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Review

Autophagy

Macroautophagy (generally referred to as autophagy) is a 
complex cellular route that promotes the regulated degradation of 
cytoplasmic components and is highly conserved in all eukaryotic 
organisms.1,2 The molecular pathways that control autophagy 
have been well studied in yeast,3 and the relevance that this 
phenomenon has in a wide variety of human pathophysiological 
processes has also fueled its detailed analysis in mammalian 
systems.4-6 This route involves cargo isolation into canonical 
double-membrane vesicles called autophagosomes, which in 
essence constitute sacs of disposable elements that eventually fuse 
with lysosomes to degrade their contents.7 Therefore, autophagy 
at the minimum must involve the action of molecular machinery 
that promotes isolation of the item targeted for destruction and 
also mechanisms to label the final “garbage bag” for fusion with 
the lysosomal compartment.

Autophagy was initially characterized as an adaptive response 
to starvation.4 In this biological context, it mainly acts to obtain 
basic constituents from random cytoplasmic components, thus 
redirecting nutrients to feed essential metabolic pathways.8,9 
However, the autophagic process is rapidly upregulated as a 
common adaptation response to a variety of stressful situations, 
not only starvation.10 In a number of these conditions, like 
organelle malfunction, genotoxic stress, or the presence of foreign 
invaders, autophagy functions as a degradation mechanism 
for specific, obsolete, or potentially harmful components, 
irrespective of the recycling consequences of the process.11,12 
Autophagic destruction also plays critical housekeeping roles by 
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Selective autophagic degradation of cellular components 
underlies many of the important physiological and 
pathological implications that autophagy has for mammalian 
cells. Cytoplasmic vesicles, just like other intracellular items, 
can be subjected to conventional autophagic events where 
double-membrane autophagosomes specifically isolate and 
deliver them for lysosomal destruction. However, intracellular 
membranes appear to constitute common platforms for 
unconventional versions of the autophagic pathway, a 
notion that has become apparent during the past few years. 
For instance, in many cases of autophagy directed against 
bacterial phagosomes, subversion of the process results in 
multimembrane vacuoles that promote bacterial replication 
instead of the usual degradative outcome. in a different 
atypical modality, single-membrane vesicles can be labeled 
with LC3 to direct their contents for lysosomal degradation. in 
fact, single-membrane compartments of various kinds often 
provide an assembly site for the autophagic machinery to 
perform unanticipated nondegradative activities that range 
from localized secretion of lysosomal contents to melanosome 
function. interestingly, many of these unconventional 
processes seem to be initiated through engagement of 
relevant nodes of the autophagic signaling network that, once 
activated, promote LC3 decoration of the targeted membrane, 
and some cases of inducer/receptor proteins that specifically 
engage those important signaling hubs have recently been 
described. Here we review the available examples of all 
autophagic variants involving membranous compartments, 
with a main focus on the more recently discovered 
unconventional phenomena where the usual degradation 

purpose of autophagy or its canonical mechanistic features are 
not completely conserved.
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proceeding at a low, constitutive level under basal conditions, a 
situation where it can also act with some degree of specificity 
by removing, for example, superfluous or damaged organelles.11 
Therefore, although traditionally thought to be a fairly 
nonspecific process that responds to the lack of nutrients, it is 
now known that autophagy can target specific cellular items for 
timely degradation.

Autophagic Machinery

Early work in yeast has facilitated discovery of the core 
molecular machinery involved in the autophagic response to 
starvation, a collection of molecules known as autophagy-related 
(Atg) proteins.2,13,14 Subsequent work in higher eukaryotes has 
led to identification of many Atg orthologs, thus producing 
a relatively clear picture of how autophagy is regulated in 
mammalian cells.4 Briefly, a protein complex containing ULK1/
ATG1-MTOR-ATG13-RB1CC1/FIP200 senses starvation 
or stress signals and derepresses the autophagic process that is 
downregulated by constitutively active MTOR. In a process 
not fully understood, this complex promotes the translocation 
of a second molecular complex including PIK3C3/VPS34-
BECN1/Beclin 1-ATG14 to the endoplasmic reticulum (ER) 
where it generates phosphatidylinositol 3-phosphate (PtdIns3P), 
an uncommon lipid in this compartment.14 The local presence 
of PtdIns3P initiates autophagosome nucleation through 
formation of prototypical ER-associated structures called cradles 
or omegasomes,15,16 a phenomenon that may involve PtdIns3P-
binding proteins like members of the WIPI family or ZFYVE1/
DFCP1.17,18 The ER itself likely acts as a membrane source in this 
case, but other organelles such as mitochondria,19 mitochondrial 
associated membranes,20 or the plasma membrane21 have also been 
suggested as membrane donors for autophagosome formation.7,22

