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TiO; nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could

extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO, nanotube arrays were

synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry

(FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravi-

metric analysis (TGA) and UV—vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photo-

degradation of methylene blue and enhanced photocurrent under visible light irradiation.

Introduction

Semiconductor-mediated photocatalysis is a promising tech-
nique for the conversion of solar energy as well as degradation
of organic pollutants in air and water [1,2]. Among various
photocatalysts, nanostructured titanium dioxide (TiO,) is the
most widely used because of its high activity, long-term
stability and low production cost [3,4]. However, pure TiO; is
not efficient for solar-driven applications because it requires
UV excitation [5]. Belonging to one-dimensional nanostruc-
tures, TiO, nanotube arrays (TNAs) synthesized by anodic oxi-
dation of titanium had attracted particular interests [6,7].
Comparing with bulk nanoparticles, smooth walls of nanotubes

provide a lower surface state density hence lowering recombi-

nation probability. Random walk of charges is suppressed
because of the one-dimensional nature of the tubes [8]. More-
over, nanotube layers do have higher surface area for more
active reaction sites over the bulk nanoparticle layers [9] and
they were shown to be more efficient in photocatalysis [10].
Since TNAs can be grown directly on a conducting Ti substrate,
they can be used directly as photoanodes for various applica-
tions. The activity of TNAs can be further enhanced by
applying a potential bias [11]. In the recent years, TNAs have
been widely studied for their applications in solar cells [12-14]
or photoreactors [15,16]. Various approaches have been devel-

oped to achieve photoresponse of TiO,-based catalysts towards
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visible light, for example, doping with metal or non-metal
[7,17-20], coupling with other semiconductor materials to form
composite catalysts [4,21-24]. Two-dimensional graphene has
attracted immense attention due to its large specific area, high
intrinsic electron mobility and good electrical conductivity [3].
As an excellent electron acceptor, graphene has been combined
with semiconductor photocatalysts such as TiO, [25], ZnO [26]
and CdS [27] to enhance their photocatalytic activities.
However, graphene sheets are usually micrometer-sized and
they can hardly be introduced into efficient nano-sized photo-
catalysts on a solid support, for example, TNAs.

Zero-dimensional graphene quantum dots (GQDs) are defined
as few-layered graphene with lateral dimensions smaller than
100 nm [28]. Due to quantum confinement and edge effects,
GQDs possess a size-dependent band gap and other interesting
properties [29,30]. In recent years, GQDs have been explored
for their potential applications in bioimaging [31], sensing [32],
photovoltaics [33,34]. Besides, they have been coupled with
TiO, nanoparticles to achieve visible-light-driven photocatal-
ysis [35,36]. Very recently, the combination of GQDs with
CdS-modified TNAs was reported for photoelectrochemical
hydrogen production. However, GQDs did not enhance the
activity of bare TNAs in the study [37]. GQDs have also been
chemically coupled with ZnO nanowires for photoelectrochem-
ical water splitting [38].

In the present work, a composite photocatalyst of graphene
quantum dots and TiO, nanotube arrays (GQDs/TNAs) was
fabricated by the coupling reaction between carboxyl-
containing GQDs and amine-functionalized TNAs (Scheme 1).
The experimental data revealed that sensitization of TNAs with
GQDs not only extended the optical absorption spectrum of
TNAs over the visible range, but also enhanced the photocat-
alytic and photoelectrochemical performances of TNAs under
visible light.

Results and Discussion
Figure 1a shows a TEM image of GQDs with diameters of
about 10 nm. The AFM image and a corresponding height
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profile in Figure 1b suggest that the thickness of the GQDs
were between 0.5 and 3 nm, corresponding to one to few layers
of graphene [39]. According to the UV—vis absorption spec-
trum in Figure 1c, GQDs show a broad absorption below
600 nm and a small peak at ca. 340 nm. The result agrees with
typical absorption spectra of GQDs being reported [28].
Figure 1d shows the excitation-dependent emission of GQDs.
This behavior could be explained by the differences in size and
emissive states of GQDs [40]. To provide evidence for the exis-
tence of carboxyl groups in GQDs, Fourier-transform infrared
(FTIR) spectra of GO and GQDs were obtained (Figure S1,
Supporting Information File 1).

FESEM and TEM were used to examine the morphology of the
TNAs. Figure 2 shows typical FESEM images with top (a, c)
and side (b, d) views of the prepared TNAs films. The nanotube
arrays are highly ordered and vertically aligned. Each nanotube
has an inner diameter of approximately 110 nm and a length of
about 18 um. As shown in Figure 2c and Figure 2d, the TNAs
retain the morphology after coupling with GQDs. In Figure 2e,
the hollow structure of nanotubes can be observed clearly. In
Figure 2f, dark spots with diameters of about 10 nm can be
found, suggesting the successful loading of GQDs onto TNAs.

