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Abstract

Expression quantitative trait loci (eQTLs) are currently the most abundant and systematically-

surveyed class of functional consequence for genetic variation. Recent genetic studies of gene

expression have identified thousands of eQTLs in diverse tissue types for the majority of human

genes. Application of this large eQTL catalogue provides an important resource for understanding

the molecular basis of common genetic diseases. However, only now has both the availability of

individuals with full genomes and corresponding advances in functional genomics provided the

opportunity to dissect eQTLs to identify causal regulatory variants. Resolving the properties of

such causal regulatory variants is improving understanding of the molecular mechanisms that

influence traits and guiding the development of new genome-scale approaches to variant

interpretation. In this review, we provide an overview of current computational and experimental

methods for identifying causal regulatory variants and predicting their phenotypic consequences.

Introduction

Characterizing the functional impact of human genetic variation is essential for

understanding the molecular underpinnings of inherited disease risk. While human genome

sequencing has enabled rapid and efficient cataloging of tens of millions of genomic

variants, for the majority of these, we know little about their functional impact. This is

particularly true for mutations in non-coding regions. Genetic studies of gene expression

provide one means to interpret the functional impact of non-coding variants; these studies

have identified expression quantitative trait loci (eQTLs) in different populations1–3,

tissues4–8 and in response to different stimuli9,10. However, due to the presence of linkage

disequilibrium and often incomplete resolution of genetic variation, the majority of eQTLs

only inform the presence of some causal variant and not the precise causal variant itself.

Now, in the wake of advances in genome and functional genomics sequencing, there is

increased ability to directly identify specific causal variants that modulate gene expression.

Such advances, however, require both the development of computational approaches that
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integrate genomes with diverse functional genomic and population genetic data and the

application of new high-throughput experimental approaches that validate subsequent

predictions. These approaches and data offer the potential to expose the genomic properties

of causal non-coding variants and interpret variant impact and phenotypic consequences

from genome sequence alone. This need is particular acute as recent surveys of genetic

variation in human population have highlighted extensive impactful rare variation whose

effect is not well captured through association alone11–13. To begin to more completely

understand how to infer causality and consequence of non-coding variation, we describe in

this review recent statistical and experimental advances in characterizing causal non-coding

variants after eQTLs have been identified.

Using expression quantitative trait studies to identify causal regulatory

variants

Detecting causal non-coding variants through fine-mapping

Many eQTL studies have relied on genetic data obtained through genotyping arrays. While

such data provides the means to detect eQTLs, they are limited in resolution of potential

causal variants – the specific variants that underlie eQTLs. Now with the growing

availability of high-density genotyping and genome sequencing data there is increased

likelihood to directly observe genotypes for all candidate causal non-coding variants.

Alternatively, variants not measured directly can be indirectly inferred through cost-

effective imputation strategies using reference panels such as the 1000 Genomes Project14 or

HapMap15. The principle of imputation is that by exploiting patterns of linkage

disequilibrium within populations, the genotypes of unobserved sites can be inferred. To

achieve this, several tools are available including Impute216, Beagle17 and Minimac18.

Many of which come packaged with supporting haplotype data from reference panels.

However, there are important caveats with imputation including low accuracy for rare

variants, computational time and adequacy of the reference panel19. Once such approaches

have been applied, the working hypothesis is that a candidate causal non-coding variant

underlying an eQTL will be the individual variant that exhibits the best fit to expression

level of all variants in the region (Figure 1).

In practice, it may be challenging to resolve a single causal variant through association

alone, as several candidate variants may be in high linkage disequilibrium and exhibit equal

fit to expression level20. In addition, there may be in fact more than one regulatory variant

with a causal effect. And ultimately, even if one variant exhibits the strongest association, it

may not actually be the causal variant and merely reflect the composite signal of another

causal variant plus noise or inaccurate estimation of association from a small sample size. In

our own work, we have compared the relative discovery of cis-eQTLs between high-density

genotyping of one million SNPs from the HapMap3 project versus 5–7 million SNPs from

the 1000 Genomes Project in 60 individuals21. We discovered that both platforms yielded an

equal number of cis-eQTL across permutation thresholds. Likewise, Liang et al. explored

relative power gains from imputation by comparing cis-eQTL discoveries from the Illumina

