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Selective autophagic degradation of cellular components
underlies many of the important physiological and
pathological implications that autophagy has for mammalian
cells. Cytoplasmic vesicles, just like other intracellular items,
can be subjected to conventional autophagic events where
double-membrane autophagosomes specifically isolate and
deliver them for lysosomal destruction. However, intracellular
membranes appear to constitute common platforms for
unconventional versions of the autophagic pathway, a
notion that has become apparent during the past few years.
For instance, in many cases of autophagy directed against
bacterial phagosomes, subversion of the process results in
multimembrane vacuoles that promote bacterial replication
instead of the usual degradative outcome. In a different
atypical modality, single-membrane vesicles can be labeled
with LC3 to direct their contents for lysosomal degradation. In
fact, single-membrane compartments of various kinds often
provide an assembly site for the autophagic machinery to
perform unanticipated nondegradative activities that range
from localized secretion of lysosomal contents to melanosome
function. Interestingly, many of these unconventional
processes seem to be initiated through engagement of
relevant nodes of the autophagic signaling network that, once
activated, promote LC3 decoration of the targeted membrane,
and some cases of inducer/receptor proteins that specifically
engage those important signaling hubs have recently been
described. Here we review the available examples of all
autophagic variants involving membranous compartments,
with a main focus on the more recently discovered
unconventional phenomena where the usual degradation
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purpose of autophagy or its canonical mechanistic features are
not completely conserved.

Autophagy

Macroautophagy (generally referred to as autophagy) is a
complex cellular route that promotes the regulated degradation of
cytoplasmic components and is highly conserved in all eukaryotic
organisms.”? The molecular pathways that control autophagy
have been well studied in yeast,> and the relevance that this
phenomenon has in a wide variety of human pathophysiological
processes has also fueled its detailed analysis in mammalian

#¢ This route involves cargo isolation into canonical

systems.
double-membrane vesicles called autophagosomes, which in
essence constitute sacs of disposable elements that eventually fuse
with lysosomes to degrade their contents.” Therefore, autophagy
at the minimum must involve the action of molecular machinery
that promotes isolation of the item targeted for destruction and
also mechanisms to label the final “garbage bag” for fusion with
the lysosomal compartment.

Autophagy was initially characterized as an adaptive response
to starvation.” In this biological context, it mainly acts to obtain
basic constituents from random cytoplasmic components, thus
redirecting nutrients to feed essential metabolic pathways.®’
However, the autophagic process is rapidly upregulated as a
common adaptation response to a variety of stressful situations,
not only starvation.”” In a number of these conditions, like
organelle malfunction, genotoxic stress, or the presence of foreign
invaders, autophagy functions as a degradation mechanism
for specific, obsolete, or potentially harmful components,
irrespective of the recycling consequences of the process.!?
Autophagic destruction also plays critical housekeeping roles by
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proceeding at a low, constitutive level under basal conditions, a
situation where it can also act with some degree of specificity
by removing, for example, superfluous or damaged organelles."
Therefore, although traditionally thought to be a fairly
nonspecific process that responds to the lack of nutrients, it is
now known that autophagy can target specific cellular items for
timely degradation.

Autophagic Machinery

Early work in yeast has facilitated discovery of the core
molecular machinery involved in the autophagic response to
starvation, a collection of molecules known as autophagy-related
(Atg) proteins.>®" Subsequent work in higher eukaryotes has
led to identification of many Atg orthologs, thus producing
a relatively clear picture of how autophagy is regulated in
mammalian cells.” Briefly, a protein complex containing ULK1/
ATG1-MTOR-ATG13-RB1CCI1/FIP200

or stress signals and derepresses the autophagic process that is

senses  starvation
downregulated by constitutively active MTOR. In a process
not fully understood, this complex promotes the translocation
of a second molecular complex including PIK3C3/VPS34-
BECN1/Beclin 1-ATG14 to the endoplasmic reticulum (ER)
where it generates phosphatidylinositol 3-phosphate (PtdIns3P),
an uncommon lipid in this compartment." The local presence
of PtdIns3P initiates autophagosome nucleation through
formation of prototypical ER-associated structures called cradles
or omegasomes,”'® a phenomenon that may involve PtdIns3P-
binding proteins like members of the WIPI family or ZFYVEL/
DFCP1."* The ER itself likely acts as a membrane source in this
case, but other organelles such as mitochondria,"” mitochondrial
associated membranes,?’ or the plasma membrane?' have also been
suggested as membrane donors for autophagosome formation.”

