances via an EM algorithm

The EM algorithm (Algo. 1) alternates between estimating the fraction of counts of each 

observed k-mer that originates from each transcript (E-step) and estimating the relative 

abundances of all transcripts given this allocation (M-step). We initially allocate k-mers to 

transcripts proportional to their occurrences in the transcript (i.e. if a transcript is the only 

potential origin for a particular k-mer, then all observations of that k-mer are attributed to 

this transcript, whereas for a k-mer that appears once in each of n different transcripts and 

occurs m times in the set of reads, m/n observations are attributed to each potential transcript 

of origin).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class' total 

count that is allocated to each transcript. For equivalence class [sj] and transcript ti, this 

value is computed by

(2)

where μ′i is the currently estimated relative abundance of transcript i. These allocations are 

then used in the M-step of the algorithm to compute the relative abundance of each 

transcript. The relative abundance of transcript i is estimated by

(3)

where μi is

(4)

The variable li′ denotes the adjusted length of transcript i and is simply l′i = ℓi – k + 1 where 

ℓi is the length of transcript i in nucleotides.
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However, rather than perform the standard EM update steps, we perform updates according 

to the SQUAREM procedure11 described in Algo. 2, where μ′ = 〈μ′0, …,μ′|T|〉 is a vector of 

relative abundance maximum-likelihood estimates, and EM(·) is a standard iteration of the 

expectation-maximization procedure as outlined in Algo. 1. For a detailed explanation of the 

SQUAREM procedure and its proof of convergence, see11. Intuitively, the SQUAREM 

procedure builds an approximation of the Jacobian of μ′ from 3 successive steps along the 

EM solution path, and uses the magnitude of the differences between these solutions to 

determine a step size ɣ by which to update the estimates according to the update rule (line 

7). The procedure is then capable of making relatively large updates to the μ′ parameters, 

which substantially improves the speed of convergence. In Sailfish, the iterative SQUAREM 

procedure is repeated until a specified convergence criterion is met (by default, the 

procedure terminates when no transcript with a relative abundance greater than 10−7 has a 

relative change greater than half of a percent between consecutive iterations). Additionally, 

a user may specify either a fixed number of iterations to perform or a required minimum 

relative change, ε, in transcript abundance estimates between SQUAREM iterations; if no 

relative change in transcript abundance exceeds ε, then the procedure is considered to have 

converged and the estimation procedure terminates.

Bias Correction

The bias correction procedure implemented in Sailfish is based on the model introduced by 

Zheng et al.14 Briefly, it performs a regression analysis on a set of potential bias factors 

where the response variables are the estimated transcript abundances (KPKMs). Sailfish 

automatically considers transcript length, GC content and dinucleotide frequencies as 

potential bias factors, as this specific set of features were suggested by Zheng et al.14 For 

each transcript, the prediction of the regression model represents the contribution of the bias 

factors to this transcript's estimated abundance. Hence, these regression estimates (which 

may be positive or negative) are subtracted from the original estimates to obtain bias-

corrected KPKMs. For further details on this bias correction procedure, see14. The original 

method used a generalized additive model for regression; Sailfish implements the approach 

using random forest regression to leverage high-performance implementations of this 

technique. The key idea here is to do the bias correction after abundance estimation rather 

than earlier in the pipeline. The bias correction of Sailfish can be disabled with the --no–

bias–correction command line option. Finally, we note that it is possible to include other 

potential features, like normalized coverage plots that can encode positional bias, into the 

bias correction phase. However, in the current version of Sailfish, we have not implemented 

or tested bias correction for these features.

Computing KPKM, RPKM and TPM

Sailfish outputs K-mers Per Kilobase per Million mapped k-mers (KPKM), Reads Per 

Kilobase per Million mapped reads (RPKM) and Transcripts Per Million (TPM) as 

quantities predicting the relative abundance of different isoforms. The RPKM estimate is the 

most commonly used, and is ideally 109 times the rate at which reads are observed at a given 

position, but the TPM estimate has also become somewhat common6. For Sailfish, the 

KPKM measure is more natural than RPKM, since the k-mer is the basic unit of transcript 

coverage; however, the two measures are proportional. Given the relative transcript 
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abundances estimated by the EM procedure described above, the TPM for transcript i is 

given by

(5)

Let Ci be the number of k-mers mapped to transcript i. Then, the KPKM is given by

(6)

where N is the total count of mapped (i.e. hashable) k–mers and the final equality is 

approximate only because we replace li with li′. The KPKM is proportional to the RPKM, 

which can be estimated by replacing Ci with the estimated number of reads mapped to 

transcript i, and N with the estimated number of mapped reads; these can be calculated from 

the mapped k-mer counts and the average read length. The Fragments Per Kilobase per 

Million mapped fragments (FPKM) measure is also proportional to the K/RPKM, but is 

meant to denote that fragments rather than reads are mapped — for single end data, the reads 

and fragments coincide, for paired-end data, each concordant read pair is considered a single 

fragment.