Following these initiating events, membrane elongation 
and phagophore closure are driven by 2 ubiquitin-like 
modification systems that promote the covalent addition of 
phosphatidylethanolamine (PE) to LC3, thus producing a 
membrane-bound form named LC3-II.2,23 In these conjugation 
systems ATG12 and LC3 behave as ubiquitin-like modifiers, and 
ATG7 separately acts as an E1 enzyme for both molecules. In the 
next step, ATG10 functions as the E2 enzyme for the subsequent 
formation of an ATG12–ATG5 covalent complex in the absence 
of a proper E3 conjugation system, whereas ATG3 behaves as 
an E2 module for LC3-I. ATG12–ATG5 then binds ATG16L1 
(the mammalian ortholog of yeast Atg16) to assemble a final E3 
system for the conjugation of PE to the pool of LC3 brought 
to the vicinity through interaction between ATG3-LC3-I and 
ATG12.24 Interestingly, whereas the ATG12–ATG5 complex 
suffices for this E3-ligase activity,25 ATG16L1 defines the site for 
LC3-II generation.24

LC3 associates with the autophagosomal compartment at 
all stages of the process, and therefore it is used as the major 
autophagic reporter system.26 However, its precise molecular 
function is still unclear. Although most of the available 
mechanistic information has been obtained by studying LC3B, 
a total of 8 LC3 or LC3-like homologs are predicted to exist: 

LC3A (which includes 2 splicing isoforms), LC3B, LC3C, 
GABARAP, GABARAPL1, GABARAPL2, and GABARAPL3. 
It has been clearly established that LC3 lipidation is essential for 
elongation of the phagophore membrane and its final closure.27,28 
Notably, the GABARAP subgroup seems to function mainly in 
autophagosome maturation.29 However, since LC3 was originally 
discovered as a microtubule-associated protein,30 a role for this 
family in directing the mature autophagosomes to fusion with 
the lysosomes through the cytoskeletal tracks has been invoked.23 
In addition, LC3 labeling of both canonical autophagosomes and 
single-membrane vesicles has been proposed to directly facilitate 
fusion with the lysosome,31,32 a function that might have been 
overlooked due to the critical upstream activity that LC3 has 
in autophagosome formation and maturation. This possible 
involvement in lysosomal fusion could explain why certain 
nonautophagosomal compartments (phagosomes or endosomes, 
for example) are targeted to the lysosome more efficiently when 
becoming coated with LC3.33,34 However, definitive proof for any 
of these alternative activities is still missing. Whatever the case, 
LC3 labeling seems to be the end-point event that commits a given 
vesicle to fusion with the lysosomal compartment. This notion 
may be more clearly illustrated by unconventional autophagic 
processes where LC3 mediates nondegradative activities that still 
involve lysosomal targeting, like the extracellular secretion of 
lysosomal contents required for bone resorption (see below).

Although the fundamental molecular mechanisms involved in 
autophagosome formation and maturation in mammalian cells 
have been reasonably well described, important issues remain to 
be clarified. For example, a full consensus is yet to be reached 
regarding the main membrane source for autophagosome 
generation and whether or not different compartments act as 
membrane donors depending on the initial autophagic stimulus. 
Mechanistically, how exactly the preinitiation complexes 
containing ULK1 and BECN1 interact to initiate autophagosome 
formation, the role of the PtdIns3P-binding proteins WIPI 
and ZFYVE1 in this process, how the 2 ubiquitin-like protein 
modification cascades that culminate with LC3-II synthesis 
promote membrane elongation and final phagophore closure, 
and whether or not there are autophagy-specific mechanisms that 
promote fusion of the mature autophagosome with the lysosome 
(and the role of LC3 in this process), are key issues still waiting 
to be fully resolved.

Functions of Autophagy and Relevance  
of Selective Autophagy

Judging from the phenotypes of Atg-deficient mice, the 
autophagic process has wide implications in a number of 
physiological and pathological processes, including tumor 
suppression, neurodegeneration, inflammation, and native and 
adaptive immunity.11,35,36 For example, the absence of BECN1 
or ATG4 increases susceptibility to tumorigenesis,37-39 likely 
because these animals are unable to fight the deleterious effects of 
cellular stress.40 Brain-specific deletion of Atg5 or Atg7 provokes 
early neurodegeneration caused by accumulation of insoluble 
protein aggregates.41,42 Absence of ATG16L1 causes an intestinal 
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inflammatory phenotype that resembles Crohn disease,43-45 an 
observation that correlates well with the existence of a human 
ATG16L1 allele that increases susceptibility to this pathology.46-48 
Other roles include participation in developmental processes,49 
or in adaptive immunity by promoting efficient antigen 
presentation.50 Autophagy also constitutes an innate mechanism 
that helps fight intracellular pathogens, such as viruses and 
bacteria.51