300k chip with imputed HapMap2 and 1000 Genomes data in two separate cohorts (N>200

individuals)22. In their work, they observed power increases of 6–7% and 5–8% at an FDR
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of 5%, respectively. This suggests that total number of cis-eQTLs do not dramatically

increase through imputation. This may be expected, as lower density platforms are sufficient

for capturing the majority of common human haplotypes. However, in both studies the

power of imputation aided to significantly refine identification of the variant with the

strongest association. Liang et al. demonstrated localization of a cis-eQTL signal in

TIMM22 to the 3’ UTR by imputation of 1000 Genomes genotypes. We observed that 80%

of the variants exhibiting the top associations for eQTLs would not have been identified

with HapMap genotypes alone and were only discovered with full sequencing data21. A

similar comparison made by Gaffney et al. noted that 20% of detected eQTLs exhibited a

1000 Genomes SNP with a p-value at least one order of magnitude lower than the best

HapMap SNP23. These results indicate that low-density genotypes, while equally good at

identifying genes with an eQTL, may miss the most likely causal variants, and that high-

density genotyping is bringing us closer to capturing these variants.

Replication of eQTLs across studies and populations to find causal non-coding variants

Replication of eQTLs across studies and populations can potentially increase the confidence

that a studied locus harbors a causal variant. Unlike genome-wide association studies,

however, many eQTL studies do not explicitly employ replication designs. Of the few

studies that have tested replication, key factors that influenced replication rate include

statistical power in both discovery and replication panels, association strength of the

discovery, the eQTLs distance to the associated gene’s transcription start site and the

confounding presence of spatiotemporally-distinct or spurious eQTLs due unmatched

technical, biological or environmental factors between the discovery and replication panels.

One example where replication has led to functional fine-mapping of causal variants was

performed by Innocenti et al.; the authors first investigated the reproducibility of eQTL

results in primary liver and reported that up to 67% of cis-eQTL were replicated, and among

those factors which correlated to replication rate were association strength, proximity to the

transcription start site, the presence of array hybridization artifacts and the mean and

variance of the gene’s expression level24. However, by subsequently taking reproducible

eQTLs, they were able to select and identify causal-variant containing sequences that

exhibited in vitro functional effects for 3 of 14 genes tested. Analysis of eQTL replication

between two mouse cross also reported high replication of cis-eQTLs (63%) yet low

replication of trans-eQTLs (18%; LOD>4.3) with the replication rate increasing with

association strength25. For causal regulatory variant detection, both studies suggest that

proximity to transcription start size, well-powered study designs and well-matched

discovery and replication panels may aid in localizing causal loci. For trans-eQTLs on the

other hand, limited power and low-replication suggest that functional follow-up is best

applied for eQTLs that demonstrate replication. Indeed, Westra et al. recently conducted a

meta-analysis of seven eQTL studies comprising 5311 individuals with a replication panel

of another 2775 individuals to systematically identify trans-eQTLs26. In total, they were

able to identify and replicate 103 independent loci equivalent to 223 variants of 4542 tested.

Replicating trans-eQTLs were enriched for miRNA binding sites and blood-specific

enhancer regions exposing the likely causal mechanisms of non-coding variants that exert

long-range effects.
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Replication of eQTLs across multiple populations further confers a unique advantage for

localizing causal non-coding variants. As tightly-linked variants may be indistinguishable in

their association strength, integrating different population data can increase causal variant

localization by exploiting population-specific differences in LD structure to effectively

breaking up LD blocks and refine an expression or trait association signal. Indeed, this

approach was evaluated by Zaitlen et al. were they highlighted that refinement of an

association signal using multi-population data reduced the number of potentially causal

variants that needed to be assayed27. However, they cautioned that the best study design was

not always a multi-population design as, for population-specific causal variants, individual

populations are maximally powered. In fact, we have seen that by integrating multiple

populations for eQTL discovery, we find replicated effects are more tightly-distributed

around the transcription start site1. This suggests that causal regulatory variants are more

closely coupled to a gene’s proximal regulatory machinery than informed from single

population analyses.