Following these initiating events, membrane elongation
and phagophore closure are driven by 2 ubiquitin-like
modification systems that promote the covalent addition of
phosphatidylethanolamine (PE) to LC3, thus producing a
membrane-bound form named LC3-I1.># In these conjugation
systems ATG12 and LC3 behave as ubiquitin-like modifiers, and
ATGY separately acts as an E1 enzyme for both molecules. In the
next step, ATG10 functions as the E2 enzyme for the subsequent
formation of an ATG12—-ATGS5 covalent complex in the absence
of a proper E3 conjugation system, whereas ATG3 behaves as
an E2 module for LC3-I. ATG12—-ATGS5 then binds ATGI16L1
(the mammalian ortholog of yeast Atgl6) to assemble a final E3
system for the conjugation of PE to the pool of LC3 brought
to the vicinity through interaction between ATG3-LC3-I and
ATGI12.* Interestingly, whereas the ATG12-ATG5 complex
suffices for this E3-ligase activity,” ATGI6L1 defines the site for
LC3-II generation.*

LC3 associates with the autophagosomal compartment at
all stages of the process, and therefore it is used as the major
autophagic reporter system.’* However, its precise molecular
function is still unclear. Although most of the available
mechanistic information has been obtained by studying LC3B,
a total of 8 LC3 or LC3-like homologs are predicted to exist:
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LC3A (which includes 2 splicing isoforms), LC3B, LC3C,
GABARAP, GABARAPLI, GABARAPL2, and GABARAPL3.
It has been clearly established that LC3 lipidation is essential for
elongation of the phagophore membrane and its final closure.””
Notably, the GABARAP subgroup seems to function mainly in
autophagosome maturation.”” However, since LC3 was originally
30 a role for this

family in directing the mature autophagosomes to fusion with

discovered as a microtubule-associated protein,

the lysosomes through the cytoskeletal tracks has been invoked.*
In addition, LC3 labeling of both canonical autophagosomes and
single-membrane vesicles has been proposed to directly facilitate
fusion with the lysosome,?*? a function that might have been
overlooked due to the critical upstream activity that LC3 has
in autophagosome formation and maturation. This possible
involvement in lysosomal fusion could explain why certain
nonautophagosomal compartments (phagosomes or endosomes,
for example) are targeted to the lysosome more efficiently when
becoming coated with LC3.%** However, definitive proof for any
of these alternative activities is still missing. Whatever the case,
LC3 labeling seems to be the end-point event that commits a given
vesicle to fusion with the lysosomal compartment. This notion
may be more clearly illustrated by unconventional autophagic
processes where LC3 mediates nondegradative activities that still
involve lysosomal targeting, like the extracellular secretion of
lysosomal contents required for bone resorption (see below).

Although the fundamental molecular mechanisms involved in
autophagosome formation and maturation in mammalian cells
have been reasonably well described, important issues remain to
be clarified. For example, a full consensus is yet to be reached
regarding the main membrane source for autophagosome
generation and whether or not different compartments act as
membrane donors depending on the initial autophagic stimulus.
Mechanistically, how exactly the preinitiation complexes
containing ULK1 and BECNI interact to initiate autophagosome
formation, the role of the PtdIns3P-binding proteins WIPI
and ZFYVEL in this process, how the 2 ubiquitin-like protein
modification cascades that culminate with LC3-II synthesis
promote membrane elongation and final phagophore closure,
and whether or not there are autophagy-specific mechanisms that
promote fusion of the mature autophagosome with the lysosome
(and the role of LC3 in this process), are key issues still waiting
to be fully resolved.

Functions of Autophagy and Relevance
of Selective Autophagy

Judging from the phenotypes of Atg-deficient mice, the
autophagic process has wide implications in a number of
physiological and pathological processes, including tumor
suppression, neurodegeneration, inflammation, and native and
adaptive immunity."*>%¢ For example, the absence of BECNI1
or ATG4 increases susceptibility to tumorigenesis,”* likely
because these animals are unable to fight the deleterious effects of
cellular stress.” Brain-specific deletion of Azg5 or Atg7 provokes
early neurodegeneration caused by accumulation of insoluble
protein aggregates.‘"*> Absence of ATG16L1 causes an intestinal
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Figure 1. Relevant nodes of the canonical autophagic pathway that are specifically engaged in different modalities of unconventional autophagy
against membranous compartments. The canonical autophagic pathway flows from the ULK1-MTOR-RB1CC1 complex to LC3-Il synthesis (horizontal
arrows). The BECN1-PIK3C3-ATG14 complex is directly or indirectly activated during LAP and entosis (A). NODs and TMEM59 (and perhaps CLATHRIN)
induce the ATG12-ATG5-ATG16L1 complex by interacting with ATG16L1 (B). BNIP3L/NIX and PARK2 (through ubiquitination, UB) engage the pathway at
the level of LC3 (C). The end result in all cases is LC3 labeling of the targeted membranous structure.

