
Restricted parameter space models for testing gene-gene
interaction

Minsun Song1 and Dan L. Nicolae1,2

Dan L. Nicolae: nicolae@galton.uchicago.edu
1Department of Statistics, The University of Chicago, 5734 S. University Ave., Chicago, IL 60637

2Department of Medicine, The University of Chicago, 5734 S. University Ave., Chicago, IL 60637

Abstract

There is a growing recognition that interactions (gene-gene and gene-environment) can play an

important role in common disease etiology. The development of cost-effective genotyping

technologies has made genome-wide association studies the preferred tool for searching for loci

affecting disease risk. These studies are characterized by a large number of investigated SNPs, and

efficient statistical methods are even more important than in classical association studies that are

done with a small number of markers. In this paper we propose a novel gene-gene interaction test

that is more powerful than classical methods. The increase in power is due to the fact that the

proposed method incorporates reasonable constraints in the parameter space. The test for both

association and interaction is based on a likelihood ratio statistic that has a chi-bar-squared

distribution asymptotically. We also discuss the definitions used for “no interaction” and argue

that tests for pure interaction are useful in genome-wide studies, especially when using two stage

strategies where the analyses in the second stage are done on pairs of loci for which at least one is

associated with the trait.

1 Introduction

Common complex diseases such as diabetes and asthma have been investigated for genetic

risk factors for two decades, but the identification of disease susceptibility genes and the

development of models that predict disease risk have been less successful than those for

Mendelian traits. This is probably partly due to the interactions of genes with each other and

with the environment. Recent human and animal studies of complex diseases have identified

susceptibility genetic variants that are marginally associated to a minor extent only, but that

interact significantly with each other; these are loci that can be found only when using

interaction models. That is why there is a growing need for inference on models in which

two or more susceptibility loci contribute to a common trait jointly. Genome-wide

association studies (GWAS) where high-density SNP information is available, provide great

potential for association mapping aiming to identify genetic variants that are associated

marginally as well as interactively. It has been shown (Marchini et al., 2005) that, even with

a conservative penalty for multiple testing, analytic designs incorporating locus-locus

interaction can be more powerful for GWAS than those performing only single-marker

association tests.
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Several approaches have been proposed for detecting gene-gene interactions and there is no

unified definition for the null model they are testing. A common method for detecting two

jointly associated loci is based on the logistic regression model composed of terms for the

additive and dominance effects for each marker and the between-loci additive and

dominance interactions (Marchini et al., 2005; North et al., 2005). The logistic regression is

easy to implement, and the interaction test corresponds to testing if the four interaction

parameters are equal to zero. An alternative measure of interaction between two unlinked

loci is the deviance of the penetrance for a haplotype at two loci from product of the

marginal penetrance of the individual alleles that span the haplotype, and this is motivated

by linkage disequilibrium (LD) measures (Zhao et al, 2006). A Wald test for interaction

between two unlinked loci (Zhao et al, 2006) can be used to investigate deviations from

equilibrium. Also, various data-mining methods such as multidimensional reduction (MDR)

(Ritchie et al., 2001), the combinatorial partitioning method (CPM) (Nelson et al., 2001),

and the restricted partitioning method (RPM) (Culverhouse et al., 2004) have been explored

to detect gene-gene interaction. These methods assume no parametric model, and one of

their limitation is their impracticability for large data sets because of the massive

computation that is required.

Our focus is on developing methods that can be applied to large datasets such as those

coming from GWA studies. Our belief is that two-stage strategies are most appropriate,

where the first stage consists of single-marker association tests, and where the interaction

analyses in the second stage are done only on a subset of markers. For simplicity in the

interpretation of the results, we would like the gene-gene interaction tests to reflect evidence

for association in addition to that offered by the marginal tests, so pure interaction tests that

are independent of any marginal effect are necessary. Also, even in two-stage designs, the

number of interaction tests that are performed can be very large, and efficient methods are

needed. One way to improve efficiency is to investigate a smaller alternative space. This is

similar to using allelic or trend tests in single-marker association for reducing the size of the

alternative space. We argue in this paper that all natural interaction models have restrictions

that can be utilized; as a parallel to marginal association tests, the restriction that is natural

there is that the heterozygous risk is bounded by the risks corresponding to the two

homozygous genotypes.

