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Abstract

Objective—We focus on improving the long-term stability and functionality of neural interfaces

for chronic implantation by using bilayer encapsulation.

Approach—We evaluated the long-term reliability of Utah electrode array (UEA) based neural

interfaces encapsulated by 52 nm of atomic layer deposited (ALD) Al2O3 and 6 μm of Parylene C

bilayer, and compared these to devices with the baseline Parylene-only encapsulation. Three

variants of arrays including wired, wireless, and active UEAs were used to evaluate this bilayer

encapsulation scheme, and were immersed in phosphate buffered saline (PBS) at 57 °C for

accelerated lifetime testing.

Main results—The median tip impedance of the bilayer encapsulated wired UEAs increased

from 60 kΩ to 160 kΩ during the 960 days of equivalent soak testing at 37 °C, the opposite trend

as typically observed for Parylene encapsulated devices. The loss of the iridium oxide tip

metallization and etching of the silicon tip in PBS solution contributed to the increase of
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impedance. The lifetime of fully integrated wireless UEAs was also tested using accelerated

lifetime measurement techniques. The bilayer coated devices had stable power-up frequencies at

~910 MHz and constant RF signal strength of -50 dBm during up to 1044 days (still under testing)

of equivalent soaking time at 37 °C. This is a significant improvement over the lifetime of ~ 100

days achieved with Parylene-only encapsulation at 37 °C. The preliminary samples of bilayer

coated active UEAs with a flip-chip bonded ASIC chip had a steady current draw of ~ 3 mA

during 228 days of soak testing at 37 °C. An increase in current draw has been consistently

correlated to device failures, so is a sensitive metric for their lifetime.

Significance—The trends of increasing electrode impedance of wired devices and performance

stability of wireless and active devices support the significantly greater encapsulation performance

of this bilayer encapsulation compared with Parylene-only encapsulation. The bilayer

encapsulation should significantly improve the in vivo lifetime of neural interfaces for chronic

implantation.
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2 Introduction

Implantable neural interfaces have been widely developed and also used to diagnose and

treat neural disorders in both research and clinical applications [1-6]. The Utah electrode

array (UEA) is a well-developed and FDA-cleared example of this technology for

stimulating/recording multiple neurons simultaneously with good selectivity [5, 7-9].

Traditionally, UEAs use gold wire bundles and percutaneous connectors to transfer

recording/stimulation signals. However, percutaneous connectors and wire bundles are more

likely to cause foreign body response [10] and promote infections [11] during chronic

implantations. In addition, percutaneous connectors have been found to be one of the least

reliable elements of neural interfaces [12]. Therefore, tremendous efforts have been devoted

to develop neural interfaces with wireless transmission of power and data [13-18], to

eliminate wire bundles. Fully integrated wireless neural interfaces based on UEAs have been

developed with recording and stimulating capabilities from 100 channels [16, 18].

Both wired and wireless neural interfaces are designed to function in vivo for years for

chronic implantation and used to evaluate the Al2O3 and Parylene bilayer encapsulation.

Factors that compromise the performance of chronic neural interfaces can include

physiological reasons (e.g. foreign body responses) and device failure modes (encapsulation

failure). Encapsulation failure can lead to short circuits, corrosion of components and

interconnects, which are often catastrophic especially for wireless neural interfaces with

integrated active electronics. The significant bias voltages associated with integrated

electronics further challenge thin film encapsulation by activating degradation modes and

accelerating ion transport. Protecting implanted devices has typically utilized hermetic

enclosures and thin film encapsulation approaches. Lids and metal cans are used to seal

implantable devices, e.g. deep brain stimulators and pacemakers [19], in order to protect

them from the physiological environment. Device miniaturization, electromagnetic power,
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and telemetry schemes are challenges for traditional hermetic encapsulation. Thin film

encapsulation methods have been widely developed and used for small implants, and are

compatible with electromagnetic wireless techniques. Different materials have been

investigated for coating of neural interfaces, including polyimide[20], Parylene [21, 22],

silicone[23], amorphous silicon carbide [24, 25], silicon nitride [25], and diamond-like

carbon (DLC) [26]. Finding one material that meets all the requirements for coating neural

interfaces is extremely difficult. For example, silicon nitride slowly dissolves in PBS[25];

amorphous silicon carbide and DLC need relatively high deposition temperatures that are

not compatible with devices; polyimide is very difficult to deposit uniformly.

