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tributes to the development of metabolic disorders in Zucker fatty

rats. However, the underlying mechanisms of the metabolic disor�

ders are poorly understood. We hypothesized that the metabolic

disorders were triggered at a stage earlier than the 8 weeks we

had previously reported. In this study, we investigated early

molecular events induced by the sucrose and linoleic acid diet in

Zucker fatty rats by comparison with other combinations of

carbohydrate (sucrose or palatinose) and fat (linoleic acid or oleic

acid). Skeletal muscle arachidonic acid levels were significantly

increased in the sucrose and linoleic acid group compared to the

other dietary groups at 4 weeks, while there were no obvious

differences in the metabolic phenotype between the groups.

Expression of genes related to arachidonic acid synthesis was

induced in skeletal muscle but not in liver and adipose tissue in

sucrose and linoleic acid group rats. In addition, the sucrose and

linoleic acid group exhibited a rapid induction in endoplasmic

reticulum stress and abnormal lipid metabolism in skeletal muscle.

We concluded that the dietary combination of sucrose and linoleic

acid primarily induces metabolic disorders in skeletal muscle

through increases in arachidonic acid and endoplasmic reticulum

stress, in advance of systemic metabolic disorders.

Key Words: arachidonic acid, combination diet, lipotoxicity, 

insulin sensitivity, ER stress

IntroductionDiet is the most important etiological factor involved in the
onset of metabolic syndrome and type-2 diabetes. In parti-

cular, excessive calorie intake and chronic consumption of a high
fat and/or carbohydrate diet causes obesity and insulin resistance,
leading to metabolic syndrome and type-2 diabetes. At present, the
nutritional quality of a diet and the quantities ingested are thought
to be important. Consumption of highly glycemic carbohydrates
and saturated fatty acids, such as palmitic acid (C16:0), largely
contribute to abnormal glucose and lipid metabolism indepen-
dently of over-nutrition. In addition, since diet per se contains a
large number of nutrients, the combined effects of dietary carbo-
hydrate and fat could be added to the individual effects as nutri-
tional interactions. However, to our knowledge, little is known
about the relationship between the implications of nutritional
interactions and the development of metabolic disorders.
Previously, we demonstrated that a dietary combination of

sucrose and linoleic acid (SL) could contribute strongly to the
development of metabolic disorders in Zucker fatty rats at 8 weeks

compared with other isocaloric diets containing different combi-
nations of carbohydrate and fat, including more ameliorative pala-
tinose (also known as isomaltulose, a sucrose analogue) and oleic
acid (C18:1 n-9).(1) We hypothesized that metabolic abnormalities
may have already occurred before the 8 weeks. Investigation of
this earlier event is necessary to understand the underlying
mechanisms of metabolic abnormalities or beneficial effects
caused by a combination of dietary carbohydrate and fat. Given
the similar obese phenotype in all dietary groups in the previous
study, the adverse effects of the SL diet are due to obesity-
independent mechanisms.(1) Excessive lipid accumulation in non-
adipose tissue, such as the liver, skeletal muscle, and pancreas,
is strongly associated with cellular dysfunction and damage as
“lipotoxicity”, while the particular intracellular lipids present
have been paid little attention to date. Matsuzaka et al.(2) reported
that metabolic abnormalities, such as insulin resistance and
hyperglycemia, could be ameliorated by the modification of
hepatic fatty acid composition in Elovl6-deficient mice, even
in the presence of persistent obesity and hepatosteatosis. In
addition, specific alteration in tissue lipid composition has been
shown to be closely involved in cellular dysfunction and meta-
bolic disorders.(3,4)

