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Abstract

The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently
used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons
for the popularity of these markers include: 1.) Ease of amplification due to high copy number of the gene clusters, 2.)
Available cost-effective methods and highly conserved primers, 3.) Rapidly evolving markers (i.e. variable between closely
related species), and 4.) The assumption (and/or treatment) that these sequences are non-functional, neutrally evolving
phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under
selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are
not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other
positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the
lowest energy state and total number of possible alternate secondary structures are highly significantly different between
ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC) content. Lastly, we review
recent evidence highlighting some additional problematic issues with using these regions as the sole markers for
phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to
estimate phylogenetic relationships.
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Introduction

Molecular systematic approaches have traditionally relied on

comparing a limited number of orthologous sequences to obtain

estimates of species relationships across the tree of life. These

phylogenetic markers are often selected based on a number of

basic characteristics; including 1.) Ubiquitous presence across

target taxa, 2.) Sufficient sequence or structural variation between

taxa (i.e. synapomorphic characters), 3.) Ease of obtaining

sequence data, 4.) Cost-effectiveness, and 5.) Having a fundamen-

tal understanding of the function of the locus and the possible

selective forces acting on its sequence evolution. The internal

transcribed spacers (ITS1 and ITS2) regions of the ribosomal

RNA gene cluster are the most commonly used nuclear markers

for estimating species relationships across plants based on the

above criteria, including the assumption (or treatment) that these

markers are non-functional and hence neutrally evolving. For

example, the ITS regions are the most commonly used markers for

estimating phylogenetic relationships across the mustard family

(Brassicaceae) (Figure 1) [1,2], with sequences available for the

majority of the 321 genera distributed across all 49 delimited tribes

[3]. These studies have, in addition to delimiting tribes and

estimating phylogenetic relationships among some tribes, also been

successful at assigning many of the tribes into one of three

monophyletic lineages (Figure 1). Lineage I is comprised of

twelve tribes including Camelineae that contains the model

organism Arabidopsis thaliana. Lineage II has six tribes including

the agronomically important Brassiceae that contains cruciferous

vegetables (e.g cabbage, cauliflower, broccoli, and brussel sprouts).

Lineage III includes six primarily Asian tribes. It is important to

note that other phylogenetic markers have also been employed (see

discussion)[4–8]; nonetheless more than 70 articles published since

2010 have used the ITS region to infer relationships across the

Brassicaceae.

The ribosomal RNA gene cluster consists of seven components:

the 59 external transcribed spacer, the 18S rDNA exon, internal
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Figure 1. Phylogenetic Distribution of Hairpin Numbers for ITS Secondary Structures. A tribal level phylogeny of the Brassicaceae, strict
consensus tree of the 200 most parsimonious trees estimated with ITS sequences [2], was utilized to investigate the evolution of the number of
hairpins present in the secondary structures of both ITS1 and ITS2. Bootstrap support values greater than 60% are shown above branches [2]. It is
notable that the ITS tree does neither fully reflect the tribal phylogeny nor is at any deep node highly significantly supported, but overall-topology is
in congruence with multi-locus phylogenies considering major lineages [7,8]. Tribes not assigned to one of the three major lineages are actually
combined with an "expanded lineage II" [46], which might have to be revised in future. The three major phylogenetic lineages are shown within
colored blocks with Lineage I (orange), Lineage II (blue) and Lineage III (green). The number of hairpins for each secondary structure is shown at the
phylogenetic tips with 3 (orange boxes), 4 (yellow boxes), 5 (green boxes), 6 (blue boxes), and 7 (purple boxes). Tribes with a lack of available
complete ITS1 data are marked as ’NA’. Tribes with secondary structures with different number of total hairpins from different species are also
indicated (e.g. Camelineae 6/7 for ITS1; 6 and 7 hairpin structures are observed) within the colored box of the fewest hairpined structure. Examples of
secondary structures are shown (top-bottom order): 1. Anchonium billardierei ITS1 (Anchonieae), 2. Aethionema arabicum ITS1 (Aethionemeae), 3.
Halimolobos lasiolaba ITS2 (Halimolobeae), and 4. Arabis scabra (Arabideae).
doi:10.1371/journal.pone.0101341.g001
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transcribed spacer 1 (ITS1), the 5.8S rDNA exon, internal

transcribed spacer 2 (ITS2), the 28S rDNA exon, and the 39

external transcribed spacer (Figure 2) [9]. The rDNA exons are

highly conserved across eukaryotes, but the ITS regions are

variable in length due to point mutations and indels, resulting in

regions varying in size from 500 to 700 bp across angiosperms [10]