Mapping causal regulatory variants with allele-specific expression

Another emerging route for replicating eQTLs and resolving causal non-coding variants is

through analysis of allele specific expression (ASE). Measurements of ASE are now

routinely accessible from RNA-sequencing data and provide qualitatively different

information from traditional eQTL approaches; eQTL analyses are based on genotypic

association with total expression levels across individuals while ASE is measurable between

alleles within an individual. Detecting ASE is based on selecting protein-coding

heterozygous sites and subsequently measuring the skew in read counts for each allele; using

this approach one is able to identify patterns of ASE which may inform the presence of a

cis-linked regulatory variant within an individual. Indeed, targeted studies of allele-specific

expression have revealed that the majority of ASE can be explained by nearby genetic

variants28. We have also applied sharing of ASE from RNA-Seq across individuals to detect

potentially causal regulatory variants by focusing on just those sites that share

heterozygosity in the presence of the ASE effect21. This approach allowed us to identify

variants close to genes which were highly correlated to the allelic effect. Similarly, in a

recent study with 922 individuals, we tested for association between heterozygosity of non-

coding variants and allelic imbalance to confirm the regulatory impact of a large number

(641) cis-eQTL SNPs29. Further demonstrating the specificity of ASE in detecting potential

causal variants, Lappalainen et al. recently demonstrated that variants which are jointly best

associated to expression level and ASE are significantly enriched in diverse epigenetic

annotation from ENCODE30. Likewise, a statistical method developed for RNA-Seq data

has demonstrated increases in discovery power of eQTLs when both expression level and

ASE are tested together31. These results suggest that the combination of genotypic and

allelic association significantly aids in refining causal non-coding variants. However, while

testing association using ASE is intuitively straightforward it has its own limitations; it

requires that the number of heterozygotes testable for ASE to be sufficient, the ASE effect is

detectable from overlapping read data and an assumption of a single or few causal

regulatory variants.

Battle and Montgomery Page 4

Hum Genet. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Statistical methods for identifying causal regulatory variants

The strategies described above offer the potential to refine the localization of causal variants

directly from expression data, but in most cases full disambiguation will not be possible

from eQTL associations alone. For instance, Gaffney et al. report, in an eQTL study

leveraging dense genotyping that for 80% of the significant eQTLs identified, ambiguity

remained between at least two SNPs with p-values differentiated by less than one order of

magnitude23. In such cases, further disambiguation may be possible through computational

and statistical methods, specifically methods using additional sources of data and genomic

properties of the associated loci. Analysis of sequence conservation is one strategy for

assessing which regions of the genome are likely to have deleterious consequences, and has

been applied to non-coding regions of the genome32,33. Overlap has been demonstrated

between conserved regions and eQTLs34, and between conserved regions and regulatory

elements such as enhancers35,36, but the utility of conservation scores in disambiguating

individual causal regulatory variants remains complex as not all important regulatory

elements are well-conserved37,38. A second category of approaches includes computational

methods that predict consequences of sequence variation on specific regulatory mechanisms.

Based on high-throughput SELEX, ChIP sequencing data, and protein binding microarrays,

position weight matrices (PWMs) have now been described for many human transcription

factors supporting predictions of the impact of genetic variants on TF binding genome-

wide39–41. In-silico methods have also been developed for prediction of other potential

regulatory effects of sequence including RNA binding protein motifs42 and DNAshape43.

Complementing these approaches there is a growing wealth of high-throughput data

providing regulatory element annotation across a variety of tissues, developmental stages,

and populations44. By intersecting eQTL data with high-throughput data or the results of

computational analysis, we can identify sub-regions or even specific nucleotides within an

eQTL-associated region that have specific evidence to support a functional role. Tools and

databases that provide diverse regulatory element annotations to aid in assessment of

functional roles include HaploReg45, RegulomeDB46, and ORegAnno47. Furthermore,

enrichment of eQTLs within TF binding sites and other putative regulatory elements has

demonstrated that such annotation is informative for detecting causal elements23,48–50 and

methods that integrate these sources of annotation to predict causal regulatory variants from

eQTL data have been developed23,51,52. While specific modeling choices and training

methods vary, each of these methods is built on a regression model which estimates the

regulatory impact of each SNP based on available genomic annotations. The hierarchical

Bayesian model of Gaffney et al. demonstrates good predictive accuracy; testing their

method on eQTLs with unambiguous association signals, this model ranks the best SNP

among the top 10% of candidates in over 70% of test cases23. The results obtained with our

own method, LRVM, demonstrated that integration of diverse annotation allows prediction

of impact on ASE, which as discussed above, may bring us closer to true causal variants29.