Interestingly, selective autophagy has a relevant role in many 
of these phenotypes, and therefore is now a matter of active 
investigation. For example, the cancer susceptibility phenotype 
might be due to poor elimination of damaged organelles and 
the consequent overproduction of pro-inflammatory and DNA-
damaging reactive oxygen species.52-54 Neurodegeneration in 
Atg-deficient mice is mediated by the toxic effects of protein 
aggregates that are selectively targeted to the autophagic pathway 
in normal conditions.55,56 Elimination of foreign invaders also 
involves their specific recognition by the autophagic machinery, 
whether they are loose in the cytoplasm57,58 or enclosed in 
conventional phagosomes.33,59

Mechanistically, these different modalities of selective 
autophagy seem to be executed through the action of inducer or 
receptor proteins that link the item targeted for destruction with 
certain nodes of the core autophagic machinery with the apparent 
final purpose of promoting LC3 labeling of the selected cargo. 
One of these nodes seems to be LC3 itself (Fig. 1). Thus, both 
insoluble protein aggregates and cytosolic bacteria become heavily 
ubiquitinated, and receptor proteins able to simultaneously bind 
ubiquitin and LC3 target them for autophagic degradation.60 
NBR1,61 SQSTM1/p62,62 CALCOCO2/NDP52,63 and OPTN/
OPTINEURIN64 are examples of these receptors. In addition, 
damaged or obsolete mitochondria become ubiquitinated by 
the E3-ligase PARK2/PARKIN that is recruited to the target 
organelle by PINK1,65-67 a kinase that becomes stabilized on 
damaged mitochondria and thus promotes PARK2-mediated 
ubiquitination of a wide array of mitochondrial proteins.68 The 
labeled mitochondria are then recognized by SQSTM1/p62 
for autophagic delivery.69 Mitochondria can also be directed to 

autophagic destruction by recruiting BNIP3L/NIX, a BCL2-
family protein able to bind LC3 thus acting as a receptor module.70 
In all these cases, interaction between the receptors and LC3 is 
mediated by a common LC3-interacting motif (LIR), whether 
it is the canonical signature (WXXL)71 or an atypical motif 
recognized by LC3C.72 Other examples of autophagic signaling 
nodes that are engaged (either directly or indirectly) by specific 
inducers are the BECN1-PIK3C3 and ATG12–ATG5-ATG16L1 
complexes (Fig. 1). Evidence supporting such roles is provided 
throughout this review.

Selective Autophagy Against Membrane 
Compartments with Canonical Degradation 

Purposes

Membrane-bound intracellular organelles can be subjected to 
conventional autophagic processes where regular autophagosomes 
form around them (or fuse with them) thus producing 
multimembrane vesicles destined for lysosomal destruction 
(Fig. 2A). For instance, phagosomes whose natural maturation 
pathway is stalled by Mycobacteria are targeted by regular 
autophagosomal compartments that fuse with the bacteria-
containing sac, an autophagic response that suppresses survival 
of the invader.59 A similar phenomenon involving multiple-
membrane vesicular structures targets the Salmonella-containing 
vacuole in epithelial cells, thus inhibiting bacterial replication. 
An atypical route is involved here, since this process shows 
independency of the classical mediators PIK3C3, RB1CC1, and 
ATG9,73 and entails recognition of damaged phagosomes by 
carbohydrate-binding proteins.74 As mentioned above, damaged 
mitochondria can also be eliminated by canonical autophagy 
mediated by ubiquitination. Stressed portions of the endoplasmic 
reticulum are degraded in regular autophagosomes containing 
lamellar structures that stain positive for reticular markers.75,76 
Similarly, excess peroxisomes77 or damaged lysosomes78 in 
mammalian cells are cleared through an autophagic process 
that encloses these organelles within double-membrane 
autophagosomes.