The structures of the products were investigated by using XRD.
Figure 3 shows the XRD pattern of a pure Ti foil, which is
consistent with the standard (JCPDS 44-1294). Figure 3 also
shows that TNAs and GQDs/TNAs exhibit the same diffraction
peaks at 20 of 25.3°, 36.9°, 37.8°, 38.5°, 48.0°, 53.9°, 55.0°,
62.7°, 68.8° and 70.6°. These peaks match very well with
anatase TiO, (JCPDS 21-1272). FTIR spectra were also
obtained to study the chemical structures of the products

(Figure S2, Supporting Information File 1).

Figure 4 shows the UV—vis absorption spectra of the samples.
For pristine TNAs, the absorption edge extends up to about
550 nm instead of a typical value of TiO, (400 nm). This
phenomenon can be explained by the incorporation of nitrogen
into the nanotubes from NH4F during anodization. A subse-
quent annealing at 450 °C resulted in the formation of N 2p
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Scheme 1: Reaction scheme for the loading of GQDs onto TNAs via covalent bonding.

690



Beilstein J. Nanotechnol. 2014, 5, 689-695.

(d)
g | S
2 | 2
S, 1 g
2| g
1 L
0 1 1 i
200 400 600 800 200 300 400 500 600
Wavelength (nm) Wavelength (nm)

Figure 1: (a) TEM image of GQDs, (b) AFM image of GQDs with corresponding height profile, (c) UV-vis absorption spectrum of GQDs, inset: photos
of GQDs in aqueous solution under ambient light (left) and 365 nm UV light (right), (d) PL spectra of GQDs at different excitation wavelengths.

Figure 2: FESEM images of (a,b) pristine TNAs and (c,d) GQDs/TNAs; TEM images of (e) pristine TNAs and (f) GQDs/TNAs.
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Figure 3: XRD patterns of (a) Ti foil, (b) TNAs and (c) GQDs/TNAs.
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Figure 4: UV-vis absorption spectra of (a) TNAs, (b) amine-functional-
ized TNAs and (c) GQDs/TNAs.

states above the valence band of TiO, and hence in a red shift
of the absorption edge [41]. The absorption spectrum of amine-
functionalized TNAs is similar to that of pristine TNAs. For
GQDs/TNAs, higher absorption intensity at wavelengths from
400 to 600 nm is observed, indicating the visible light response
of TNAs is enhanced by loading GQDs.

The photocatalytic activities of the catalysts were evaluated by
the degradation of MB under visible light irradiation. Figure 5
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Figure 5: Photodegradation of methylene blue for TNAs and
GQDs/TNAs under visible light irradiation.

shows that pristine TNAs have a relatively low activity. The
concentration of MB dropped slowly to about 52 % after 3 h ir-
radiation. The activity of pristine TNAs under visible light can
be explained by nitrogen-doping as described previously. For
GQDs/TNAs, an enhanced activity is achieved. The concentra-
tion of MB dropped to about 31% after 3 h irradiation. For com-
parison, the activity of pure TiO, (P25) was tested under the
same conditions and it was found to be low.

TNAs were stably grown on a conducting Ti substrate, so the
entire foil can be directly used for photoelectrochemical appli-
cations. Photocurrent responses of the catalysts were measured
under visible light irradiation. Figure 6 clearly shows a signifi-
cant enhancement of photocurrent after the loading of GQDs,
indicating the charge separation efficiency of TNAs is greatly
enhanced. The stable current reveals that GQDs are covalently
bonded to TNAs instead of adsorbed onto the surface of TNAs.

The improved photocatalytic performance of GQDs/TNAs over
TNAs can be simply explained by the photosensitization of
TNAs by GQDs [38].
electron—hole pairs are generated by the GQDs. Typically, the
conduction band level of GQDs is higher than that of TiO,
[36,42]. Thus, an interfacial electron transfer from GQDs to
TNAs is possible. Meanwhile, such a directional charge transfer
promotes charge separation and reduces the probability of

Upon visible light irradiation,

charge recombination, then further increases the activity of the

photocatalyst.
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Figure 6: Photocurrent responses of (a) TNAs and (b) GQDs/TNAs
under visible-light irradiation. The potential bias was 0.417 V.

Conclusion

In summary, a visible-light-driven photocatalyst was fabricated
by covalently bonding GQDs onto amine-modified TNAs. The
GQDs/TNAs composite retains the highly ordered nanotube
morphology and well crystallized anatase phase. The high
visible-light photocatalytic activity could be attributed to photo-
sensitization of TNAs by GQDs. This research shows the poten-
tial of GQD-based photocatalysts for visible-light-driven photo-
catalytic and photoelectrochemical applications.