inflammatory phenotype that resembles Crohn disease,***

an
observation that correlates well with the existence of a human
ATGIGLI allele that increases susceptibility to this pathology.*®-4
Other roles include participation in developmental processes,”
or in adaptive immunity by promoting efficient antigen
presentation.”® Autophagy also constitutes an innate mechanism
that helps fight intracellular pathogens, such as viruses and
bacteria.’!

Interestingly, selective autophagy has a relevant role in many
of these phenotypes, and therefore is now a matter of active
investigation. For example, the cancer susceptibility phenotype
might be due to poor elimination of damaged organelles and
the consequent overproduction of pro-inflammatory and DNA-
damaging reactive oxygen species.”” Neurodegeneration in
Atg-deficient mice is mediated by the toxic effects of protein
aggregates that are selectively targeted to the autophagic pathway
in normal conditions.”>*¢ Elimination of foreign invaders also
involves their specific recognition by the autophagic machinery,
whether they are loose in the cytoplasm™® or enclosed in
conventional phagosomes.’>

Mechanistically, these different modalities of selective
autophagy seem to be executed through the action of inducer or
receptor proteins that link the item targeted for destruction with
certain nodes of the core autophagic machinery with the apparent
final purpose of promoting LC3 labeling of the selected cargo.
One of these nodes seems to be LC3 itself (Fig. 1). Thus, both
insoluble protein aggregates and cytosolic bacteria become heavily
ubiquitinated, and receptor proteins able to simultaneously bind
ubiquitin and LC3 target them for autophagic degradation.®
NBR1," SQSTM1/p62,* CALCOCO2/NDP52,% and OPTN/
OPTINEURIN® are examples of these receptors. In addition,
damaged or obsolete mitochondria become ubiquitinated by
the E3-ligase PARK2/PARKIN that is recruited to the target
organelle by PINK1,% a kinase that becomes stabilized on
damaged mitochondria and thus promotes PARK2-mediated
ubiquitination of a wide array of mitochondrial proteins.®® The

labeled mitochondria are then recognized by SQSTMI1/p62

for autophagic delivery.®” Mitochondria can also be directed to
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autophagic destruction by recruiting BNIP3L/NIX, a BCL2-
family protein able to bind LC3 thus acting as a receptor module.”
In all these cases, interaction between the receptors and LC3 is
mediated by a common LC3-interacting motif (LIR), whether
it is the canonical signature (WXXL)”' or an atypical motif
recognized by LC3C.7? Other examples of autophagic signaling
nodes that are engaged (either directly or indirectly) by specific
inducers are the BECN1-PIK3C3 and ATGI12-ATG5-ATGI16L1
complexes (Fig. 1). Evidence supporting such roles is provided
throughout this review.

Selective Autophagy Against Membrane
Compartments with Canonical Degradation
Purposes

Membrane-bound intracellular organelles can be subjected to
conventional autophagic processes where regular autophagosomes
form around them (or fuse with them) thus producing
multimembrane vesicles destined for lysosomal destruction
(Fig. 2A). For instance, phagosomes whose natural maturation
pathway is stalled by Mycobacteria are targeted by regular
autophagosomal compartments that fuse with the bacteria-
containing sac, an autophagic response that suppresses survival
of the invader”® A similar phenomenon involving multiple-
membrane vesicular structures targets the Salmonella-containing
vacuole in epithelial cells, thus inhibiting bacterial replication.
An atypical route is involved here, since this process shows
independency of the classical mediators PIK3C3, RBICCI, and
ATGY9,” and entails recognition of damaged phagosomes by
carbohydrate-binding proteins.”* As mentioned above, damaged
mitochondria can also be eliminated by canonical autophagy
mediated by ubiquitination. Stressed portions of the endoplasmic
reticulum are degraded in regular autophagosomes containing
lamellar structures that stain positive for reticular markers.”>7”®
Similarly, excess peroxisomes’” or damaged lysosomes’® in
mammalian cells are cleared through an autophagic process
these within ~ double-membrane