Methods trained on other data types may also be applied to interpretation of eQTLs. For

instance, a recent tool called GWAVA53 uses random forests based on genomic annotation

features, but is trained on known regulatory variants implicated in disease from the Human

Gene Mutation Database54 to predict functional variants in non-coding regions of the

genome. Challenges remain, however, in the assessment of accuracy of causal regulatory
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variant models; in general, the research community does not have access to large-scale gold

standard data with which to evaluate their performance.

Experimental methods for identifying and validating causal regulatory

variants

While both expression data in the form of various QTLs and allelic effects can significantly

aid in informing the presence and specific location of a regulatory variant, there are a

growing number of novel assays which are illuminating the relationship between single

variants and gene expression. Assays measuring sequence-specificity of transcription factor

binding (and existing databases) can inform causality of eQTLs if a particular TF is

suspected to be involved in the underlying mechanism39,41. Here, we cover in more detail

two classes of recently developed assays that are able to inform a large fraction of eQTLs,

either through direct measurement of changes to gene expression, or through measurement

of epigenetic changes.

Epigenetic assays

ChIP-Seq data from diverse cell types and stages has been essential to highlighting broad or

punctate regions containing transcription factor binding sites and allele-specific differences

in transcription factor binding44,55,56. Such differences have been informative in assignment

of function to disease-associated variants57. Furthermore, as for ASE measurements using

RNA-Seq, by assaying which heterozygous sites exhibit a skewed balance of mapped ChIP-

Seq reads for each allele, one is able to directly select putative causal regulatory variants.

Here the hypothesis is that allele-specific binding (ASB) of a transcription factor will

causally map to an allele-specific differences in expression. Indeed, Rozowsky et al.

demonstrated concordant patterns of ASB and ASE56. However, it remains difficult to

establish a causal link between ASB and effects on gene expression. Further, less than half

of the 1500- 2000 human transcription factors have an experimentally characterized DNA

binding motif39,58,59, and antibody efficiencies for many TFs remain variable or poor.

Considering these challenges, it is still technically infeasible to definitively survey the

consequences of sequence variation on binding for all known transcription factors.

Complementing ChIP-Seq assays, DNaseI hypersensitivity-sequencing offers a non-specific

approach to identifying potential causal regulatory variants. For this assay, allele-specific

binding and genetic association within DNaseI footprints can aid in pinpointing a potential

regulatory element when the bound transcription factor is itself unknown. Indeed, when

DNaseI hypersensitivity data was assessed as a quantitative trait in 70 Yoruban individuals,

it was estimated that over half of all eQTLs were driven by genotypic differences in DNaseI

sensitivity49. Here, the combination of allelic analyses in DNaseI footprints and

transcription factor binding site prediction using PWMs supported the hypothesis that TF

binding often drives changes to chromatin state that mediate effects on gene expression.

Additional studies of TF binding, histone modification, and chromatin state provide further

evidence of this causal relationship, using population, family and allele-specific analysis

(rather than QTL detection) of each phenotype in a limited number of individuals60–62.

However, only 16% of all DNaseI QTLs themselves were mapped to a change in gene

expression suggesting that only a minority of binding differences definitively influence
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expression. Partially explaining this apparent incomplete overlap of dsQTLs with variants

affecting gene expression, in this analysis, Degner et al demonstrate that influence of

dsQTLs on gene expression depends on genomic context including distance to the nearest

TSS, intervening CTCF binding sites, and association of the variant with methylation

(meQTLs)63. Uncertainty still remains, however, in completely determining the influence of

epigenetic changes on expression of nearby candidate genes, from identifying the correct

genes for potentially distant regulatory elements, to potential variability in strength and

direction TF effect, to combinatorial regulatory mechanisms. Identification of dsQTLs,

meQTLs or other epigenetic effects for an eQTL of interest therefore provides evidence of

mechanism but not conclusive validation.

Massively parallel reporter assays

Advances in massively-parallel reporter assays (MPRA) through sequencing are achieving

quantitative and high-throughput readouts of the impact of regulatory elements in vivo. One

such study synthesized known Crx-bound ChIP-seq regions and placed them in front of a

minimal promoter, reporter gene and unique barcode to assess their relative activities in

explanted newborn mouse retinas64. Through direct sequencing of the barcode the authors

were able to determine the relative ability of their synthesized sequences in enhancing

expression. In a large-scale MPRA study of 2,000 human enhancers, Kheradpour et al.

verified sequence-specificity of both predicted repressors and predicted activators65. Using

two human cell lines, their results also confirm tissue-specificity of enhancer activity.