Figure  1. Relevant nodes of the canonical autophagic pathway that are specifically engaged in different modalities of unconventional autophagy 
against membranous compartments. The canonical autophagic pathway flows from the ULK1-MTOR-RB1CC1 complex to LC3-ii synthesis (horizontal 
arrows). The BeCN1-PiK3C3-ATG14 complex is directly or indirectly activated during LAP and entosis (A). NODs and TMeM59 (and perhaps CLATHRiN) 
induce the ATG12–ATG5-ATG16L1 complex by interacting with ATG16L1 (B). BNiP3L/NiX and PARK2 (through ubiquitination, UB) engage the pathway at 
the level of LC3 (C). The end result in all cases is LC3 labeling of the targeted membranous structure.
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However, while autophagic targeting of conventional 
cytoplasmic substrates needs formation of a membranous 
compartment that isolates the doomed item, autophagy against 
the contents of a vesicular structure could conceivably spare 
cargo isolation and rely only on LC3 labeling of an already 
existing vesicle. In fact, some recently described examples support 
this novel idea (Fig. 2B). In the following we review the new 
developments on this topic.

Phagosomes containing stimulated TLR2 (toll-like receptor 
2) become rapidly decorated with BECN1 to promote LC3 

labeling of this nonautophagic single-membrane compartment, 
a process that promotes more efficient acquisition of lysosomal 
features.33 This phenomenon has been called LC3-associated 
phagocytosis (LAP) and it has since been observed in different 
settings, including engulfment of dead cells,79 phagocytosis of 
Burkholderia pseudomallei,80 stimulation of phagosomal Fcγ-
receptors,81 efficient formation of phagosomal IRF7 (interferon 
regulatory factor 7)-signaling compartments in response to TLR9 
stimulation by DNA immune complexes,82 circadian degradation 
of phagocytosed photoreceptors by retinal pigment epithelial 

Figure  2. Scheme of the different modalities of autophagy involving membrane compartments and their functional consequences (bottom).  
(A) Regular, single-membrane vesicles are targeted by conventional autophagy to produce multimembrane vacuoles that fuse with lysosomes for 
degradation of their contents. (B) Regular, single-membrane vesicles become directly labeled with LC3-ii and eventually fuse with lysosomes for deg-
radation. (C) Regular, single-membrane vesicles are targeted by conventional autophagy producing multimembrane vacuoles with nondegradative 
functions. (D) Regular, single-membrane vesicles or other membranous structures become directly labeled with LC3-ii for a variety of nondegradative 
functions. (v, vesicle; MMs, multiple membranes; SM, single membrane; L, lysosome).
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cells,83 or various phagocytic phenomena in dendritic cells that 
favor presentation of major histocompatibility complex class 
II-restricted antigens.50 However, the notion that certain TLRs 
activate autophagy to fight intracellular invaders has also been 
linked to the induction of general autophagy.59,84,85 Therefore, 
some controversy has arisen as to whether LAP could in fact 
involve distant generation of autophagosomes through the regular 
route followed by a quick fusion event with the phagosome. This 
possibility could explain why induction of general autophagy 
might have some of the beneficial effects of selective autophagy 
in this context, as has been previously noted.10 However, 
translocation of BECN1 to the phagosome and labeling with LC3 
are extremely rapid events in LAP, and no evidence of multiple 
membranes is detected.33 These observations argue against the 
fusion model and favor the involvement of an in situ LC3-II 
synthesis event. Still, unequivocally ruling out that activated 
TLR2 first induces formation of canonical autophagosomes 
that then rapidly fuse with the targeted phagosome may not be 
easy. Perhaps the most convincing evidence is that LAP proceeds 
independently of some of the initiating autophagic machinery 
(ULK1)79 and so it seems mechanistically different from other 
examples where stimulation of general autophagy (which does 
involve ULK1) has antibacterial effects.59 It is entirely possible, 
however, that both autophagic mechanisms contribute to the 
same goal in this physiological context.

In any case, the notion that LC3-II can be synthesized in 
situ to label single-membrane structures has been raised again in 
other experimental systems where different inducer molecules act 
by directly engaging ATG16L1. As mentioned above, ATG16L1 
defines the site of LC3 lipidation by bringing both LC3 and the 
LC3-II-synthesis complex (ATG12–ATG5 and ATG3-LC3) 
close to a membrane source,24 so it is conceivable that ATG16L1 
may have a relevant role in autophagy directed to membranous 
compartments. Thus, ATG16L1 might constitute an additional 
node for selective autophagy with a particularly important 
function in autophagy directed against intracellular membranes. 
In fact, the existence of specific factors that recruit ATG16L1 
to the proper sites for LC3-II synthesis has been suggested 
before.14,24,73 Examples of such factors have recently become 
available.