Accuracy Metrics

For all experiments, the Pearson correlation metric was computed between estimates of 

abundance that were log transformed. As in previous work6, this was done to prevent the 

most abundant transcripts from dominating the correlations, but it necessitates discarding 

samples that have either a true or estimated abundance of 0. Spearman correlations were 

computed on estimates that were not log transformed. For the synthetic data, we additionally 

compute the Root Mean Squared Error (RMSE) and median Percentage Error. Given the 

vectors x = 〈x1, x2, …, xn〉 of ground-truth abundances and y = 〈y1, y2, …, yn〉 of estimated 

abundances, the RMSE is defined as

(7)

The percentage error (PE) between a true abundance xi and the corresponding estimate yi is 

defined as

(8)

Unlike the definition presented in other work12, we do not define division by 0 when 

computing the percentage error. We then define the medPE as the median of the percentage 

error for all transcripts that have a true abundance greater than 0 (i.e. the median of the 

values PE(xi, yi) for all 1 ≤ i ≤ n where xi ≠ 0).
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When comparing against the qPCR-based abundances, we used the KPKM estimates 

produced by Sailfish and FPKM estimates produced by RSEM, Cufflinks and eXpress 

directly. The FluxSimulator records the number of reads that were actually generated by 

each transcript during the simulated sequencing experiment. These read counts and the 

transcript lengths were used to compute the ground truth FPKMs directly using Equation 6. 

However, we found that the FPKM estimates computed by RSEM, eXpress and Cufflinks 

appeared, for a number of transcripts, to be systematically inflated with respect to the 

ground truth FPKMs (this inflation persisted even when estimates were compared directly to 

ground truth relative transcript fractions). This appears to be due to the effective-length 

normalization procedures employed by these methods. Indeed, when Cufflinks was run with 

––no–effective–length–correction, the RMSE and medPE decreased significantly, while the 

correlations with ground truth FPKMs increased marginally as well. Thus, for the synthetic 

tests, all Cufflinks results were computed with the ––no–effective–length–correction flag 

enabled. Though RSEM and eXpress do not expose such a flag directly, we computed 

FPKM estimates without effective-length corrections for these methods by using the 

estimated read counts (output directly by both methods) and the true transcript lengths using 

Equation 6. Using FPKMs computed in this manner reduced the RMSE from 2083.04 to 

8.83 and medPE from 19.03 to 14.06 for eXpress and reduced the RMSE from 18.77 to 8.90 

and the medPE from 17.90 to 12.48 for RSEM. Sailfish computes the estimated k-mer 

counts and KPKMs in a consistent manner directly from the underlying transcript 

abundances, so there is no difference between the KPKMs provided by Sailfish and those 

that would be computed using the estimated k-mer counts directly.

Simulated Data

The simulated Homo sapiens RNA-seq data was generated by the Flux Simulator18 v1.2.1 

with the parameters listed in Supplementary Note 3. This resulted in a dataset of 75M 76bp 

× 2 paired-end reads. The reads produced by the Flux Simulator are grouped by their origin 

(i.e. reads originating from the same genomic locus appear together in the read file). 

However, this synthetic artifact violates the assumption made by eXpress that reads are 

produced in a random order. Thus, we post-process the reads generated by the Flux 

Simulator and shuffle them (while keeping mates appropriately paired) into a random order. 