In this paper we focus on two locus models for gene-gene interaction. We start with a

extensive discussion on the definition of “no interaction”. Our main approach is based on

imposing natural restrictions for the parameter spaces used to model interactions, and this is

described next. We also investigate the type I error and power of our tests using simulations.

2 The null and alternative models

Let us introduce some notation before we address our model and test for interaction. We

denote by G and H the markers of interest and we assume that the markers are biallelic and

are not in linkage disequilibrium in the general population. The alleles of G are denoted by a

and A and those of H by b and B. Where necessary, we let A and B be the disease

predisposing alleles. We use Gi(Hi), i = 1, 2, 3 to denote the genotypes aa, Aa, and AA (bb,

Bb, and BB). We denote by pij the frequency of joint genotype (Gi, Hj) in cases and nij the
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genotype counts for (Gi, Hj) in n cases. Finally, pi. and p.j denote the cases marginal

genotype frequencies for Gi and Hj respectively.

The definition of the “no interaction” model is critically important since parametric

statistical methods would be more powerful than non-parametric methods such as MDR as

long as modeling assumptions are satisfied. In this paper we define “ no interaction”

between two unlinked loci as the model that satisfies,

(1)

which is conditional independence of the two loci ( i.e. independence conditioned on the

subject having the disease, event denoted with D). This is the same hypothesis that would be

tested by an independence test, such as Pearson’s χ2, in the 3x3 contingency table of

genotype counts in affecteds. Properties and justification of this model for the null

hypothesis are itemized below where we also compare it to nulls implied by other methods

discussed in the paper. The most utilized method for testing for interaction is logistic

regression where “no interaction” means no departure from the multiplicative odds ratio of

disease.

The important factors to consider when assessing this null model we propose are:

• independence in cases, equation (1), is equivalent to multiplicative penetrances, and

this implies multiplicative joint genotype relative risks (i.e. the ratio of

penetrances); multiplicative penetrances have been used as a null model in linkage

studies that focus on sharing among affecteds;

• under this model, the relative genotype risks for G are not changed when

conditional on H, i.e

for all possible genotypes. This can be interpreted clearly as a no interaction model

because genotypes at H do not affect the risk at G.

• the marginal counts for cases are sufficient statistics under this model. This is

important as it shows that a cases-only design can be used to test this null model;

• the full log-likelihood ratio for the comparison of the fully parametrized model and

the model under which neither G and H are associated can be decomposed as the

sum of likelihoods for marginal association and pure interaction; this shows that the

pure interaction test that results from testing this model is independent of any

marginal association effect;

• testing this model requires no data and no assumptions on controls and this leads to

a more robust approach than logistic regression, for example, where both cases and

controls are needed. This is made clearer using an example described in the next

paragraph.
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• when control data is available and the markers are in linkage equilibrium in the

controls (for example when the controls are “population controls”), this null model

is equivalent to the null model tested by the logistic regression.

• for a rare disease, the magnitude of genotype relative risks is similar to that of odds

ratios;

• finally, case-only analyses are in many situations at least as efficient

(corresponding tests are more powerful) as having both cases and controls. This is

true when the controls contain no information on the interaction part of the model,

such as when the genotypes for G and H are independent in controls. This is similar

to previous arguments, e.g. Yang et al (1997) and Yang et al (1999) which claimed

that for identifying the relationship between gene and environment and between

gene and gene in the view of interactions, fewer cases are needed in a case-only

design than a case-control design, respectively. We will demonstrate this using

simulations in the results section.