Experimental

Synthesis of TiO, nanotube arrays (TNAs): Highly ordered
TNAs were fabricated by an anodic oxidation approach [43].
Ethylene glycol (99+%) containing 0.5 wt % NHyF and
2.0 wt % deionized (DI) water was used as electrolyte. Ti foil
(2 cm x 3 cm) was used as a working electrode, and a Pt foil
(1 cm x 1 cm) served as a counter electrode. Prior to anodiza-
tion, Ti foils were washed with ethanol, acetone by ultrasonica-
tion to remove contaminants, subsequently rinsed with DI water
and dried in air. At room temperature, anodization is carried out
by immersing a Ti foil in as-prepared electrolyte for 3 h at 60 V.
Afterwards, the sample was removed from the electrochemical
cell, rinsed with DI water, sonicated in ethanol for 2 min to
remove surface debris. A subsequent heating to 450 °C for 1 h

1

with a temperature increasing rate of 1 °C-min~ ' in air was

applied to improve crystallization.

Synthesis of graphene quantum dots (GQDs): GQDs were
synthesized from graphene oxide (GO) by heating with a solu-
tion of hydrogen peroxide and ammonia [44]. 20 mg of GO was
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dispersed into 5 mL of water and sonicated for 10 minutes.
40 mL of H>O; (30%) and 10 mL of NHj3 (28-30%) were
added to the dispersion. The mixture was then stirred at 80 °C
for 24 h followed by centrifugation for 10 minutes to remove
large GO. The supernatant was heated at 60 °C under reduced
pressure to remove H>O,, NH3 and water. The solid GQDs
were re-dispersed into water for further use.

Synthesis of GQDs/TNAs: TNAs were firstly immersed in
0.2 wt % (3-aminopropyl)trimethoxysilane (APTMS) in toluene
for 3 h, rinsed with toluene and dried. The modified TNAs were
then immersed in a beaker containing a solution of GQDs
(1 mg'mL™), ethyl(dimethylaminopropyl)carbodiimide (EDC)
and N-hydroxysuccinimide (NHS) for 4 h. The foils were then

sonicated in DI water, rinsed with DI water and dried in air.

Characterization: The morphologies of the products were
characterized by transmission electron microscopy (Philips,
CM120) and field-emission scanning electron microscopy (FEI,
Quanta 400 FEG). AFM images were obtained using a tapping
mode with an atomic force microscope (Bruker, Dimension
Icon). UV—vis spectra were recorded on a UV—vis spectrometer
(Varian, Cary 100). The PL measurements were performed
using a fluorescence spectrometer (Hitachi, F-4500). X-ray
diffraction (XRD) patterns were recorded using a diffrac-
tometer (Bruker, D8 Advance) with high-intensity Cu Kal ir-
radiation (A = 1.5406 A). The chemical structures of the prod-
ucts were characterized using a Fourier-transform infrared spec-
trometer (Nicolet, Magna 560). Thermogravimetric analysis
was performed in air using a thermogravimetric analyzer
(Perkin Elmer, TGA 6). The samples were heated from 50 °C to
800 °C at a rate of 10 °C-min” .

Photocatalytic activity measurements: The photocatalytic
activities of catalysts were evaluated by measuring the photo-
degradation of methylene blue (MB). In a typical measurement,
10 mg photocatalyst were mechanically detached from Ti foils
and suspended in 20 mL of 10 ppm aqueous solution of MB.
The solution was stirred in the dark for 12 h to reach the adsorp-
tion/desorption equilibrium. The suspension was then illumi-
nated with a 300 W tungsten halogen lamp with a 400 nm cutoff
filter. Photodegradation of MB was monitored by measuring the
UV-vis absorption of the suspensions at regular time intervals.
The suspension was centrifuged for 2 min to remove the photo-
catalyst before measurement. The peak absorbance of MB at

664 nm was used to determine its concentration.

Photocurrent response measurements: The photo-electro-
chemical measurements were performed in a three-electrode
electrochemical cell by using a CHI 660D electrochemical
workstation. The as-prepared TNAs, Pt foil (1.0 cm x 1.0 cm)
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and Ag/AgCl were the working, counter and reference elec-
trodes. The electrolyte was a 0.1 M Na,;SOy4 aqueous solution.
A 300 W xenon arc lamp was used as the irradiation source and
the average light intensity was about 100 mW-cm™2. The
photocurrent responses under illumination of visible light
(AM 1.5G plus a 400 nm cutoff filter) were analyzed.

Supporting Information

Supporting information features FTIR spectra, TGA
profiles of the samples and UV—vis absorption spectra of
methylene blue.

Supporting Information File 1

Additional figures.
[http://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-5-81-S1.pdf]
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