However, a challenge with the MPRA approach is that it requires the synthesis of assayed

targets. Complementing this approach, an assay called STARR-seq facilitates high-

throughput screening by measuring randomly sheared DNA’s ability to promote its own

expression66. By placing random sequences downstream of a minimal promoter, Arnold et

al. assayed which sequences enhance their own expression in different cellular contexts.

More complex application of these approaches is also unlocking new information about

transcription factor interaction and organization. Smith et al. recently created a library of

~5,000 synthetic promoters containing 12 liver-specific transcription factors to identify

features of transcription factor organization in HepG2 cells67. Among their discoveries was

the observation that there were multiple, but non-generalizable arrangements of motifs

which support strong and weak expression. If such observations are themselves

generalizable, it would argue that the impact on gene expression by causal variants will

remain challenging to infer from sequence context. Furthermore, an important caveat to

these studies is that they all work in a heterologous context and putative regulatory elements

may in fact be endogenously silenced. Despite this however, they provide a quantitative and

cell-type specific readout of regulatory activity that maps well to enhancer-associated

histone modifications and offers new potential for the assessment of regulatory architecture

and causal regulatory variant impacts.

Genome editing

While MPRAs and related approaches allow high-throughput testing of sequence variants

using reporter constructs, other methods are appropriate for testing variants in their own

genomic context in vivo. Previously, gene knockout or knockdown experiments have been

employed to validate the regulatory effects of entire genes, for example providing evidence
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to support trans-eQTLs68. More recently, new high-precision methods of genome editing

have become available, including Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR)69 and transcription activator-like effector nucleases (TALENs)70. As a

result, editing of single loci to introduce specific sequences into the genome (e.g. mutations,

GFP), using Cas9 together with a homologous recombination donor bearing the mutation of

interest, is now straightforward71–73. Modified cell lines can be assayed for gene expression

using targeted PCR or genome-wide methods, providing validation for both cis- and trans-

eQTLs. In addition, epigenetic assays and other forms of cellular phenotyping could also be

applied to provide further evidence of the specific mechanisms relevant to each tested

eQTL. For example, in a recent study Bauer et al. used TALENs to disrupt an intronic

enhancer in BCL11A, and demonstrated changes to expression of BCL11A along with

alteration to the predicted target phenotype (increased embryonic globin protein levels)74.

While validation of eQTLs through CRISPR and related techniques has not yet been applied

on a large scale, this method holds great promise for directly testing the effects of individual

regulatory variants on gene expression and other cellular traits.

Connecting regulatory variants to traits

Fully characterizing regulatory variation would include identifying the downstream

consequences to the cell and organism. In this discussion, we focus primarily on the effects

of regulatory variation on complex traits. For these traits the majority of associated variants

occur outside of coding regions of the genome, suggesting that regulatory variants play a

significant role75,76. Furthermore, through integrated analyses of eQTLs with trait-

associated variants it has been possible to identify specific causal mechanisms. Indeed, it has

been demonstrated that trait-associated variants are enriched for eQTLs77, with trans-eQTLs

shown to be particularly enriched for GWAS variants78. In addition RNA-sequencing has

recently broadened the scope of eQTL analysis and thus the potential for investigating

disease variants, enabling the inclusion of genetic effects on splicing, novel transcripts,

alternative polyadenylation and other expression phenotypes like non-coding RNAs not

typically available in eQTL studies based on microarrays. For instance, in a recent study, we

identified 159 known disease variants with evidence of splicing QTL associations (p <

1e-7)29. However, the simple overlap between eQTL signal and a disease-associated locus

cannot establish a causal relationship, due to confounding effects including linkage

disequilibrium and correlated environmental factors. Here, Gagneur et al. have discussed the

possible pathway relationships that may underlie eQTLs and trait-association and

demonstrated that causal effects on higher-level traits are more likely to arise for certain

classes of eQTLs79. Specifically, they found that environment-dependent eQTLs are much

less likely to reveal causal genes than eQTLs shared across multiple environments. To

address LD, statistical approaches have been developed aiming to determine the overlap

between eQTLs and GWAS signals by measuring the correlation of the relative association

signals across multiple proximal and partially-linked markers80. Furthermore, we have

recently developed a test based on ASE to integrate both rare and common regulatory effects