that encloses organelles

autophagosomes.
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Figure 2. Scheme of the different modalities of autophagy involving membrane compartments and their functional consequences (bottom).
(A) Regular, single-membrane vesicles are targeted by conventional autophagy to produce multimembrane vacuoles that fuse with lysosomes for
degradation of their contents. (B) Regular, single-membrane vesicles become directly labeled with LC3-Il and eventually fuse with lysosomes for deg-
radation. (C) Regular, single-membrane vesicles are targeted by conventional autophagy producing multimembrane vacuoles with nondegradative
functions. (D) Regular, single-membrane vesicles or other membranous structures become directly labeled with LC3-II for a variety of nondegradative
functions. (V, vesicle; MMs, multiple membranes; SM, single membrane; L, lysosome).

However, while autophagic targeting of conventional
cytoplasmic substrates needs formation of a membranous
compartment that isolates the doomed item, autophagy against
the contents of a vesicular structure could conceivably spare
cargo isolation and rely only on LC3 labeling of an already
existing vesicle. In fact, some recently described examples support
this novel idea (Fig. 2B). In the following we review the new
developments on this topic.

Phagosomes containing stimulated TLR2 (toll-like receptor
2) become rapidly decorated with BECNI to promote LC3
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labeling of this nonautophagic single-membrane compartment,
a process that promotes more efficient acquisition of lysosomal
features.” This phenomenon has been called LC3-associated
phagocytosis (LAP) and it has since been observed in different
settings, including engulfment of dead cells,” phagocytosis of
Burkholderia pseudomaller,®® stimulation of phagosomal Fcy-
receptors,® efficient formation of phagosomal IRF7 (interferon
regulatory factor 7)-signaling compartments in response to TLR9
stimulation by DNA immune complexes,®* circadian degradation
of phagocytosed photoreceptors by retinal pigment epithelial
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cells,® or various phagocytic phenomena in dendritic cells that
favor presentation of major histocompatibility complex class
II-restricted antigens.”® However, the notion that certain TLRs
activate autophagy to fight intracellular invaders has also been
linked to the induction of general autophagy.””**® Therefore,
some controversy has arisen as to whether LAP could in fact
involve distant generation of autophagosomes through the regular
route followed by a quick fusion event with the phagosome. This
possibility could explain why induction of general autophagy
might have some of the beneficial effects of selective autophagy
in this context, as has been previously noted."” However,
translocation of BECNT1 to the phagosome and labeling with LC3
are extremely rapid events in LAP, and no evidence of multiple
membranes is detected.?® These observations argue against the
fusion model and favor the involvement of an in situ LC3-II
synthesis event. Still, unequivocally ruling out that activated
TLR2 first induces formation of canonical autophagosomes
that then rapidly fuse with the targeted phagosome may not be
easy. Perhaps the most convincing evidence is that LAP proceeds
independently of some of the initiating autophagic machinery
(ULK1)” and so it seems mechanistically different from other
examples where stimulation of general autophagy (which does
involve ULKI) has antibacterial effects.’” It is entirely possible,
however, that both autophagic mechanisms contribute to the
same goal in this physiological context.

In any case, the notion that LC3-II can be synthesized in
situ to label single-membrane structures has been raised again in
other experimental systems where different inducer molecules act
by directly engaging ATGI6L1. As mentioned above, ATGI6LI
defines the site of LC3 lipidation by bringing both LC3 and the
LC3-1I-synthesis complex (ATGI12-ATG5 and ATG3-LC3)
close to a membrane source,? so it is conceivable that ATG16LI1
may have a relevant role in autophagy directed to membranous
compartments. Thus, ATGI6L1 might constitute an additional
node for selective autophagy with a particularly important
function in autophagy directed against intracellular membranes.
In fact, the existence of specific factors that recruit ATG16L1
to the proper sites for LC3-II synthesis has been suggested
before.'?*7* Examples of such factors have recently become
available.