Our claim that cases-only studies are robust is based on the assumption that, in many

studies, the controls contain no information on the model of pure interaction. That is why

random deviations from independence in controls will lead to false positives for the

interaction test. The real data example we use is from Hampe et al. (2007) where evidence

for interaction between ATG16L1 SNP rs2241880 and CARD15/NOD2 disease-associated

variants was found in a Crohn’s disease dataset. Their argument is based on odds ratios

which vary according to CARD15 genotypes, corresponding to a significant finding using

the logistic regression model. Note that out of total nine parameters for a 3×3 table, one

parameter models the overall penetrance and four parameters represent marginal effects. In

the Crohn’s dataset, the likelihood ratio test (LRT) for the logistic regression model

involving 4 degrees of freedom (df) leads to a 0.05 p-value, whereas a LRT with 4 df for

cases only (hence the proposed null) results in P = 0.82. In this case, the two tests lead to

different conclusions. Subsequent analyses in Cummings et al. (2007) failed to replicate the

interaction. Significant interaction is not found for both cases-only LRT (P=0.96 for the data

from Cummings et al. (2007), P=0.93 for combined data Cummings et al. (2007); Hampe et

al. (2007)) and logistic regression model (P=0.23 for the data from Cummings et al. (2007),

P=0.26 for combined data Cummings et al. (2007); Hampe et al. (2007)). In addition to

Cummings et al. (2007), there is another study which indicates that CARD15 and ATG16L1

contribute independently to Crohn’s risk (Prescott et al., 2007), where no significant

interaction was found using logistic regression (P=0.98). Using LRT for those data we

obtain a P value of 0.35. Given the lack of replication, it is likely that there is no interaction.

In this situation, case-only LRT seems to lead to the correct conclusion as opposed to the

logistic regression approach. The source of the signal implied by the logistic regression is

easily detectable: there is a deviation from independence in controls (but not in cases).

Although there are scenarios where (well selected) controls can display LD between

unlinked markers, we believe that, in the Crohn’s data, this is just a random deviation.

The deviance from (1) measures the dependence between two loci. It is easy to see that (1) is

equivalent to the definition of “no interaction” proposed by Zhao et al (2006) when Hardy-

Weinberg Equilibrium (HWE) holds in the disease population. Similarly to Zhao et al
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(2006) it is natural to consider that interaction between two unlinked loci will result in

deviation of the penetrance of the joint genotypes from independence of the marginal

penetrance of each genotype. The main difference in the two definitions of “no interaction”

is the use of genotypes in (1) versus haplotypes in Zhao et al (2006). We will also

investigate the power of their method after the appropriate choice of alternative models.

As mentioned above, interaction can be modeled using four parameters leading to 4 df tests

such as the likelihood ratio test, Pearson’s test in the 3x3 table of genotype counts in cases,

and the Wald test. There is a decrease in power associated with using a test with more df

relative to a test with less df when the true model is close to the one specified by the test

with fewer df, and the decrease tends to be severe when the significance thresholds are very

small (such as those from genome-wide association studies where a large number of tests are

performed). Therefore a reduction in the size of the alternative space can lead to a

substantial increase in power. A good understanding of the two-locus models is necessary

for choosing appropriate restrictions in the alternative parameter space. Two-locus models

of disease have been classified and studied elsewhere (Neuman and Rice, 1992; Li and

Reich, 2000; Hallgrímsdóttir and Yuster, 2008, e.g.). We introduce here several two-locus

models which have been considered in other studies for gene-gene interaction (Neuman and

Rice, 1992; Li and Reich, 2000; Zhao et al, 2006; Hallgrímsdóttir and Yuster, 2008). Table

1 displays the following two-locus models : the intersection of dominant and dominant

(D∩D), the intersection of recessive and dominant (R∩D), the intersection of recessive and

recessive (R∩R), the union of dominant and dominant (D∪D), the union of recessive and

recessive (R∪R), and the union of dominant and recessive (D∪R). Among those models,

D∩D, R∩D, and R∩R correspond to epistasis models and D∪D, D∪R, and R∪R correspond

to heterogeneity models (or logical OR models). Heterogeneity models are a result of

independent genetic mechanisms in which an individual manifests the phenotype by

possessing a disease predisposing genotype at either locus. Therefore the penetrance of joint

genotype is the union of two independent penetrances of each marginal genotype. The

mathematical formulation of heterogeneity models corresponds to (Neuman and Rice, 1992;

Hallgrímsdóttir and Yuster, 2008),

(2)

The heterogeneity models we consider (i.e. D∪D, R∪R, and D∪R) are approximations that

correspond to the case where the marginal penetrance is (0,1,1) for a dominant trait and