Parylene C has been widely used as coating material for biomedical implantable devices [22,

27-30] due to its attractive properties including chemical inertness, low dielectric constant

(εr=3.15) [31], high resistivity (~1015 Ω·cm) and relatively low water vapor transmission

rate (WVTR) of 0.2 g·mm/m2·day [32]. It can be deposited by chemical vapor deposition

(CVD) at room temperature to generate a conformal and pin-hole free film that does not

require use of solvents to form. Parylene is also a good ion barrier [33], which is critical for

neural interfaces exposed to physiological fluids.

Parylene cracking has been observed during in-vivo experiments [34]. Cracks occurred on

the Parylene coating films (3 μm thick) of the electrode arrays that were implanted in cats

for 537 days. Failure of Parylene C encapsulation has also been reported [35] due to

moisture diffusion and interface contamination. Surface contaminants or voids between

substrate and encapsulation are required for the nucleation of moisture into liquid water. To

overcome the condensation of moisture around interface contaminants, a highly effective

moisture barrier can be introduced between the neural interface and Parylene film. Atomic

layer deposited (ALD) alumina is an excellent moisture barrier with WVTR at the order of ~

10-10 g·mm/m2·day [36-39], and is extremely conformal, which allows it to passivate

surfaces that are otherwise difficult to cover. But alumina alone is not a suitable

encapsulation since it dissolves in water [40], which allows body fluids to contact with the

device underneath the encapsulation easily. The alumina-Parylene C bilayer encapsulation

has demonstrated excellent insulation performance on planar interdigitated electrode (IDE)

test structures for years of equivalent lifetime in accelerated soak testing[41-43]. This

approach utilizes the highly effective moisture barrier property of ALD Al2O3, and Parylene

C as an ion barrier and for preventing contact between alumina and liquid water. Test

structures are good for optimizing the properties and conditions to get good films, but we

have previously observed significant differences in lifetimes of IDEs compared to real

systems. The complex geometries (gold coils and SMD capacitors), different materials and

surfaces, and additional processing steps (oxygen plasma etching, BOE etching, wire

bonding) involved in neural interfaces are not fully represented in IDE test structures and

therefore might severely affect the actual lifetime of the bilayer encapsulated neural

interfaces.

In this paper, we evaluated the long-term reliability of ALD Al3O3 and Parylene C bilayer

coated UEA based neural interfaces. The bilayer encapsulated neural interfaces were

submerged in PBS at 57 °C for accelerated lifetime testing. The bilayer encapsulation

performance was evaluated from a few different aspects: electrode tip impedance by wired
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UEAs, wireless powering up frequencies and signal strengths by wireless UEAs, and current

draw levels by active arrays. Similar to wireless arrays, active arrays have flip-chip bonded

chips for signal processing, and wires for powering and communication. Detailed

description is shown in next section.

3 Experimental Details

3.1 Integrated Neural Interfaces

Three different configurations of UEA-based neural interfaces were used to evaluate the

alumina and Parylene C bilayer encapsulation performance. Traditional wired UEAs, fully

integrated wireless arrays, and active arrays were used to evaluate the bilayer encapsulation

from three different aspects: long-term impedance stability, long-term wireless signal

strength and frequency stability, and the level of current draw, respectively. Fabrication and

testing procedures used to evaluate the encapsulation are presented in this section.

The UEA was first designed and fabricated by Normann for intracortical stimulation [44]. A

dicing saw was used to cut silicon wafer and create columns with dimension of 150 μm

square, 1.5 mm in length, and a pitch of 400 μm. The columns were first thinned and then

tapered by wet etching. The fabrication details of UEAs are described elsewhere [44, 45].

Wired UEAs were used to evaluate the electrode impedance stability over time. UEAs were

wire bonded (West Bond, Inc.) to a 96-channel TDT™ connector (Tucker-Davis

Technologies) using 1 mil insulated gold wire with a wirebundle length of 10 cm for long-

term tip impedance measurements (Fig 1). Silicone (MED 4211, NuSil Technology) was

applied to the backside of the array and the wire bundle to secure the bond connections,

increase the strength of the wire buddle, and further protect the array from handling forces

and fluid ingress. The fully integrated wired UEAs were then coated with Al2O3 and

Parylene C bilayer, as described later.