and from 1500–3700 bp in some gymnosperms [11]. The ITS

regions are not incorporated into mature ribosomes, but undergo a

specific cleavage during the maturation of the ribosomal RNAs

that is catalysed by the secondary structure of ITS sequences

themselves [12–15]. Despite this specific activity, these sequences

have been treated as nearly neutrally evolving nuclear markers for

phylogenetic reconstructions [16], for reviews see [17–19]. Here,

we test whether nuclear encoded internal transcribed spacers

(ITS1 and ITS2) are truly neutrally evolving, or if these regions are

under selective constraints to maintain a functional self-splicing

secondary structure across the Brassicaceae. In addition, we assess

the phylogenetic utility of secondary structure data for inferring

phylogenetic relationships.

Methods

All possible ITS1 and ITS2 secondary structures for a total of 50

species (100 total structures) and 100 random sequences were

modeled using RNAstructure Version 5.3 [20]. Sheet 1 in File
S1 contains the list of species, NCBI GenBank accession numbers,

lengths, total number of possible secondary structures, and a

description of the lowest energy state structure for every species.

All ITS sequences have been verified by taxonomic experts [2],

annotated and deposited into BrassiBase (a comprehensive

Brassicaceae database system; http://brassibase.cos.uni-

heidelberg.de/) and within a proven phylogenetic context

[21,22]. The 100 random sequences, with an overall GC content

and size variation identical to these 100 ITS sequences (Sheet 2
in File S1) were generated using a custom Perl script. A two-way

ANOVA, using the R software package (Version 1.7.1) [23], was

used to test the statistical significance between both the lowest

energy state and total number of possible structures between the

true ITS sequences and random sequences (Sheet 3 in File S1).

The structures were further analyzed manually for the total

number of paired bases and number of total hairpins (Sheet 4 & 5
in File S1). Hairpins were characterized as a complete,

continuous loop formed by a set of closely paired nucleotides

between two distant regions, with either single or branched

structures that may include additional nested structures, while

stems were characterized as structures that do not form immediate

loops. A structure required a minimum of four nucleotide bonds

(i.e. eight nucleotides) to be characterized as a hairpin. Single and

branched structures were both treated as one hairpin. Sequence

alignments for ITS1 and ITS2 can be found in Files S2 & S3,

respectively.

Results

All possible secondary structures for both ITS1 and ITS2 were

modeled for 49 species distributed across 38 tribes in the family

Brassicaceae and one outgroup species (Cleome lutea renamed

Peritoma lutea Hook. [24]; Cleomaceae) (Figure 3). The ITS1 and

ITS2 regions are variable in length. ITS1 has a mean length of

263bp (max = 286bp; min = 238bp). ITS2 has a mean length of

184bp (max = 220bp; min = 177bp). The combined ITS1 and

ITS2 sequences have a mean length of 224bp and a median length

of 229bp. These ITS1 and ITS2 regions have a mean of 16.6 and

7.9 possible secondary structures, respectively. The combined

ITS1 and ITS2 dataset has a mean of 10.5 possible secondary

structures (median = 8.5; max = 30; min = 1). The mean for the

lowest energy structure for all ITS1 and ITS2 sequences is 293.1

and 270.0 degrees, respectively. The combined ITS1 and ITS2

dataset has a mean of 281.6 degrees and median of 279.5 degrees

for the lowest energy states (max = 258.2 degrees; min 2114.5

degrees). The ITS1 structures have a mean of 153.8 paired bases

(i.e. form bonds with other bases) (median = 154) and a mean of

5.8 total hairpins (median = 6). The ITS2 structures have a mean

of 115 paired bases (median = 114) and a mean of 3.8 total

hairpins (median = 4). The ITS1 sequences on average have

,58.5% of all nucleotide positions paired, while ITS2 sequences

on average have ,62.5% of all nucleotide positions paired.