For instance, the native immune receptors NOD1 and NOD2
recognize bacteria (Shigella) at the entry site and engage ATG16L1
to promote LC3 labeling of the nascent phagosome.® Although it
is unclear if acquisition of LC3 in this context results from fusion
with preexisting autophagosomes or from local LC3-II synthesis,
NODs probably constitute the first description of an ATGI6LI
receptor molecule (Fig. 1). Inan additional example, it has recently
been described that the transmembrane molecule TMEM59 holds
a minimal 19 amino acid stretch in its intracellular domain that
promotes LC3 labeling of the same single-membrane endosomes
where the peptide becomes activated by aggregation.®® This
minimal peptide can be reduced to a 4-amino acid motif whose
integrity is necessary for the activity. The LC3-labeled endosomes
undergo more efficient lysosomal degradation of their contents,
thus recapitulating some of the main functional consequences of
LAP. Mechanistically, the active peptide interacts with ATG16L1
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through the minimal motif, suggesting that TMEM59 may be
another example of an ATGI6LI receptor involved in selective
autophagy against single-membrane vesicular compartments
(Fig. 1). Again, distinguishing between mechanisms involving
fusion with canonical autophagic vesicles vs. local LC3 lipidation
is a relevant issue. The LC3-labeled vesicles do not show evidence
of multiple membranes and appear devoid of cellular material
in electron microscopy (EM) studies, suggesting that they do
not undergo fusion events with preexisting autophagosomes to
become LC3-positive. Consistent with this, there is a very tight
colocalization between GFP-LC3 and endocytosed TMEM59,
and distal formation of autophagosomes in response to TMEM59
activation is not detected. The process relies on the canonical
autophagic effectors ATG5 and ATG7,** but appears to proceed
independently of BECNI (unpublished observations), arguing
that TMEM59 bypasses the upstream autophagic machinery,
just like LAP does at a different level. From a mechanistic point
of view, this independence of upstream activators is the logical
consequence of directly engaging ATGI6L1 and, with it, the
LC3-1I synthesis machinery (ATG12-ATG5 and ATG3-LC3)
that is normally assembled with ATGI6LI in a macromolecular
complex.?” Proximity between this machinery and a membrane
source would favor local (in situ) lipidation of LC3 and, therefore,
LC3 labeling of the same vesicle where activation of TMEM59
takes place.

In an effort to evaluate a possible interaction of TMEM59
with the canonical autophagic pathway, the authors tested if
TMEMS59 overexpression (or forced aggregation of chimeric
transmembrane molecules) was able to influence the clearance
rate of established autophagic substrates like SQSTM1/p62,
NBRI or insoluble protein aggregates formed by a pathological
form (Q74) of HT T/huntingtin. The rationale here is that any
possible intersection with the conventional route should result
in altered levels of molecules that are normally cleared through
the same pathway. While TMEMS59 activation provokes
substantial LC3-II accumulation, it does not alter at all the levels
of these substrates, indicating that TMEMS59 neither blocks
nor accelerates the canonical autophagic flux. This is actually
somewhat surprising since, even assuming that TMEM59 does
not participate at all in the regular route, one would expect
that its overexpression could sequester at least a fraction of the
autophagic machinery (the ATGI6L1 complex, in this case) to
cause some depression of the canonical autophagic flux. Why
such an effect (even a marginal one) does not occur is unclear, but
the notion that separate pools of critical effectors (ATGI16L1) are
involved in different autophagic-like processes might be worth
considering in future studies. In any event, such tight segregation
between the 2 autophagic events may provide a methodological
advantage to clearly show dissociation of an atypical autophagic
phenomenon from the canonical pathway. Thus, apart from
establishing whether or not it involves single membranes (EM)
or different autophagic machinery (independence of upstream
effectors), a routine assay could involve testing a possible impact
on recognized substrates of canonical autophagy.

ATGIG6L1 is substantially larger than the yeast ortholog,®
raising the notion that the molecule has evolved structurally

Autophagy 401

©2014 Landes Bioscience. Do not distribute.



to acquire new functions. In particular, a C-terminal domain
containing 7 WD40-type repetitions has been added during
evolution, the function of which has been unclear. This domain
is dispensable for conventional autophagy, because a version of
ATGI6L1 lacking this portion fully sustains the pathway in
mammalian cells.®*® Notably, the ATGI16L1-binding motif
found in TMEM59 recognizes the WD40 domain of ATGI6L1,
thus ascribing for the first time a molecular function to this
region.** Since different versions of the motif are conserved with
the same ATG16LI1-binding functionality in different unrelated
proteins,** the existence of a whole family of ATG16L1 receptors
that share this structural feature and engage ATGI16L1 in response
to different stimuli appears as a likely possibility. Accessing the
whole collection of such receptors would help expand the field
of selective autophagy against membranous compartments,
and might shed light into the role of ATGIG6LI in some of the
nonautophagic biological situations where it has been involved
(see below).