The performance of the bilayer encapsulation was further tested by using wireless integrated

neural interfaces, and soaking these in PBS under accelerated conditions. The ability to

power the devices inductively, and the associated telemetry frequencies on power-up, and

the RF signal strengths were used as sensitive metrics for the encapsulation performance and

fluid ingress. This device uses a 100-channel wireless neural recording IC, designated as

INIR-6 (integrated neural interface recording version-6), that was fabricated with 0.6 μm

BiCMOS process (X-fab semiconductors). The details of the chip design, fabrication,

characterization, and system integration were reported elsewhere [16, 18, 46]. An INIR-6

chip with capabilities of signal processing and data telemetry was flip-chip bonded to the

backside of a 10×10 UEA using Au/Sn reflow soldering. Two SMD capacitors were

soldered to the backside of the UEA and connected to the chip via backside metal traces.

One SMD was part of the resonating circuit for inductive powering and the other was a

smoothing capacitor for the DC power supply. A flat spiral coil of 5.5 mm in diameter was

manufactured by winding an insulated 2-mil Au (1% Pd) wire [47]. The gold coil was wire-

bonded to form the resonating circuit around 2.765 MHz with the SMD capacitor for

inductively powering up the device. The fully integrated wireless INI is shown in Fig 2.
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Active array, another version of neural interfaces, was built to monitor the current draw of

neural interfaces over time under soak testing, as show in Fig 3. The details of active arrays

were reported elsewhere [48]. It was similar to the wireless neural interfaces with a flip-chip

bonded ASIC for amplification, analog multiplexing, and signal buffering. Instead of

inductive powering and wireless communication, active arrays used 22 wire-bonded gold

wires for data transferring and powering. In this way, the current draw between power rails

can be directly monitored.

3.2 Alumina and Parylene C Deposition

52 nm of Al2O3 was deposited by plasma-assisted (PA) ALD on integrated neural interfaces

at a substrate temperature of 120 °C, which is within the thermal budget for the materials

used for the three array variants. Details of the deposition process have been previously

reported [41, 42, 49, 50]. A-174 (Momentive Performance Materials), an organosilane, was

used as an adhesion promoter between the alumina and Parylene C layer. A 6-μm thick

Parylene-C layer was deposited by CVD using the Gorham process [31] on top of Al2O3 as

the external coating layer. For wired neural interfaces, the connectors were covered with

aluminum foil to avoid coating of the contact pads on the connectors.

3.3 Tip Deinsulation

The encapsulation must be removed from the active tip electrodes sites for neural recording

and stimulation. Traditionally, oxygen plasma reactive ion etching (RIE) was used to

remove the Parylene C on the tips by poking the tips through aluminum foil. However, this

method does not etch alumina. Additionally, it is extremely challenging to control the tip

exposure with an uneven backside during the poking process, especially for Utah Slant

Electrode Arrays (USEAs).

A hybrid method using a combination of laser ablation and O2 RIE was utilized to etch

Parylene C layer and buffered oxide etch (BOE) was used to remove the thin alumina film

[51]. First, an Optec Micromaster excimer laser micromachining system was used for

ablation of Parylene C. 200 laser pulses with fluence of 1400 mJ/cm2 were applied with 5 ns

pulses at 100 Hz to remove the outer Parylene C film from the electrode tips. The alumina

layer underneath Parylene acted as a shield layer, protecting the tip metallization (sputtered

iridium oxide film (SIROF)) from being damaged by heating/ablation from laser radiation.

The laser deinsulation process resulted in carbon residue and redeposition on the surface,

which was removed by utilizing 2 minutes of O2 RIE. The alumina layer was then etched by

dipping the array into BOE for 8 minutes. Parylene C acted as a mask layer for BOE

etching, with the alumina etch occurring only in the areas where Parylene was removed by

laser, generating a self-aligned process. The tip exposure was about 35 μm. The lifetime

metrics of these devices were then tested by placing them in PBS under accelerated testing

conditions.

3.4 Testing setup

Wired arrays were used for long-term impedance measurements, and were soaked in 1× PBS

(10 mM phosphate buffer, 2.7 mM KCl and 140 mM NaCl) at 57 °C for accelerated lifetime

testing. The estimated aging factor (Q) was 4, based on a broadly recognized trend in
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accelerated aging of a doubling reaction kinetics for each 10 °C increase in reaction

temperature[52, 53]. The PBS solution was changed every other week to minimize changes

in the composition (ion concentrations), and their effects on impedance. Tip impedance was

measured by connecting the TDT™ connector with a customized automated impedance

tester (AIT), using two platinum wires as reference and counter electrodes, respectively [54].