(0,0,1) for a recessive trait. Note that the models above span a wide range of genetic

mechanisms for interactions. For example, to increase the risk in the D∩D model, disease

predisposing alleles are needed at both loci while for D∪D model, a disease predisposing

allele is needed at either locus. These models have been used to investigate traits which do

not display marginal associations. The R∪R model has been used to explain prelingual

deafness (Majumder et al., 1989). In addition, other two locus models have been explored to

describe the genetics of other phenotypes (Elandt-Johnson, 1971; Lerner, 1968; Vogel and

Motulsky, 1986; Levy and Nagylaki, 1972). Assuming linkage equilibrium in the general

population, models involving intersection, namely models of epistasis, show non-negative

log local odds ratios (i.e.  for i, j=1,2) and those related with union, namely
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models of heterogeneity, lead to non-positive log local odds ratios. Also, models of

heterogeneity from formula (2) show non-positive log local odds ratios as long as marginal

penetrances are monotone. Note that (1) is equivalent to zero log local odds ratios. Although

this is not a complete list of models, similarly to Kooperberg et al. (2008), we focus on

plausible interactions where the effects are in the same direction in the number of disease

alleles of both SNPs. The difference to the approach of Kooperberg et al. (2008) is that we

will use inequality constraints to reduce dimensionality, as opposed to sharp constraints.

3 Inequality constrained penetrance test (ICPT)

3.1 Two-locus model

The inference developed in this section is based only on data in cases, and we use the same

notation as in the previous section. The sufficient statistic for all investigated models

consists of the genotype counts in cases for all nine combinations of pairs of genotypes at

the two loci. We propose a LRT for which the alternative space is inequality-constrained.

Using the Bayes rule and the assumption that the two markers are in linkage equilibrium in

the general population, the local odds ratios satisfy

(3)

so they are functions of penetrances. Thus the restriction on the sign of local odds ratio is

equivalent to an inequality constraint on the penetrances of the joint genotypes, and that is

why we use ICPT as the acronym for our test. The calculation of the likelihood is

straightforward, and we will focus the discussion on the methods that are needed to find the

maximum likelihood estimates. We consider first non-negative log local odds ratios as a

restriction for an alternative parameter space. The test statistic for this model requires the

maximization of the likelihood under the imposed constraint. The maximization problem

can be formulated as follows,

(4)

where  and where Kij = {x : xi,j +xi+1,j+1 −xi+1,j −xi,j+1 ≥ 0}.

We will use I-projection(Robertson et al., 1988) to solve this optimization problem. Suppose

p=(p1, …, pk) and r=(r1, …, rk) are probability vectors (PV). The I-divergence of p with

respect to r (also known as the Kullback-Leibler divergence), is given by
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where  is defined as 1. It is well known that I(p||r) can be interpreted as a “distance”

between p and r, and it is natural to define the closest PV to r within a set of PVs E based on

I(p||r). A solution to the problem is I-projection of r onto a set E, i.e. a vector q ∈ E such that

I(q||r) < ∞ and I(q||r) = minp∈E I(p||r).

Robertson et al. (1988) showed that maximizing  over this space, {pi ≥ 0, ∀i,

, log p ∈ M}, is equivalent to minimizing I(p||u) over {pi ≥ 0, ∀i, , p̂ − p

∈ M*}, where  is the uniform PV, , M is any closed

convex cone containing the constant vectors, and . This

duality allows obtaining maximum likelihood estimator (MLE) under inequality (or order)

restrictions using numerical methods for I-projection problems.

The algorithm we use to calculate the MLE is based on Dykstra (1985) who introduced a

method that can be used to solve the I-projection problem when the target set is expressed as

a finite intersection of arbitrary closed convex sets. It can be shown (Shapiro, 1985) that the

LRT under inequality constraints follows a chi-bar-squared distribution (i.e. weighted sum

of chi-squared distributions) asymptotically, i.e.