To test if the secondary structures of the lowest energy states for

ITS sequences suggest selective constraint on the sequences

encoding them, we generated 100 random sequences with an

identical size range (286bp to 177bp) and overall average GC

content (54.9%; see Sheet 2 in File S1). All possible secondary

structures were modeled for each of the random sequences. These

random sequences have a mean of 19.6 possible secondary

structures (median = 17.5; max = 41; min = 5). The mean for the

lowest energy structures for all random sequences is 269.9

(median = 270.7; max = 238.6; min = 292.8). We evaluated

using a two-way ANOVA whether both the values of the lowest

energy states and values for total possible secondary structures

were significantly different between the 100 ITS and 100 random

sequences (Figure 4). The lowest energy state and total number of

possible secondary structures were both highly significant, (P,

2.2e-16) and (P,1.6e-07), respectively. The ratio of both these

categories was not significantly different between ITS and random

sequences (P = 0.1095), as would be predicted. Similarly, the

lowest energy state and total number of possible secondary

structures for the 50 ITS1 sequences alone compared to random

sequences were also significantly different, (P,2e-16) and (P,

1.2e-04), respectively. The 50 ITS2 sequences compared to

random sequences were also significantly different for both the

the lowest energy state (P,2.1e-07) and total number of possible

secondary structures (P,6.5e-08).

Lastly, we evaluated the utility of secondary structure data to

resolve phylogenetic relationships at the tribal level across the

Brassicaceae (Figure 1). ITS1 sequences are highly variable,

ranging between 4 to 8 hairpins, with some conserved phyloge-

netic patterns within tribes but limited phylogenetic conservation

between closely related tribes. Six hairpin structures for ITS1 are

Figure 2. Structure of the rDNA region in Plants. An illustration of
the nucleolus organizing region (NOR), shown as red colored region on
chromosome, is associated with forming the nucleolus and site for the
biosynthesis of the components of the ribosome. The NOR region
contains hundreds of tandem duplicated copies of rDNA gene clusters
(depicted as yellow rectangles), and each gene cluster consists of seven
main components including two internal transcribed spacers (i.e. ITS1
and ITS2). These ITS regions form self-splicing secondary structures as
transcribed products. Shown is the 5 hairpin structure for ITS1 and the 3
hairpin structure for ITS2.
doi:10.1371/journal.pone.0101341.g002
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the most frequent for Lineage I (min = 5; max = 7) and Lineage II

species (min = 4; max = 7), while 5 hairpin structures were most

frequent among Lineage III species (Min = 4; Max = 7). ITS2

sequences are more slowly evolving, ranging between 3 to 5

hairpins, with most species having 4 hairpin secondary structures.

Lineage I consists largely of 4 hairpin structures (min = 3; max = 5)

and Lineage III consists of both 3 and 4 hairpin structures for

ITS2. Lineage II species consist mostly of 4 hairpin structure ITS2

sequences, except for one species (Sisymbrium irio) with a 3 hairpin

structure within the tribe Sisymbrieae. The ancestral state for the

most common recent ancestor of the Brassicaceae is likely a 5 or 6

hairpin structure for ITS1, and a 3 or 4 hairpin structure for ITS2.

Figure 3. Hairpin Size Distributions for ITS1 and ITS2 Secondary Structures. Panel A shows the frequency of the total percentage of paired
bases for all ITS1 (Blue) and ITS2 (Red) sequences. The majority of both ITS regions have over 50% of positions paired with other sequence positions
to form secondary structures. Panel B shows the frequency of the total number of hairpins for all the ITS1 (Blue) and ITS2 (Red) structures. These data
are for the lowest energy state structure for each ITS sequence (see Supplemental File 1).
doi:10.1371/journal.pone.0101341.g003
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Discussion

The results of this study show that the majority of sequence sites

for both ITS1 and ITS2 are not independently evolving, but

rather are co-evolving with at least one other position to preserve

the molecule’s secondary structure. Our analyses also revealed that

these secondary structures have a significantly lower energy state

and significantly fewer possible alternate secondary structures

compared to random sequences with a similar guanine-cytosine

(GC) content and length distribution. Collectively, these results do

not support the neutrality of these sequences across the

Brassicaceae (as commonly assumed and/or implemented for

phylogenetic analyses), but rather strongly suggest that these

sequences are under selective constraint to maintain functional

self-splicing secondary structures. Thus, the majority of mutations

that occur within these regions must likely undergo compensatory

mutations, since most sites are co-evolving, to maintain properly

functioning secondary structures.

Many Brassicaceae studies to date have used ITS as a

phylogenetic marker to estimate relationships and delimit new

taxonomic groups (e.g. tribes). Based on our results, this fact means

that many phylogenetically informative sites were unintentionally

treated as independent despite the fact that they were co-evolving.