The tip impedance measurement was obtained by electrically connecting all non-tested

electrodes to ground potential, which was different from conventional impedance, where all

non-tested electrodes were electrically floating. The impedance tester automatically

switched between channels and measured impedance for all channels at 1 kHz with a 10 mV

sine wave. The measurable impedance range for AIT was 300 Ω - 10 MΩ.

For wireless neural interface testing, the arrays were fully submerged in 6-ml glass vials

filled 1× PBS at 57 ± 0.5 °C in water baths. The experimental setup was shown in Fig 4. The

wireless neural interfaces were powered by a customized inductive power board at 2.765

MHz that was previously reported [16]. The receiving antennas for both the spectrum

analyzer and hand receiver were brought close to the reference wires of the INI device to get

reliable RF reception. The INI device was about 8 mm away from the power coil, and the

device was powered up only during testing. The presence of the 900-MHz ISM-band

telemetry signal, the frequency of that signal on startup, and RF signal strength from INIR-6

chip were monitored using the customized receiver board interfaced through Matlab and

with a spectrum analyzer [16].

The current draw is an important metric for evaluating the performance of encapsulation for

devices with active electronics, and has been found to be a sensitive indicator of the

encapsulation performance for these devices. The wireless INIs are not capable of measuring

the current; therefore, another version of UEAs with flip-chip bonded ASIC chips (without

wireless capability) on the backside was used to monitor the current draw of the device over

time under soak testing [48]. The active arrays were soaked in glass vials filled with 1× PBS

solution at 57 °C and powered up only during the measurement of current draw. The current

draw of the ASIC chip was measured with power supply of +1.5 V and -1.5 V to Vdd and

Vss, respectively.

4 Results and Discussion

4.1 Wired Utah Electrode Arrays

Impedance for wired array was measured at 1 kHz using 10-mV sine wave. These wired

arrays have gone through the bilayer coating process, and associated hybrid deinsulation

process. Very high impedances (in MΩ range, 6 out of 50 electrodes) were excluded from

the plot since this most often results from chipped-tips or broken electrodes. As shown in

Fig 5, tip impedances were found to range from 30 to 100 kΩ for most electrodes, with a

median impedance of 60 kΩ. Those impedance values are good for neural interface

applications, and consistent with previously reported data [22]. The non-uniformity of

impedance results mostly from variations (dicing and etching non-uniformity, tip metal

thickness variation, etc.) in resultant manufactured samples. The impedance of alumina and

Parylene coated UEAs stayed almost the same during equivalent soaking time of first 120

days at 37 °C (non-accelerated conditions), indicating good insulation of individual
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electrodes. Impedance for Parylene-only control samples consistently dropped within a few

weeks to 3 months [7, 55]. Table 1 compares the median of tip impedance for Parylene-only

and bilayer coated UEAs. For the Parylene-only condition, the median tip impedance

dropped from 81.9 kΩ to 40.5 kΩ within 3 days of soak testing. The significant impedance

drop is most likely due to water ingress and degradation of the Parylene coating. For

alumina and Parylene bilayer coating, the median of tip impedance increased slightly from

61.1 kΩ to 73.8 kΩ within 3 days. As described below, etching of exposed silicon at the

electrode tips, and undercutting of the tip metallization are the mechanisms for the increased

impedance. In terms of encapsulation performance, the relative change of the impedance is

more important than its absolute value. The absolute value is pre-determined by factors like

the manufacturing process and tip exposure. The change of the impedance during soak

testing is affected by the encapsulation performance and lifetime.

The tip impedance started increasing after 120 days of soak testing at 37 °C, as shown in Fig

5 and 6. The median tip impedance was about 160 kΩ after 960 days of soak testing, which

is about 2.5 times of the median impedance at the first day (60 kΩ). This is the opposite

trend of what we have observed from Parylene C coated tip impedance. Typically,

impedance of Parylene C coated tips would decrease as a function of soaking time in a

relatively short term (from days to a few months) due to water ingress and degradation of

the coating [7, 55]. The increase in impedance of alumina and Parylene coated tips suggests

a combination of dramatically less decreases in impedance from solution ingress, and loss of

tip metal (SIROF) due to silicon etching in PBS generating an increase in measured

impedance. The good encapsulation performance of the bilayer keeps the tip impedance

relatively constant. The etching of silicon and loss of iridium oxide tip metal were confirmed

by SEM images shown in Fig 7. This representative micrograph clearly shows that a large

portion of the iridium oxide is gone on the electrode tip and there is a gap between the

iridium oxide and silicon shank.