The weight wl is equal to the probability that the projection of estimated log local odds ratios

(  for i, j=1,2) on non-negative space takes on l positive values. There are

analytical formulas for w1,w2 and w3 (Shapiro, 1985) and an upper bound for w4 (Kudo,

1963). Also, the weights are functions of the asymptotic variance matrix of log local odds

ratios (see Appendix). Weights can be estimated using Monte-Carlo simulations where each

weight wl is calculated as the proportion of times that l positive estimated log local odds

ratios occur after the projection on non-negative log local odds ratios.

3.2 One-locus model

A similar dimension reduction idea can be applied to the one-locus case. We present it here

as it fits naturally in the context of this paper. We denote by paa, pAa, and pAA (qaa, qAa, and

qAA) the frequencies of genotype aa, Aa, and AA in cases (respectively, controls). Let ri (si),

i=0,1,2 be the genotype counts for genotype aa, Aa, and AA in cases (controls). We use R

and S to denote the number of cases and controls, respectively. Let ni = ri + si, i=0,1,2 be the

genotype counts for genotype aa, Aa, and AA for combined cases and controls and N to

denote the number of combined cases and controls.

One-locus analyses are usually performed using a 1 df allelic test, a 2 df genotype test, or a 1

df trend test. When Hardy-Weinberg equilibrium holds, the allelic test is asymptotically

equivalent to the trend test (Sasieni, 1997). In this paper we focus the discussion on the trend
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test as it does not require additional assumptions. Note that the trend test detects a specific

structure in the penetrance, and the test we propose is a generalization of this. To use the

trend test, a set of scores x = (x1, x2, x3) should be assigned to genotypes aa, Aa, and AA.

The test with x = (0, 1, 1) is efficient if the underlying genetic model is dominant, and the

test with x=(0,0,1) is efficient when the genetic model is recessive. Also, the test with

x=(0,1,2) is optimal for an additive model. However, in practice, we do not know the

underlying genetic model and most applications use the trend scores corresponding to

additive effects because they are closest to the models discussed above. Previous studies

(Freidlin et al., 2002) have shown that there is a substantial loss of power when the score for

the test is not optimal. A possible remedy is to develop a test which is robust to the

specification of the trend scores. We achieve this by using a LRT for models with ordered

penetrances (corresponding to ordered x’s). The penetrances are ordered for all natural one

locus models: recessive, dominant, multiplicative, and additive, and it is widely thought that

the risk is monotone (Balding, 2006). Assuming A is a risk-increasing allele, our alternative

model can be written as

Then regardless of the fact that q is known or unknown (Dykstra et al., 1995), the LRT

statistic follows a chi-bar-squared distribution, i.e.

Robertson et al. (1988) gives closed formula for w1 and w2 as follows :

where  and pi = ni/N.

In many cases including GWAS, we do not know the allele that increases risk, and we use a

two-sided alternative. For the two-sided alternative, the distribution of the LRT statistic can

be easily obtained from the distribution described above.

4 Results

4.1 Simulation studies

To evaluate the performance of ICPT, we perform simulation studies. Several scenarios are

simulated including those of one locus and two locus models. For controls, we consider the

case where controls are from general populations. Controls are randomly generated using a

multinomial distribution with population genotype frequency. Cases are generated from

multinomial distributions whose frequencies are calculated using Bayes rule from the
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specified control genotype frequencies and penetrances. For two locus models, we assume

that the markers are not in LD in controls so joint genotype frequencies in controls are

generated from marginal genotype frequencies. We consider bi-allelic SNPs with genotype

frequencies 0.03, 0.3, and 0.67 for one locus models and 0.3, 0.4, and 0.3 for both loci in the

two locus models. All our simulations of the one locus models involve sample sizes of 1000

for both cases and controls whereas simulations for two locus models have sample sizes of

5000 for cases and controls. We perform 1000 simulations for one locus models and 10000

simulations for two-locus models. We consider five types of one-locus models and eight

types of two-locus models including null models. We include a threshold model (Neuman

and Rice, 1992; Li and Reich, 2000) which does not satisfy the inequality constraints

required by our model (see Table 1) in order to investigate the robustness of our

methodology against deviation from these assumptions. All the other alternative two-locus

models satisfy the restrictions. For all two-locus models other than the null and the threshold

model (Table 1), g is 0.08 and f is 0.1. For the threshold model, g is 0.09 and f is 0.1. For the

null model, the gentotype relative risks are assumed to be in the 1.05–1.15 range. Two-sided

alternatives for ICPT are considered for both one-locus and two-locus models.