At a minimum, such assumptions will tend to overstate the

confidence in phylogenetic hypotheses as inferred with methods

such as the bootstrap. Thus, we advise future studies to identify all

co-evolving sites and make appropriate adjustments prior to

employing these regions as phylogenetic markers. However, we

also want to emphasize the importance of proper consistent

annotation prior to modeling secondary structures, particularly if

structures are to be compared across species [25,26]. For this

reason, we generated random sequences with an identical length

variation and overall GC content to actual ITS sequences to

permit accurate comparisons of secondary structure characteris-

tics. For the Brassicaceae community, the BrassiBase database has

nearly 2,000 annotated ITS sequences and alignments are

available for species distributed across all family tribes. For the

broader eukaryotic community, the ITS2 Database [27] is an

outstanding publicly available resource for the annotation,

secondary structure prediction, and estimating phylogenetic

relationships of ITS2 sequences.

For estimates of tribal relationships across the Brassicaceae (or

likely for similar family level phylogenies), ITS1 and ITS2 contains

insufficient signal to obtain a robust, well-resolved phylogeny

(Figure 1). Thus, ITS must be combined with other markers to

estimate deep level phylogenetic relationships. Additionally, the

ITS marker is known to often undergo gene conversion following

hybridization and allopolyploidization events, in which the

sequence from one subgenome replaces those of the other

subgenome [28–30]. For example, this homogenization process

of rDNA repeats (i.e. concerted evolution) has been shown to

occur very rapidly, within less than 100 years, in two allopolyploid

Cardamine (Brassicaceae) species [31], and multiple populations of

allopolyploid Tragopogon mirus and Tragopogon miscellus [32]. Also,

the process of non-concerted evolution and the origin of

paralogous copies have been described in the Brassicaceae [30].

Thus, these features and evolutionary histories of ITS sequences

are not ideal for estimating species relationships alone, especially

for groups like the Brassicaceae that have multiple documented

ancient and recent polyploidization events [33–35]. Although

reliance on ITS as the sole source of phylogenetic evidence can be

criticized for reasons given here, it remains a highly efficient locus

for generating species-level phylogenetic inferences in most plant

groups. At least across the Brassicaceae, the phylogenetic estimates

obtained from the ITS markers for within various subfamilial units

Figure 4. Comparison of Secondary Structures of 100 ITS and 100 Random Sequences. A scatter plot of the lowest energy state values (x-
axis) and all possible secondary structures (y-axis) for 50 ITS1 (Blue Diamonds), 50 ITS2 (Red Squares) and 100 randomly generated sequences (Green
Triangles) (Supplemental File 1) estimated using RNAstructure 5.3 (Reuter and Mathews, 2010).
doi:10.1371/journal.pone.0101341.g004
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have largely been congruent with other markers and data [36–38].

On the other hand, at the entire family level (i.e. tribes and major

lineages), the phylogenetic signal from this marker has been

insufficient to resolve major relationships.

Single-marker approaches are known to produce misleading

phylogenetic estimates for species relationships [39], but incon-

gruence between gene phylogenies and species phylogenies can be

identified and resolved using multiple independently evolving

markers [40–43]. More recent family-wide Brassicaceae studies

are utilizing multi-locus datasets, which have yielded improved

phylogenetic estimates for many clades but still limited resolution

for the relationship among the three major lineages (shown in

Figure 1) and majority of tribes [44–46]. Therefore future studies

should survey additional markers with sufficient phylogenetic

signal, preferably with different patterns of inheritance (e.g.

mitochondrial, plastid, and nuclear), to estimate species relation-

ships, identify incongruent markers with unique evolutionary

histories, and ultimately obtain better insights into more complex

evolutionary processes. A large-scale data approach has already

been demonstrated to have sufficient signal to resolve some

difficult phylogenetic relationships across the Brassicaceae [47,48],

and will serve as a valuable resource to address a range of

fundamental questions in evolution remaining for the family

including understanding the mechanisms responsible for shifts in

speciation rates [49], evolution of chemical defenses against

herbivores [50], and improve our understanding of novel

morphological varation [51].

Supporting Information

File S1 Secondary Structure data for ITS1, ITS2, and
random sequences. Spreadsheet contains the list of species,

NCBI GenBank accession numbers, lengths, total number of

possible secondary structures, and a description of the lowest

energy state structure for every ITS1, ITS2, and random

sequence.

(XLSX)

File S2 Sequence alignments for ITS1. Sequence align-

ments for ITS1 for 49 Brassicaceae and one outgroup Cleomaceae

found in File S1.

(TXT)

File S3 Sequence alignments for ITS2. Sequence align-

ments for ITS2 for 49 Brassicaceae and one outgroup Cleomaceae

found in File S1.

(TXT)
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