For instance, the native immune receptors NOD1 and NOD2 
recognize bacteria (Shigella) at the entry site and engage ATG16L1 
to promote LC3 labeling of the nascent phagosome.86 Although it 
is unclear if acquisition of LC3 in this context results from fusion 
with preexisting autophagosomes or from local LC3-II synthesis, 
NODs probably constitute the first description of an ATG16L1 
receptor molecule (Fig. 1). In an additional example, it has recently 
been described that the transmembrane molecule TMEM59 holds 
a minimal 19 amino acid stretch in its intracellular domain that 
promotes LC3 labeling of the same single-membrane endosomes 
where the peptide becomes activated by aggregation.34 This 
minimal peptide can be reduced to a 4-amino acid motif whose 
integrity is necessary for the activity. The LC3-labeled endosomes 
undergo more efficient lysosomal degradation of their contents, 
thus recapitulating some of the main functional consequences of 
LAP. Mechanistically, the active peptide interacts with ATG16L1 

through the minimal motif, suggesting that TMEM59 may be 
another example of an ATG16L1 receptor involved in selective 
autophagy against single-membrane vesicular compartments 
(Fig. 1). Again, distinguishing between mechanisms involving 
fusion with canonical autophagic vesicles vs. local LC3 lipidation 
is a relevant issue. The LC3-labeled vesicles do not show evidence 
of multiple membranes and appear devoid of cellular material 
in electron microscopy (EM) studies, suggesting that they do 
not undergo fusion events with preexisting autophagosomes to 
become LC3-positive. Consistent with this, there is a very tight 
colocalization between GFP-LC3 and endocytosed TMEM59, 
and distal formation of autophagosomes in response to TMEM59 
activation is not detected. The process relies on the canonical 
autophagic effectors ATG5 and ATG7,34 but appears to proceed 
independently of BECN1 (unpublished observations), arguing 
that TMEM59 bypasses the upstream autophagic machinery, 
just like LAP does at a different level. From a mechanistic point 
of view, this independence of upstream activators is the logical 
consequence of directly engaging ATG16L1 and, with it, the 
LC3-II synthesis machinery (ATG12–ATG5 and ATG3-LC3) 
that is normally assembled with ATG16L1 in a macromolecular 
complex.87 Proximity between this machinery and a membrane 
source would favor local (in situ) lipidation of LC3 and, therefore, 
LC3 labeling of the same vesicle where activation of TMEM59 
takes place.

In an effort to evaluate a possible interaction of TMEM59 
with the canonical autophagic pathway, the authors tested if 
TMEM59 overexpression (or forced aggregation of chimeric 
transmembrane molecules) was able to influence the clearance 
rate of established autophagic substrates like SQSTM1/p62, 
NBR1 or insoluble protein aggregates formed by a pathological 
form (Q74) of HTT/huntingtin. The rationale here is that any 
possible intersection with the conventional route should result 
in altered levels of molecules that are normally cleared through 
the same pathway. While TMEM59 activation provokes 
substantial LC3-II accumulation, it does not alter at all the levels 
of these substrates, indicating that TMEM59 neither blocks 
nor accelerates the canonical autophagic flux. This is actually 
somewhat surprising since, even assuming that TMEM59 does 
not participate at all in the regular route, one would expect 
that its overexpression could sequester at least a fraction of the 
autophagic machinery (the ATG16L1 complex, in this case) to 
cause some depression of the canonical autophagic flux. Why 
such an effect (even a marginal one) does not occur is unclear, but 
the notion that separate pools of critical effectors (ATG16L1) are 
involved in different autophagic-like processes might be worth 
considering in future studies. In any event, such tight segregation 
between the 2 autophagic events may provide a methodological 
advantage to clearly show dissociation of an atypical autophagic 
phenomenon from the canonical pathway. Thus, apart from 
establishing whether or not it involves single membranes (EM) 
or different autophagic machinery (independence of upstream 
effectors), a routine assay could involve testing a possible impact 
on recognized substrates of canonical autophagy.

ATG16L1 is substantially larger than the yeast ortholog,87 
raising the notion that the molecule has evolved structurally 
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to acquire new functions. In particular, a C-terminal domain 
containing 7 WD40-type repetitions has been added during 
evolution, the function of which has been unclear. This domain 
is dispensable for conventional autophagy, because a version of 
ATG16L1 lacking this portion fully sustains the pathway in 
mammalian cells.88,89 Notably, the ATG16L1-binding motif 
found in TMEM59 recognizes the WD40 domain of ATG16L1, 
thus ascribing for the first time a molecular function to this 
region.34 Since different versions of the motif are conserved with 
the same ATG16L1-binding functionality in different unrelated 
proteins,34 the existence of a whole family of ATG16L1 receptors 
that share this structural feature and engage ATG16L1 in response 
to different stimuli appears as a likely possibility. Accessing the 
whole collection of such receptors would help expand the field 
of selective autophagy against membranous compartments, 
and might shed light into the role of ATG16L1 in some of the 
nonautophagic biological situations where it has been involved 
(see below).