4.2 Simulation results for assessing ICPT for one-locus models

The purpose of this set of simulations (results shown in Table 2) is to evaluate the

performance of the proposed statistic for testing marginal association. The first column in

the table represents one locus models, and the second column shows the penetrances used in

the simulation. The third, fourth, and fifth columns present the power from the trend test

using the score (0,1,2), ICPT, and the 2 df LRT. The power of the statistic obtained by

taking minimum of p-values of trend test and the 2 df LRT is presented in the sixth column.

The trend test is most powerful in the multiplicative and additive models. However, the

power of the trend test drops when the dominant model is true which implies that the power

of the trend test is sensitive to the choice of score. On the other hand, from the simulation

studies, ICPT performs quite well compared to other tests in all the models. The restricted

parameter space for the alternative makes the test powerful when compared to the 2 df test.

It is important to notice that, even when the model underlying the trend test is satisfied, the

power of ICPT is still comparable to the power of the trend test.

4.3 Simulation results for assessing ICPT of two-locus models

In this set of simulations, we consider the performance of ICPT for detecting gene-gene

interaction. In Table 3 we show the results of the simulations when the two locus models are

Null, D∪D, R∪R, D∪R, D∩D, R∩R, R∩D, and Threshold. Because for one of the weights

in the distribution of the LRT we can specify only an upper bound, the p-values based on

these weights are conservative. To illustrate the loss in power due to this, we also provide

results with weights obtained by Monte Carlo simulation. To estimate the weights, we obtain

the marginal distributions and calculate case genotype frequencies by assuming the two loci

are independent. The frequencies are used to generate data based on which we project the

probabilities of joint case genotype frequency (i.e. pij for i, j=1,2,3) onto the space on which

log local odds ratios are non-negative. Each weight wl is defined as the proportion of times

that l positive log local odds ratios after the projection on non-negative log local odds ratios

occur in the replication. To contrast, we also estimate the power of 4 df LRT without any
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restrictions for the alternative. Because the Wald test and Pearson’s test for the table of cases

genotype counts are 4 df tests that have similar performance to the LRT (results not shown),

we only show the power and the type 1 error for the LRT. We also include a maximum

marginal trend test (Agresti, 1996) for the null (1). The choice of scores has a big effect on

power so we try to select optimal scores. The algorithm for selecting the trend scores works

as follows: for each locus, we select the score among (0,1,2), (0,0,1), and (0,1,1) that gives

the largest marginal trend test statistic. We compare the empirical power for the 4 df LRT,

the maximum marginal trend test, and two other interaction tests, logistic regression and the

LD test (Zhao et al, 2006) with those for ICPT with analytical and empirical weights. The

Zhao et al (2006) approach does not take into account the haplotype ambiguity, and we

found from the simulation experiment that the corresponding test does not maintain the

correct type 1 error rate (data now shown). That is why for the LD test (Zhao et al, 2006),

we correct the variance matrix so that it reflects uncertainty in estimated haplotypes.

LRT for cases outperforms the other two methods, logistic regression method and the LD

test significantly. Our results for case-only LRT and case-control logistic regression show

that when the main interest is pure interaction, the controls just add noise that is not properly

accounted for by logistic regression. The LD test is noticeably underpowered relative to

LRT. This is likely due to increase in the variance from the uncertainty of haplotypic phase.