Endogenous TMEMS59 mediates the autophagic response
triggered by Staphylococcus aureus at early infection times when
the bacteria are enclosed in single-membrane phagosomes.**
These data are consistent with a relevant role of ATGI6L1 in
the autophagic burst elicited by bacterial invasion, a notion
further underscored by the established function of ATGI6LI in
the antibacterial activity of NODI1 and NOD2 (see above). In
fact, ATGI6LI seems to be important in intestinal homeostasis,
a biological environment that needs proper management of the
bacterial flora naturally inhabiting the digestive tract. This
idea was initially suggested by the fact that a polymorphic form
of ATGI6LL (T300A) increases the risk of suffering Crohn
disease,’** and is further supported by the Crohn disease-like
defects exhibited by Atgl6/I-deficient mice.** Thus, these
results point to a relevant role of ATGI6LL in antibacterial
immunity, and raise the notion that its WD40 domain may have
arisen during evolution to fulfill more sophisticated autophagic
functions that are exclusive to multicellular organisms, like
native immunity. More generally, a similar principle may have
driven the increased complexity of the autophagic machinery
that is observed in higher eukaryotes compared with yeast
cells, with additional ATGs, more ATG isoforms and structural
changes in certain ATGs (like addition of the WD40 domain
in ATGIG6L1), all of which may have facilitated adaptation of
the autophagic process to new functions. Although TMEM59
mediates autophagy induced by Staphylococcus aureus, it does not
seem to have a general role in autophagy directed to bacterial
phagosomes, because only an effect during infection with
this bacteria, but not other strains, was found (unpublished
observations). Interestingly, TMEMS59 was identified in a
proteomics study of phagosomes containing inert latex beads,”
so the described function in Staphylococcus phagosomes might
reflect a more general role in vesicle trafficking.

Entosis constitutes an additional example of single-membrane
vesicles that become labeled with LC3. This is a specialized form
of phagocytosis where whole live cells are engulfed by neighboring
cells in a striking process that eventually causes nonapoptotic
death of the internalized cell” This phenomenon involves
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formation of single-membrane phagosomes that quickly become
LC3-positive independently of conventional autophagosomes.?!
Thus, no evidence of fusion with autophagic compartments or
multiple membranes was detected, and labeling with GFP-LC3
is achieved at the expense of the diffuse pool of the marker but
not preexisting GFP-LC3-positive autophagosomes. Again, this
is surprising, since one would expect that engagement of the
autophagic machinery by the phagosome would remove important
signaling effectors from the main autophagic route. LC3
recruitment to the phagosome is dependent on PIK3C3, ATG5
and ATG7, but independent of RBICC1, suggesting mechanistic
differences with canonical autophagy and similarities with LAP.
The fact that both LAP and entosis engage the autophagic route
at the level of BECN1-PIK3C3 indicates that this complex may
constitute an additional relevant node for selective autophagy
of membranous compartments, aside from ATGI6L1 (Fig. 1).
Engulfment of apoptotic bodies and macropinosomes trigger a
similar process.’’ Because all these entotic-like, LC3-associated
phagocytic events involve internalization of self material, it is
unlikely that they are triggered by TLR activation, suggesting
that TLR-independent mechanisms contribute to LC3 activation
in entosis. It would be very interesting to know the mechanisms
involved in recruitment of the autophagic machinery to the
entotic vesicle. Of note, ATGIG6LI interacts with CLATHRIN,*
so a direct interaction between the endocytic and autophagic
machineries could explain how entotic-like vesicles become LC3-
positive. CLATHRIN might, therefore, constitute an additional
example of ATGI16L1 recepror (Fig. 1).

Selective Autophagic Labeling of Membrane
Compartments with Unconventional,
Nondegradative Purposes

From a purely etymological point of view, the processes
described in the previous section fit into the general category of
“autophagy,” since, for the most part, they result in degradation
(phagy) of intracellular components (auto) (Figs. 2A and 2B).
However, in this section we now include an expanding collection
of phenomena where intracellular membranes become decorated
with LC3 or other autophagic effectors without resulting in
digestion of the labeled compartment (Figs. 2C and 2D).
Whether or not these constitute autophagic processes is debatable,
and their recent discovery may invoke the need for a more strict
definition of what the term autophagy really defines. As discussed
below, some of these phenomena may be particularly informative
regarding the functional roles of some autophagic effectors, LC3
in particular.