Endogenous TMEM59 mediates the autophagic response 
triggered by Staphylococcus aureus at early infection times when 
the bacteria are enclosed in single-membrane phagosomes.34 
These data are consistent with a relevant role of ATG16L1 in 
the autophagic burst elicited by bacterial invasion, a notion 
further underscored by the established function of ATG16L1 in 
the antibacterial activity of NOD1 and NOD2 (see above). In 
fact, ATG16L1 seems to be important in intestinal homeostasis, 
a biological environment that needs proper management of the 
bacterial flora naturally inhabiting the digestive tract. This 
idea was initially suggested by the fact that a polymorphic form 
of ATG16L1 (T300A) increases the risk of suffering Crohn 
disease,46-48 and is further supported by the Crohn disease-like 
defects exhibited by Atg16l1-deficient mice.43-45 Thus, these 
results point to a relevant role of ATG16L1 in antibacterial 
immunity, and raise the notion that its WD40 domain may have 
arisen during evolution to fulfill more sophisticated autophagic 
functions that are exclusive to multicellular organisms, like 
native immunity. More generally, a similar principle may have 
driven the increased complexity of the autophagic machinery 
that is observed in higher eukaryotes compared with yeast 
cells, with additional ATGs, more ATG isoforms and structural 
changes in certain ATGs (like addition of the WD40 domain 
in ATG16L1), all of which may have facilitated adaptation of 
the autophagic process to new functions. Although TMEM59 
mediates autophagy induced by Staphylococcus aureus, it does not 
seem to have a general role in autophagy directed to bacterial 
phagosomes, because only an effect during infection with 
this bacteria, but not other strains, was found (unpublished 
observations). Interestingly, TMEM59 was identified in a 
proteomics study of phagosomes containing inert latex beads,90 
so the described function in Staphylococcus phagosomes might 
reflect a more general role in vesicle trafficking.

Entosis constitutes an additional example of single-membrane 
vesicles that become labeled with LC3. This is a specialized form 
of phagocytosis where whole live cells are engulfed by neighboring 
cells in a striking process that eventually causes nonapoptotic 
death of the internalized cell.91 This phenomenon involves 

formation of single-membrane phagosomes that quickly become 
LC3-positive independently of conventional autophagosomes.31 
Thus, no evidence of fusion with autophagic compartments or 
multiple membranes was detected, and labeling with GFP-LC3 
is achieved at the expense of the diffuse pool of the marker but 
not preexisting GFP-LC3-positive autophagosomes. Again, this 
is surprising, since one would expect that engagement of the 
autophagic machinery by the phagosome would remove important 
signaling effectors from the main autophagic route. LC3 
recruitment to the phagosome is dependent on PIK3C3, ATG5 
and ATG7, but independent of RB1CC1, suggesting mechanistic 
differences with canonical autophagy and similarities with LAP. 
The fact that both LAP and entosis engage the autophagic route 
at the level of BECN1-PIK3C3 indicates that this complex may 
constitute an additional relevant node for selective autophagy 
of membranous compartments, aside from ATG16L1 (Fig. 1). 
Engulfment of apoptotic bodies and macropinosomes trigger a 
similar process.31 Because all these entotic-like, LC3-associated 
phagocytic events involve internalization of self material, it is 
unlikely that they are triggered by TLR activation, suggesting 
that TLR-independent mechanisms contribute to LC3 activation 
in entosis. It would be very interesting to know the mechanisms 
involved in recruitment of the autophagic machinery to the 
entotic vesicle. Of note, ATG16L1 interacts with CLATHRIN,21 
so a direct interaction between the endocytic and autophagic 
machineries could explain how entotic-like vesicles become LC3-
positive. CLATHRIN might, therefore, constitute an additional 
example of ATG16L1 receptor (Fig. 1).

Selective Autophagic Labeling of Membrane 
Compartments with Unconventional, 

Nondegradative Purposes

From a purely etymological point of view, the processes 
described in the previous section fit into the general category of 
“autophagy,” since, for the most part, they result in degradation 
(phagy) of intracellular components (auto) (Figs. 2A and 2B). 
However, in this section we now include an expanding collection 
of phenomena where intracellular membranes become decorated 
with LC3 or other autophagic effectors without resulting in 
digestion of the labeled compartment (Figs. 2C and 2D). 
Whether or not these constitute autophagic processes is debatable, 
and their recent discovery may invoke the need for a more strict 
definition of what the term autophagy really defines. As discussed 
below, some of these phenomena may be particularly informative 
regarding the functional roles of some autophagic effectors, LC3 
in particular.

