Skip to main content
. 2014 Jun 27;10:1462–1470. doi: 10.3762/bjoc.10.150

Table 1.

Optimisation studiesa.

graphic file with name Beilstein_J_Org_Chem-10-1462-i001.jpg

Entry Catalyst Ligand Base Yield 3b(%)

1 Pd(PPh3)4 Na2CO3 57
2 Pd(PPh3)4 K2CO3 34
3 Pd(PPh3)4 KOt-Bu 19c
4 Pd(PPh3)4 P(o-furyl)3 Na2CO3 66
5 Pd(PPh3)4 dppe Na2CO3 70
6 Pd2dba3·CHCl3 Na2CO3 85
7 Pd2dba3·CHCl3 P(o-furyl)3 Na2CO3 82
8 Pd2dba3·CHCl3 dppe Na2CO3 88
9 Pd2dba3·CHCl3 dppe Na2CO3 80d
10 Pd2dba3·CHCl3 dppe Na2CO3 84e
11 Pd2dba3·CHCl3 dppe Na2CO3 43f
12 Na2CO3 65
13 Pd2dba3·CHCl3 dppe trace
14 Pd2dba3·CHCl3 dppe Na2CO3 78g

aReaction conditions: 1a (1.0 equiv), 2a (1.1 equiv), catalyst (5 mol %), ligand (10 mol %), base (2.0 equiv), dioxane (2 mL), 50 °C, 10 h. bIsolated yield. cDimerisation product 4 was formed in 27% yield.dCH3CN instead of dioxane. eTHF instead of dioxane. frt, 24 h. g1 mol % of Pd2dba3·CHCl3, 5 mol % of dppe.