The shuffled, mate-pair reads are then split into separate files. To ensure a sufficient 

mapping rate under the parameters used to produce alignments for eXpress and Cufflinks (–

v 3 for Bowtie and –N 3 for TopHat21), the synthetic reads were quality trimmed using 

SICKLE (https://github.com/najoshi/sickle) with the default parameters. Untrimmed reads 

are more appropriate for RSEM's default parameters, and so RSEM was provided with 

untrimmed reads. While mapping rates increased significantly for the trimmed reads, the 

overall accuracy of the methods depended little on whether trimmed or untrimmed reads 

were used. RSEM, eXpress and Cufflinks were all given paired-end alignments since they 

make special use of this data. TopHat21 was provided with the option ––mate–inner–dist 

200, to adjust the expected mate-pair inner-distance to the simulated average, and Bowtie 

was given the option –X 800 to ensure that paired-end reads originating from all valid 

fragments would be considered. The untrimmed synthetic read files were provided directly 

to Sailfish without any extra information since the same quantification procedure is used 

whether single or paired-end reads are provided.
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Software Comparisons

For eXpress, all reads were aligned with Bowtie3 v0.12.9 using the parameters –a and –v 3, 

as suggested in the eXpress manuscript, which allows up to three mismatches per read and 

reports all alignments. All alignments for RSEM were computed with default parameters 

using the rsem–calculate–expression command, which used Bowtie v0.12.9 as the 

underlying aligner. To prepare alignments for Cufflinks, TopHat was run using Bowtie 

v0.12.9 (––bowtie1) and with options –N 3 and ––read–edit–dist 3 to allow up to three 

mismatches per read. For RSEM, eXpress and Cufflinks, the reported times are the sum of 

the times required for alignment and the times required for quantification. The time required 

for each method is further decomposed into the times for the alignment and quantification 

steps in Fig. 2.

Choice of Software Options and Effect on Runtime

Most expression estimation software, including RSEM, eXpress and Cufflinks, provides a 

myriad of program options to the user which allow for trade-offs between various 

desiderata. For example, the total time required by TopHat and Cufflinks is lower when 

Cufflinks is run without bias correction (e.g. 1.92h as opposed to 2.27h with bias correction 

on the SRX016366 data). However, without bias correction, Cufflinks yields slightly lower 

accuracy (Pearson σ = 0.82, Spearman ρ = 0.81) than the other methods, while still taking 16 

times longer to run than Sailfish. Similarly, although aligned reads can be streamed directly 

into eXpress via Bowtie, we empirically observed lower overall runtimes when aligning 

reads and quantifying expressions separately (and in serial), so these times were reported. 

Finally, when we provided RSEM with the alignments used by eXpress (as was done in 

previous work7), we observed substantially increased runtime on the qPCR datasets (46.5 

hours with the alignments generated from SRX016366 and 35.6 hours with the alignments 

generated from SRX016367), since RSEM does not appear to handle the large number of 

multiple alignments that can be generated by short reads when allowing many mismatches; 

instead, we report timings for RSEM when the alignment is performed using its own default 

parameters. In general, we attempted to run each piece of software with options that would 

be common in a standard usage scenario. However, despite the inherent difficulty of 

comparing a set of tools parameterized on an array of potential options, the core thesis that 

Sailfish can provide accurate expression estimates much faster than any existing tool 

remains true, as the fastest performing alternatives, when even when sacrificing accuracy for 

speed, were over an order of magnitude slower than Sailfish.

Sailfish version 0.6.3 was used for all experiments, and all analyses were performed with a 

k-mer size of k = 20 and using 16 concurrent threads (–p 16). In all experiments involving 

the real but not simulated data, Sailfish was run with the ––polya option, which discards k-

mers consisting of k consecutive As or Ts, and bias correction was enabled. The KPKM 

values reported by Sailfish were used as transcript abundance estimates.

RSEM6 version 1.2.3 was run with the ––no–bam–output flag, and with –p 16. In the 

experiments involving the real data, rsem–prepare–reference was used to prepare a reference 

index that appended poly-A tails to all transcripts, and the quantification was performed 

with the ––estimate-rspd flag. For the synthetic data, RSEM was given the ––paired–end 
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option to produce paired-end alignments from the reads. Apart from these options, RSEM 

was run with the default parameters for all experiments.

eXpress7 version 1.3.1 was used for all experiments. It was run with default parameters on 

the MACQ data, and without bias correction (––no–bias–correct) on the synthetic data. For 

the synthetic test, Bowtie was given the appropriate –1 and –2 options to compute paired-

end alignments.

Cufflinks5 version 2.1.1 was used for experiments and was run with bias correction (–b) and 

multi-read recovery (–u) on the MACQ data, and with multi-read recovery (–u) and no 

effective-length correction (––no–effective–length–correction) on the synthetic data. For all 

tests, both Cufflinks and TopHat were run with with the –p 16 option to take advantage of 

up to 16 concurrent threads of execution.