Bacterial phagosomes are in some cases targeted by
regular autophagy to produce multimembrane LC3-positive
compartments that, instead of promoting degradation of the
invader, appear to provide a niche for bacterial replication
(Fig. 2C).*8 For example, Yersinia resides in autophagosomal,
multimembrane, LC3-positive, nonacidic vesicles that sustain
bacterial proliferation.”*? In addition, phagosomes containing
Staphylococcus aureus are surrounded by multiple membranous
structures that become LC3-positive around 3 h post infection,
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an autophagic phenomenon that favors replication of the
pathogen.” Similarly, Brucella abortus traffics to multimembrane
vesicles whose formation depends on the upstream autophagic
machinery (BECN1, ULK1), but not downstream ATGs. These
structures favor cell-to-cell spreading of the bacteria instead of
its killing.” Poliovirus utilizes LC3-positive, double-membrane
vesicles as replication sites, and inhibition of the autophagic
pathway decreases viral yield.”® Coronaviruses assemble their
replicative complexes on the surface of double-membrane
vesicles that become decorated with nonlipidated LC3 without
the involvement of canonical autophagic mediators, and this
unconventional LC3 labeling serves viral replication.”
Single-membrane phagosomes containing a number of
bacteria also acquire autophagic features that promote survival of
the enclosed bacterium, rather than its elimination (Fig. 2D). For
example, Coxiella burnetii is internalized in a spacious phagosome
whose maturation is delayed by the bacteria. This structure
ends up acquiring autophagic traits that are reminiscent of LAP
(decoration with BECNI and LC3) and help increase replication

9899 Similarly, a fraction of intracellular Listeria

of the pathogen.
reside in LC3-positive single-membrane compartments that
facilitate its proliferation, thus causing persistent infection.'”® The
mechanisms explaining how these single-membrane phagosomes
become LC3-positive, and why this process results in bacterial
survival, remain to be investigated in detail.

Examples involving assembly of the autophagic machinery
on single-membrane structures for additional nondegradative
outcomes have recently been described (Fig. 2D), and the
diversity of processes where this phenomenon has been observed
was actually unexpected. For instance, bone resorption entails the
localized secretion of lysosomal contents through a specialized
“ruffled border” of polarized osteoclasts that is apposed to the
bone surface, and recent evidence indicates that some autophagic
mediators play a critical role in this phenomenon.'”! Thus, the
ruffled border becomes labeled with LC3 in a process mediated
by conventional autophagic effectors (ATG5, ATG7 or ATG4).
No evidence of double membranes was found in this specialized
membrane domain, whose full maturation actually depends on
the autophagic machinery. The nature of the initiating signal that
promotes specific LC3 labeling of this region is unknown, but the
involvement of specific inducers or receptors that locally engage
nodal autophagic mediators appears as a plausible mechanism.

What the exact role of LC3 might be at thislocation is currently
unclear. However, it is tempting to speculate that LC3 labels the
ruffled border to promote the directed secretion of lysosomal
contents. This possibility would point to a direct role of LC3 in
promoting fusion with the lysosome that might have remained
unidentified in the canonical route owing to the critical activities
that LC3 family members play in previous steps of phagophore
and autophagosome biogenesis (membrane elongation and
closure, and autophagosome maturation). A phenomenon that is
implicitly involved in the autophagic pathway is the final fusion
of the mature autophagosome with the lysosomal compartment,
so it is conceivable that the same machinery mediating this final
step works in other cellular processes where lysosome fusion
with membranous structures is also required.?"322 This possible
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function of LC3 is particularly well supported by examples where
LC3 labeling has unconventional, nonautophagic outcomes that
still require lysosomal delivery, as happens in osteoclasts.

The antiviral activity provided by IFNG during norovirus
infection involves a nondegradative role of the ATGI2-
ATG5-ATGI6LI complex that was recently identified.'® This
unconventional function proceeds with ATGI6LI localization
in membranous structures that lack an obvious resemblance
to autophagosomes and provide a niche for assembly of the
norovirus replication complex.'*!% Although the precise role of
ATGIG6LI at this location remains to be determined, the notion
that a specific factor recruits this mediator for a nondegradative
function is again conceivable.