Bacterial phagosomes are in some cases targeted by 
regular autophagy to produce multimembrane LC3-positive 
compartments that, instead of promoting degradation of the 
invader, appear to provide a niche for bacterial replication 
(Fig. 2C).58 For example, Yersinia resides in autophagosomal, 
multimembrane, LC3-positive, nonacidic vesicles that sustain 
bacterial proliferation.92,93 In addition, phagosomes containing 
Staphylococcus aureus are surrounded by multiple membranous 
structures that become LC3-positive around 3 h post infection, 
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an autophagic phenomenon that favors replication of the 
pathogen.94 Similarly, Brucella abortus traffics to multimembrane 
vesicles whose formation depends on the upstream autophagic 
machinery (BECN1, ULK1), but not downstream ATGs. These 
structures favor cell-to-cell spreading of the bacteria instead of 
its killing.95 Poliovirus utilizes LC3-positive, double-membrane 
vesicles as replication sites, and inhibition of the autophagic 
pathway decreases viral yield.96 Coronaviruses assemble their 
replicative complexes on the surface of double-membrane 
vesicles that become decorated with nonlipidated LC3 without 
the involvement of canonical autophagic mediators, and this 
unconventional LC3 labeling serves viral replication.97

Single-membrane phagosomes containing a number of 
bacteria also acquire autophagic features that promote survival of 
the enclosed bacterium, rather than its elimination (Fig. 2D). For 
example, Coxiella burnetii is internalized in a spacious phagosome 
whose maturation is delayed by the bacteria. This structure 
ends up acquiring autophagic traits that are reminiscent of LAP 
(decoration with BECN1 and LC3) and help increase replication 
of the pathogen.98,99 Similarly, a fraction of intracellular Listeria 
reside in LC3-positive single-membrane compartments that 
facilitate its proliferation, thus causing persistent infection.100 The 
mechanisms explaining how these single-membrane phagosomes 
become LC3-positive, and why this process results in bacterial 
survival, remain to be investigated in detail.

Examples involving assembly of the autophagic machinery 
on single-membrane structures for additional nondegradative 
outcomes have recently been described (Fig. 2D), and the 
diversity of processes where this phenomenon has been observed 
was actually unexpected. For instance, bone resorption entails the 
localized secretion of lysosomal contents through a specialized 
“ruffled border” of polarized osteoclasts that is apposed to the 
bone surface, and recent evidence indicates that some autophagic 
mediators play a critical role in this phenomenon.101 Thus, the 
ruffled border becomes labeled with LC3 in a process mediated 
by conventional autophagic effectors (ATG5, ATG7 or ATG4). 
No evidence of double membranes was found in this specialized 
membrane domain, whose full maturation actually depends on 
the autophagic machinery. The nature of the initiating signal that 
promotes specific LC3 labeling of this region is unknown, but the 
involvement of specific inducers or receptors that locally engage 
nodal autophagic mediators appears as a plausible mechanism.

What the exact role of LC3 might be at this location is currently 
unclear. However, it is tempting to speculate that LC3 labels the 
ruffled border to promote the directed secretion of lysosomal 
contents. This possibility would point to a direct role of LC3 in 
promoting fusion with the lysosome that might have remained 
unidentified in the canonical route owing to the critical activities 
that LC3 family members play in previous steps of phagophore 
and autophagosome biogenesis (membrane elongation and 
closure, and autophagosome maturation). A phenomenon that is 
implicitly involved in the autophagic pathway is the final fusion 
of the mature autophagosome with the lysosomal compartment, 
so it is conceivable that the same machinery mediating this final 
step works in other cellular processes where lysosome fusion 
with membranous structures is also required.31,32,102 This possible 

function of LC3 is particularly well supported by examples where 
LC3 labeling has unconventional, nonautophagic outcomes that 
still require lysosomal delivery, as happens in osteoclasts.

The antiviral activity provided by IFNG during norovirus 
infection involves a nondegradative role of the ATG12–
ATG5-ATG16L1 complex that was recently identified.103 This 
unconventional function proceeds with ATG16L1 localization 
in membranous structures that lack an obvious resemblance 
to autophagosomes and provide a niche for assembly of the 
norovirus replication complex.103,104 Although the precise role of 
ATG16L1 at this location remains to be determined, the notion 
that a specific factor recruits this mediator for a nondegradative 
function is again conceivable.