All experiments were run on a computer with 8 AMD Opteron™ 6220 processors (4 cores 

each) and 256Gb of RAM. For all experiments, the wall time was measured using the built-

in bash time command.

Implementation of Sailfish

Sailfish has two basic sub-commands, index and quant. The index command initially builds 

a hash of all k-mers in the set of reference transcripts using the Jellyfish10 software. This 

hash is then used to build the minimum perfect hash, count array, and look-up tables 

described above. The index command takes as input a k-mer size via the –k option and a set 

of reference transcripts in FASTA format via the –t parameter. It produces the Sailfish index 

described above, and it can optionally take advantage of multiple threads with the target 

number of threads being provided via a –p option.

The quant sub-command estimates the relative abundance of transcripts given a set of reads. 

The quant command takes as input a Sailfish index (computed via the index command 

described above and provided via the –i parameter). Additionally, it requires the set of reads, 

provided as a list of FASTA or FASTQ files. Finally, just as can the index command, the 

quant command can take advantage of multiple processors, the target number of which is 

provided via the –p option.

Sailfish is implemented in C++11 and takes advantage of several C++11 language and 

library features. In particular, Sailfish makes heavy use of built-in atomic data types. 

Parallelization across multiple threads in Sailfish is accomplished via a combination of the 

standard library's thread facilities and the Intel Threading Building Blocks (TBB) library22. 

Sailfish is available as an open-source program under the GPLv3 license, and has been 

developed and tested on Linux and Macintosh OS X.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the Sailfish pipeline. Sailfish consists of an indexing phase (a) that is invoked 

via the command `sailfish index' and a quantification phase (b) invoked via the command 

`sailfish quant'. The Sailfish index has four components: (1) a perfect hash function mapping 

each k-mer in the transcript set to a unique integer between 0 and N – 1, where N is the 

number of unique k-mers in the set of transcripts; (2) an array recording the number of times 

each k-mer occurs in the reference set; (3) an index mapping each transcript to the multiset 

of k-mers that it contains; (4) an index mapping each k-mer to the set of transcripts in which 

it appears. The quantification phase consists of counting the indexed k-mers in the set of 

reads and then applying an expectation-maximization procedure to determine the maximum-

likelihood estimates of relative transcript abundance.
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Figure 2. 
Speed and accuracy of Sailfish. (a) The correlation between qPCR estimates of gene 

abundance (x-axis) and the estimates of Sailfish. The qPCR results are taken from the 

microarray quality control study (MAQC)15. The results shown here are for the human brain 

tissue and the RNA-seq based estimates were computed using the reads from SRA accession 

SRX016366 (81,250,481 35bp single-end reads). The set of transcripts used in this 

experiment were the curated RefSeq16 transcripts (accession prefix NM) from hg18 (31,148 

transcripts). (b) The correlation between the ground truth FPKM in a simulated dataset (x-

axis) and the abundance estimates of Sailfish. The quantification in this experiment was 

performed on a set of 96,520 transcript sequences taken from Ensembl17 GRCh37.73. (c) 

The total time taken by each method, Sailfish, RSEM, eXpress and Cufflinks, to estimate 

isoform abundance on each dataset. The total time taken by a method is the height of the 

corresponding bar, and the total is further broken down into the time taken to perform read-

alignment (for Sailfish, we instead measured the time taken to count the k-mers in the read 

set) and the time taken to quantify abundance given the aligned reads (or k-mer counts). All 

tools were run in multi-threaded mode (where applicable) and were allowed to use up to 16 

threads. (d) Accuracy of each of the methods on human brain tissue and a synthetic dataset. 

Accuracy is measured by the Pearson (log-transformed) and Spearman correlation 

coefficients between estimated abundance values and MAQC qPCR data (for human brain 

tissue) or ground truth (for simulated data). Root-mean-square error (RMSE) and median 

percentage error (medPE) are calculated as described in the Online Methods.
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Algorithm 1. 
An EM iteration. One iteration of the expectation-maximization procedure that updates the 

estimated k-mer allocations α(·,·) and computes new estimates of relative transcript 

abundance μ′′ based on the current estimates of relative transcript abundance μ′.
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Algorithm 2. 
A SQUAREM iteration. One iteration updates the relative abundance estimates according to 

an accelerated EM procedure whose update direction and magnitude are dynamically 

computed11.
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