It is well known that PBS etches silicon [56]. The removal of underneath silicon substrate

led to free-standing iridium oxide. Loss of the fragile iridium oxide can happen easily due to

lack of support. We started to see MΩ range impedance for ~ 5 electrodes and expect to see

further increases in the impedance as more silicon is etched and more iridium oxide is lost.

We have measured the impedance of the similar silicon electrode tips without the tip iridium

oxide metallization and the impedance was about 3-6 MΩ. This is consistent with what we

have observed for those electrodes that have lost iridium oxide. Regarding Parylene coated

electrodes, the degradation of encapsulation leads to decrease in impedance and loss of

iridium oxide due to silicon etching would increase the impedance. The overall impedance

drop of Parylene coated UEA indicates that the degradation of encapsulation dominates and

offsets the impedance increase from tip metal loss. This also strongly indicates that alumina

and Parylene bilayer coating has better insulation performance than the Parylene-only

coating.

Wireless integrated neural interface (INI) devices were soaked at 57 °C in PBS for 261 days

(equivalent soak time of 1044 days at 37 °C) and are still under soak testing to investigate

the long-term reliability of alumina and Parylene C bilayer encapsulation. The presence of

the signal, the startup frequencies, and the RF signal strengths of the INI device at different
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soak time were compared in Table 2. If the encapsulation fails and water ingress occurs then

the device shorts out. Limited water ingress can also shift the telemetry frequency due to

capacitive loading of the coil on the front of the ASIC (distinct from the hand-wound gold

coil on the back of the device). When the device was in air, the telemetry frequency at

powered-up was at 910.5 MHz with RF signal strength of -80 dBm measured using a

spectrum analyzer. The RF signal strength increased to -75 dBm after the immersion of the

device in PBS (Table 2). The custom-built hand receiver confirmed the increase of RF

strength from -61 dBm to -47 dBm after submerging the device into PBS. The initial

increase in RF signal strength is most likely due to the change of media from air to PBS

solution, and has been observed previously. The discrepancies between the two RF signal

strengths measured by spectrum analyzer and hand receiver unit were expected due to the

differences in antennas and electronics.

The long-term RF signal strengths and their corresponding frequencies are presented in Fig

8 as a function of soak time. The power-up frequencies were continuously near 910 MHz

and the RF signal strengths were stably around -73 dBm (Fig 8 (b)) during the equivalent

soaking time of 1044 days at 37 °C. The small fluctuations in RF signal strengths and

respective frequencies could be caused by environmental noise and the different positions

and distances between the reference wire and antenna. This represents a considerably longer

soak testing results compared with Sharma et al.'s reporting of a lifetime of 276 days at

room temperature using Parylene as encapsulation [57]. The room temperature soak testing

is considered as a “decelerated” lifetime testing with aging factor of 0.35, which gave an

equivalent lifetime of 100 days at 37 °C. The bilayer coated devices are still under soak

testing. The long-term stability of power-up frequencies and RF signal strengths of the

device implied the good insulation of the alumina and Parylene C bilayer encapsulation for

biomedical implantable devices.

4.3 Active Arrays

Increasing current draw from these devices is a reliable indicator of encapsulation

degradation and failure, and one of the dominant failure modes for the devices. The active

arrays were powered up by a pair of 1.5 V batteries through wire-bonded gold wires. Vdd

and Vss were both 1.5 V away from a common ground potential. The relatively high

voltages (± 1.5 VDC) are more likely to accelerate electrochemical reactions and

degradation modes. The current draw of Vdd and Vss was measured through a current meter,

and was stable at ~3 mA (similar to current draw in air) for both Idd (from Vdd) and Iss (from

Vss) during the 228 equivalent days of soak testing at 37 °C, as shown in Table 3. Also, all

the 96 channels of the neural interface had good recording fidelity. This is a significant

improvement over Parylene-only encapsulated active arrays, which typically last only 50 to

100 days under soak testing. The device was later used for in-vivo experiments. The low but

constant current draw of the active arrays suggests the good encapsulation performance of

alumina and Parylene coating because failure of encapsulation would induce high current

draw due to the formation of leakage current paths and electrochemical corrosion processes.
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5 Conclusion

In summary, we have demonstrated the long-term reliability of ALD alumina and Parylene

C bilayer coated neural interfaces from three different aspects: impedance, RF signal

stability and strength, and current draw, which are all directly affected by the encapsulation

performance. Wired, wireless UEAs and active arrays were soaked in PBS at 57 °C for

accelerated lifetime testing. Different from the trend of continuous drop in impedance for