underlying trait-associated variants81. The hypothesis of this test is that heterozygotes for

trait predisposing variants will exhibit more ASE than homozygotes thereby indicating an

enrichment of either single or multiple distinguishing causal variants, where the controlled
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comparison of alleles within an individual is less sensitive to environmental confounders

than eQTLs based on expression levels across individuals. Additionally, the intersection of

disease variants with tissue-specific eQTL data4,5,82 may allow us to pinpoint the specific

cell type or tissue where a disease variant acts or has the largest effect, and improve our

ability to design appropriate follow up experiments. Thus, an increasingly complete

understanding of disease variants may be possible, beginning with the simple connection

suggested by existing eQTL data, combined with methods that predict or experimentally

validate causal regulatory mechanism described in the previous two sections. However,

while many trait-associated variants exhibit as eQTLs, the majority of known eQTLs have

not yet been demonstrated to be associated with any disease.

With the prevalence of eQTLs, evidently even among common genetic variants, what are the

consequences of this variation to the organism, and specifically to human health? The

measurement of additional intermediate phenotypes, including histology reports and cellular

traits such as protein levels83–85, may shed light on these questions. Initial studies of

individual variation in protein levels using mass-spectrometry indicate that eQTLs are likely

to manifest as protein QTLs as well85. Building on this complexity to measure the impact of

these effects on cellular and endophenotypes will remain an important and ongoing

challenge. Ultimately, direct validation from methods including MPRAs64,65 and genome

editing assays69 measuring both expression and additional downstream traits will provide

the strongest evidence of causality.

Conclusions and future directions

We are currently at the point where we can refine eQTLs significantly based on high-density

genotyping, population, tissue, condition-specific expression data and diverse high-

throughput functional genomic data. Application of these approaches requires ongoing

advances in integrative computational methods. However, high-throughput reporter assays

also suggest that there will be limits to the types of regulatory architectures that can be

easily predicted. For instance, beyond the interaction of specific transcription factors, the

mechanistic properties of long-range effects like locus-control regions, enhancers or trans-

regulators remain to be explored and integrated into a more complete model of gene

regulation. Challenges with interrogating the complete developmental and condition-

specificity of eQTLs due to the vast number of testable environmental perturbations and the

diversity of cell types, of which many are routinely inaccessible, remain to be systematically

encapsulated to reveal the most impactful gene regulatory networks and variations

influencing traits and disease. The diversity of regulatory effects that are being elucidated

also remains to be better connected to disease-associated variants as increasingly variants

are being associated to alternative splicing, RNA degradation, splicing efficiency, poly-

adenylation sites and miRNA recognition elements; each of which will add to the

complexity of understanding gene regulation. Furthermore, as rare variants are increasingly

recognized as abundant in human populations, building statistical and experimental systems

that can integrate the impact of both rare and common alleles remain to be developed. It is

expected that given current human population size and mutation rate, any regulatory variant

that does not dramatically impact an individual’s fitness, will in fact be present in some

individuals suggesting that the ultimate goal is understanding the potential function of every
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single non-coding base in the genome. However, among these challenges many exciting

innovations remain to be developed including new approaches for integrating diverse

expression and epigenomic datasets, advancements to the characterization of genetic

regulatory networks and trans-eQTLs and ultimately, building models and experimental

tools which can identify and integrate impactful non-coding variants to predict an

individual’s genetic disease risk.
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Figure 1. Fine-mapping of a cis-eQTL for IFT52 using whole genome sequencing
(A) Shows association between markers and gene expression in a European population using

a combination of microarrays50 and genetic markers typed by the OmniExpress (700k

markers, genome-wide). The multiple-testing significance level is marked by a horizontal

dashed line. Here, the top associated SNP (purple) is 3’ of IFT52. (B) Rerunning the cis-

eQTL association using whole genome sequencing data (5M markers) identifies a new, more

significantly associated variant at the transcription start site of IFT52. Furthermore, this

variant is in weak LD (r2 between 0.2 and 0.4, light blue) with multiple 3’ variants

suggesting that the original top SNP detected in panel A was not in fact the causal variant

but was associated due to its linkage with the causal variant now more likely located at the

transcription start site. It is also important to note that the multiple-testing significance level

has become more stringent when testing eQTL in whole genomes due to testing more

markers such that variants near SGK2 which were significant in the OmniExpress analysis

are no longer equally significant in the whole genome analysis.
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