A role of some autophagic effectors in secretion processes 
can be inferred from additional recent data. Single-membrane 
secretory granules of the neuroendocrine PC12 cell line stain 
positive for ATG16L1, and depletion of this effector results in 
defective hormone secretion.105 Since LC3 does not associate 
with the same granules, the function of ATG16L1 is probably 
unrelated to the orthodox autophagic pathway in this context. 
This report is in line with a previous one showing that both 
ATG16L1 hypomorphic mice and Crohn disease patients 
harboring the risk allele ATG16L1-T300A exhibit secretory 
defects in Paneth cells, a specialized intestinal cell that discharges 
protective peptides to the intestinal lumen.43 The defective cells 
emit less lysozyme and show a hypervacuolated cytoplasm owing 
to a disorganized secretory granule compartment. Whether or not 
ATG16L1 itself and/or LC3 are present in the secretory vesicles 
of these cells has not been carefully examined, but the phenotype 
is similar to the one caused by ATG16L1 depletion in PC12 cells, 
so both experimental systems might share the same mechanism 
to target ATG16L1 to the relevant vesicles. A role of autophagy 
in the unconventional secretion of IL1B has also recently been 
proposed.106 Although whether or not this process is linked to 
single-membrane vesicles has not been explored, it does involve 
colocalization between the IL1B-containing structures and LC3. 
The involvement of autophagy in unconventional secretion of 
otherwise cytoplasmic molecules was first described in yeast 
cells,107,108 suggesting that this is an evolutionarily conserved 
process.

In a different example, melanosomes are single-membrane 
vesicles that contain the pigment melanin and colocalize with 
ATG5 and LC3. In fact, proper function of these vacuoles seems 
to rely on autophagic effectors such as WIPI1, BECN1 or ATG5, 
as revealed by identification of these proteins in a siRNA-based 
screen for melanosome activity.109 The mechanisms that promote 
assembly of the autophagic machinery on these membranes 
are unknown, but the existence of specific inducer molecules 
involved in this job appears as a likely possibility once again.

Taken together, the examples mentioned in this section 
illustrate that intracellular membranes appear to constitute 
common assembly sites for the autophagic machinery to carry 
out biological functions not directly linked to the canonical 
degradation route. In addition, many of these processes appear 
to share a common link to vesicle trafficking, a finding that 
may reflect a more general role of the autophagic machinery in 
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this basic cellular process.110,111 Since autophagy is, in essence, a 
vesicular trafficking phenomenon, the alternative use of some 
autophagic effectors in other nonautophagic trafficking events is 
perhaps not surprising.

Summary and Perspectives

Here we have reviewed a collection of examples showing that 
intracellular membranes constitute a particularly flexible stage 
for the action of the autophagic machinery with both degradative 
and nondegradative purposes. In the most conventional version 
of the process, intracellular vesicles can be subject to canonical 
autophagic phenomena where the relevant vacuole is treated just 
like any other autophagic substrate, and the end product is a 
multimembrane compartment that eventually undergoes fusion 
with the lysosome (Fig. 2A). However, an expanding range of 
examples show, first, that noncanonical single-membrane vesicles 
can be dominantly committed to lysosomal fusion through the 
action of autophagic machinery (Fig. 2B), second, that canonical 
multimembrane autophagosomes may serve nondegradative 
purposes (Fig. 2C) and, third, that unconventional membranous 
structures often constitute assembly sites for functional autophagic 
modules that promote a wide variety of nondegradative activities 
(Fig. 2D). Why intracellular membranes constitute such a 
versatile platform is unclear, but it is conceivable that, in a way, 
the autophagic machinery just represents a subgroup of the 
membrane-trafficking machinery, and that all this complexity 
arises from the intersection between both basic pathways. A 
few key issues in the field deserve particular attention. One is 
the identification of the mechanisms that turn a theoretically 
degradative compartment into a cozy niche for microbial 

replication/survival. Reaching a full consensus on whether LC3 
labeling of single-membrane compartments involves fusion with 
preexisting LC3-positive structures or is mainly due to local 
LC3-II synthesis, is also an important aspect. We anticipate 
that most of the unconventional processes included here are 
likely to be regulated by the action of molecular receptors that 
promote assembly of specific nodal cassettes of the autophagic 
machinery on the relevant membrane sites. Identification of 
these receptors constitutes an important and interesting matter. 
From the available literature, significant autophagic nodes in this 
context appear to be the BECN1-PIK3C3 and ATG12–ATG5-
ATG16L1 complexes, and perhaps LC3 in some cases such as 
damaged mitochondria (Fig. 1). We predict that a wide variety 
of receptor/inducer molecules able to engage these or other yet to 
be discovered nodal effectors will be identified in the near future.
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