Parylene-only coated arrays, median impedances of alumina and Parylene bilayer coated

wired arrays increased from 60 kΩ to 160 kΩ after 960 equivalent days of soak testing at 37

°C. For bilayer coated arrays, the loss of iridium oxide and etching of silicon in PBS

solution (leading to impedance increase) dominates over the slow bilayer encapsulation

degradation (resulting in decreased impedance). Bilayer coated wireless UEAs incorporated

with active electronics had stable power-up frequencies of ~ 910 MHz and constant RF

signal strengths of ~ -50 dBm (measured by hand receiver) over 1044 equivalent days of

soak testing at 37 °C, showing the slow water ingress and excellent insulation performance

of the bilayer encapsulation. The current draw of active arrays was constant at ~ 3 mA with

power supply of Vdd at 1.5 V and Vss at –1.5 V during 228 equivalent days of soak testing at

37 °C. The low and constant current draw is a reliable indication of good protection of the

device by the encapsulation. Based on the coating performance on neural interfaces, it is

believed that this bilayer encapsulation can be used for many other chronic biomedical

implantable devices to improve their lifetime.
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Fig 1.
A fully assembled wired Utah electrode array with connector for impedance measurement.

The Ti pedestal is part of the connector system.
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Fig 2.
Utah electrode array based fully integrated wireless neural interfaces, with flip-chip bond

INI-R6 and gold coil for inductive powering.
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Fig 3.
An active array assembly that includes 2 arrays and 2 reference wires connected to a single

Neuroport™ connector (100 bond pads). Compared with a 100-channel wired array

requiring 100 wires, only 22 wires are needed for each active array, which makes it possible

to improve the recording/stimulation capabilities by connecting 2 active arrays (200

channels) to one connector.
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Fig 4.
Experimental setup for wireless integrated neural interface testing. The antennas were

brought close to the reference wire from the INI device. The device is ~ 8 mm away from

the power board.
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Fig 5.
Electrode impedance of alumina and Parylene bilayer coated wired arrays over time. Only

25 out of 50 tip impedances were shown due to the limited space. Median impedance was 60

kΩ. The impedance stayed almost the same for each electrode over the first 120 days at 37

°C, and increased ~ 2.5 times (calculated from median impedance) after 960 days of soak

testing in PBS.
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Fig 6.
Median tip impedance over time at 37 °C in PBS. The median of impedance stayed

relatively stable during the first 120 days of soak testing and then started to increase over

soaking time.
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Fig 7.
Backscattered SEM micrograph of electrode tip after 960 days of soak testing at 37 °C.

Silicon underneath iridium oxide (tip metal) was etched by PBS solution and iridium oxide

was peeled off from the tip.
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Fig 8.
Transmitted wireless RF signal strengths and frequencies monitored as a function of soak

time in PBS. (a) Peak RF signal strengths and the respective frequencies as extracted from

the spectra measured using a customized wireless hand receiver unit. (b) RF signal strengths

and the respective frequencies as monitored from a spectrum analyzer. In both measurement

methods, the RF signal strengths and corresponding frequencies stayed relatively stable

during the 1044 days of equivalent soak time at 37 °C.
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Table 1

The median impedance for Parylene coated UEA and alumina and Parylene bilayer coated UEA for 3 days of

soak testing in PBS. The median impedance dropped ~ 50% after 3 days in PBS for Parylene coated UEA

while it increased slightly for alumina and Parylene coated UEA.

Soak time Median impedance for Parylene coated UEA (kΩ) Median impedance for bilayer coated UEA (kΩ)

1 day 81.9 61.1

3 days 40.5 73.8
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Table 2

Radio-frequency (RF) signal strengths and frequencies of the wireless INIR-6 device measured in PBS using a

customized wireless hand receiver unit and a spectrum analyzer.

Soak time RF from spectrum analyzer RF from hand receiver

Frequency (MHz) Signal Strength (dBm) Frequency (MHz) Signal Strength (dBm)

0 (in air) 910.5 −80 911.6 −61

1 day 910.5 −75 910.5 −47

300 days 910.3 −71 910.7 −51

1044 days 911 −72 910.8 −50
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Table 3

Current draw of active array measured from Vdd and Vss as a function of soak time at 37 °C in PBS. The

current draw was stable at ~ 3 mA for Idd and Iss from Vdd and Vss, respectively.

Soak time Idd (mA) Iss (mA)

0 (Agarose) 2.9 2.9

1 day 2.8 2.8

140 days 3.0 2.9

228 days 3.1 2.9
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