A role of some autophagic effectors in secretion processes
can be inferred from additional recent data. Single-membrane
secretory granules of the neuroendocrine PC12 cell line stain
positive for ATGI6L1, and depletion of this effector results in
defective hormone secretion.'”® Since LC3 does not associate
with the same granules, the function of ATGI6L1 is probably
unrelated to the orthodox autophagic pathway in this context.
This report is in line with a previous one showing that both
ATGI6L1 hypomorphic mice and Crohn disease patients
harboring the risk allele ATGI6L1-T300A exhibit secretory
defects in Paneth cells, a specialized intestinal cell that discharges
protective peptides to the intestinal lumen.” The defective cells
emit less lysozyme and show a hypervacuolated cytoplasm owing
to a disorganized secretory granule compartment. Whether or not
ATGI6LL1 itself and/or LC3 are present in the secretory vesicles
of these cells has not been carefully examined, but the phenotype
is similar to the one caused by ATG16L1 depletion in PCI2 cells,
so both experimental systems might share the same mechanism
to target ATGI6LI to the relevant vesicles. A role of autophagy
in the unconventional secretion of IL1B has also recently been
proposed.’’® Alchough whether or not this process is linked to
single-membrane vesicles has not been explored, it does involve
colocalization between the IL1B-containing structures and LC3.
The involvement of autophagy in unconventional secretion of
otherwise cytoplasmic molecules was first described in yeast
Cells’l(ﬁ,l()s
process.

In a different example, melanosomes are single-membrane

suggesting that this is an evolutionarily conserved

vesicles that contain the pigment melanin and colocalize with
ATGS and LC3. In fact, proper function of these vacuoles seems
to rely on autophagic effectors such as WIPI1, BECN1 or ATGS,
as revealed by identification of these proteins in a siRNA-based
screen for melanosome activity.'”” The mechanisms that promote
assembly of the autophagic machinery on these membranes
are unknown, but the existence of specific inducer molecules
involved in this job appears as a likely possibility once again.
Taken together, the examples mentioned in this section
illustrate that intracellular membranes appear to constitute
common assembly sites for the autophagic machinery to carry
out biological functions not directly linked to the canonical
degradation route. In addition, many of these processes appear
to share a common link to vesicle trafficking, a finding that
may reflect a more general role of the autophagic machinery in
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this basic cellular process."®!!! Since autophagy is, in essence, a
vesicular trafficking phenomenon, the alternative use of some
autophagic effectors in other nonautophagic trafficking events is
perhaps not surprising.

Summary and Perspectives

Here we have reviewed a collection of examples showing that
intracellular membranes constitute a particularly flexible stage
for the action of the autophagic machinery with both degradative
and nondegradative purposes. In the most conventional version
of the process, intracellular vesicles can be subject to canonical
autophagic phenomena where the relevant vacuole is treated just
like any other autophagic substrate, and the end product is a
multimembrane compartment that eventually undergoes fusion
with the lysosome (Fig. 2A). However, an expanding range of
examples show, first, that noncanonical single-membrane vesicles
can be dominantly committed to lysosomal fusion through the
action of autophagic machinery (Fig. 2B), second, that canonical
multimembrane autophagosomes may serve nondegradative
purposes (Fig. 2C) and, third, that unconventional membranous
structures often constitute assembly sites for functional autophagic
modules that promote a wide variety of nondegradative activities
(Fig. 2D). Why intracellular membranes constitute such a
versatile platform is unclear, but it is conceivable that, in a way,
the autophagic machinery just represents a subgroup of the
membrane-trafficking machinery, and that all this complexity
arises from the intersection between both basic pathways. A
few key issues in the field deserve particular attention. One is
the identification of the mechanisms that turn a theoretically
degradative compartment into a cozy niche for microbial

replication/survival. Reaching a full consensus on whether LC3
labeling of single-membrane compartments involves fusion with
preexisting LC3-positive structures or is mainly due to local
LC3-II synthesis, is also an important aspect. We anticipate
that most of the unconventional processes included here are
likely to be regulated by the action of molecular receptors that
promote assembly of specific nodal cassettes of the autophagic
machinery on the relevant membrane sites. Identification of
these receptors constitutes an important and interesting matter.
From the available literature, significant autophagic nodes in this
context appear to be the BECN1-PIK3C3 and ATG12-ATG5-
ATGI6L1 complexes, and perhaps LC3 in some cases such as
damaged mitochondria (Fig. 1). We predict that a wide variety
of receptor/inducer molecules able to engage these or other yet to
be discovered nodal effectors will be identified in the near future.
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