We next attempted to compare the power among tests having the null (1) (i.e. LRT, ICPT,

and the maximum marginal trend test). Note that ICPT generally outperforms the 4 df tests

except when using the threshold model. However, the decrease in power of ICPT compared

with LRT for threshold model is not substantial even if the model does not satisfy the

inequality constraints. For R∪R and D∩D model, the maximum marginal trend test is more

powerful than ICPT because the strong marginal effect allows the selection of the optimal

score. However, for other models, marginal effects are weaker and the maximum marginal

trend tests for single locus do not select the optimal scores. Hence, the maximum marginal

trend test for interaction is not powerful when the loci have weak marginal effects. From the

power comparison between ICPT obtained using closed form of the weights and the ICPT

with empirical weights, the power of ICPT with empirical weights is higher than that of

ICPT based on closed form. Also, ICPT using closed form for weights tend to be

conservative because w4 is given as an upper bound. Power of ICPT with analytical form of

weights is higher than 4 df LRT but lower than ICPT with empirical weights. Table 3 shows

that the efficiency of both ICPT over 4 df tests would increase as type I error becomes

smaller. For example, we can see that for D∪R, the ratios of power (i.e. ) are

approximately monotonically increasing in type I error.

To further evaluate the relative performance of ICPT and the 4 df LR test, the power was

calculated for various levels of the type I error ranging from 10−2 to 10−5. The ratio of LRT

power to ICPT power is an almost monotone increasing function of the type I error for the

range considered (data not shown). This implies that the power of the proposed test, ICPT, is

much higher than that of the 4df LRT at small significance levels which are usually of

interest for GWAS.

All the code that was used for the analysis of the simulated data is written in R.
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5 Discussion

The vast majority of the GWA results published to date are based on single-SNP analysis of

genotyped or imputed markers. This has led to findings of associations with relatively large

genetic effects, and these strong signals are rare for complex traits such as asthma or type 2

diabetes. One possibility for finding associations with weaker marginal effects is to

investigate gene-gene interactions. The multiple comparison adjustment when testing for

gene-gene interaction can be even more severe than for single-SNP analysis (e.g. when all

pairs of makers are tested) and this has motivated the search for more powerful strategies for

testing gene-gene interactions.

We introduce a new test for gene-gene interaction that is based on a likelihood ratio statistic

for a restricted parameter space. The test, ICPT, is a robust alternative to classical

approaches as it is not based on a narrow underlying model. The imposed restrictions to the

parameter space, namely ordered penetrances, is a plausible assumption. Simulations show

that the power of two-locus ICPT is superior to other tests which do not restrict the

parameter space. The difference in power between ICPT and 4 degree of freedom tests, such

as the likelihood ratio test, increases with more stringent significance levels which are used

in studies with a large number of markers such as GWAS.

In this paper, we only investigate the case of unlinked SNPs, i.e. those that are in linkage

equilibrium in the population the data are sampled from. Extensions to linked SNPs will

require control data as well, as opposed to the study design used in this paper that requires

only data on cases. Like most methods for identifying interaction, the asymptotic

approximations for the distribution of the proposed interaction test statistic are not accurate

for sparse tables, i.e. tables with zero or low counts. Possible solutions for this problem

include merging genotypes and using sampling methods for calculating p-values. Also

extensions to testing for gene-gene interaction of imputed markers (Nicolae, 2006; Wen and

Nicolae, 2008) are necessary for a complete investigation of the data from a GWA study.

We will discuss these in future manuscripts.
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7 Appendix

In this appendix we show the formulas for the weights in the chi-bar distribution that

asymptotically approximates the distribution of the likelihood ratio statistic. It is clear that

the estimates of the joint genotype frequencies p̂ij are asymptotically distributed as a

multivariate normal distribution N(p, (1/n)Σ) where p = (pij) and Σ = (diag(pij) − ppT). Let β

= (β1, β2, β3, β4)T be log local odds ratios and β̂ = (β̂
1, β̂

2, β̂
3, β̂

4)T be the estimated log local

odds ratios (i.e. log p̂ij + log p̂i+1j+1 − log p̂ij+1 − log p̂i+1j). Using the delta method, β̂ is

asymptotically distributed as N(β, U), where U = (1/n)ADΣDTAT, ,

and

Hence, we can show that

We denote with ρij the (i, j)th element of the correlation matrix of β̂,

diag(U)−1/2U(diag(U))−1/2. Then the weights are given by (Shapiro, 1985; Kudo, 1963),

where ρij.k is the conditional correlation between β̂
i and β̂

j given β̂
k and ρkl.ij denotes the

conditional correlation between β̂
k and βl̂ given β̂

i and β̂
j.
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