Linoleic acid is an essential n-6 polyunsaturated fatty acid
(PUFA) with physiological significance due to its conversion to
arachidonic acid (C20:4 n-6). A fat-1 transgenic mouse, which
expresses the C. elegans fat-1 gene encoding an n-3 fatty acid
desaturase that converts n-6 to n-3 fatty acids, can lead to abundant
n-3 fatty acids with reduced levels of n-6 fatty acids in organs
and tissues.(5) This model is resistant to a high fat diet and
streptozotocin-induced metabolic complications due to the reduc-
tion in n-6 linoleic and arachidonic acid concentration in their
organs.(6,7) These findings strongly suggest that compositional
changes in n-6 PUFAs in peripheral tissues play a crucial role in
the development of metabolic disorders. There is evidence that a
dietary high n-6/n-3 PUFA ratio is associated with an increase
in the prevalence of diabetes and cardiovascular disease.(8,9) In
practice, the fatty acid composition of plasma and peripheral
tissues are primarily affected by dietary fatty acids,(10–12) and by
carbohydrates to a lesser extent.(13) Sucrose is more readily digest-
ible and ingestible than palatinose and individuals who consume
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a sucrose-rich diet often present with postprandial hyper-
glycemia.(14,15) Excessive glucose influx and/or compensatory
hyperinsulinemia also affects fatty acid metabolism in peripheral
tissues.
In this study, we investigated early molecular events to under-

stand the mechanism by which simultaneous consumption of
sucrose and linoleic acid can cooperatively modify tissue fatty
acid composition, resulting in progressive metabolic disorders in
Zucker fatty rats.

Materials and Methods

Animal and experimental design. All the animal proce-
dures were performed in accordance with guidelines for the care
and use of animals at the University of Tokushima as previously
described.(1) Briefly, 11-week old, male Zucker fatty (fa/fa) rats
(Charles River, Kanagawa, Japan) were randomly divided into 1
of 4 dietary groups and given an isocaloric diet containing an
abundance of (1) palatinose and oleic acid (PO), (2) palatinose
and linoleic acid (PL), (3) sucrose and oleic acid (SO), and (4)
sucrose and linoleic acid (SL), for 4 weeks under PO group-based
pair-feeding. All other components were almost identical between
the groups. The detailed composition of experimental diets has
been previously described.(1)

Oral glucose tolerance test (OGTT) and insulin tolerance
test (ITT). The OGTT was performed after 3 and 4 weeks. Rats
were fasted for 12 h before glucose (2 g/kg BW) was orally
administrated. ITT was performed at 4 weeks: insulin (0.75 U/kg
BW, Novolin R, Novo Nordisk, Bagsvaerd, Denmark) was
intraperitoneally administrated to the unanesthetized rats. Plasma
glucose and insulin levels were determined in blood samples
collected from the tail vein at the time point indicated in Fig. 1.

In vivo 2�deoxy�D�glucose uptake (2�DG) assay. In vivo
2-DG uptake in peripheral tissues at 4 weeks was determined
using a commercial non-radioisotope 2-DG measurement kit
(Cosmo Bio, Tokyo, Japan), according to a previous report.(16)

Briefly, rats were injected through a jugular vein catheter with
non-radiolabeled 2-DG (20 μl/kg BW) after 12 h fasting. Insulin
(0.75 U/kg BW) was injected into the same catheter 10 min before
the 2-DG injection. After 20 min, the rats were rapidly killed by
exsanguination, tissue samples were dissected and quickly frozen
with liquid nitrogen and stored at –80°C until analysis.

Tissue fatty acid composition. Whole lipid was extracted
from snap-frozen tissue samples with water/chloroform/methanol
(0.7:1:1, vol/vol/vol) containing butylated hydroxytoluene as an
antioxidant, according to the method of Bligh and Dyer.(17) The
extracted lipids were trans-methylated with HCl-methanol at
100°C for 2 h. The fatty acid methyl esters were separated using
gas-liquid chromatography (GC-18A, Shimadzu, Kyoto, Japan)
with a capillary column (SP2330, Supelco, Bellefonte, PA).
Individual fatty acids were identified by comparing the retention
time of each peak with those of the internal standards.

RNA preparation and quantitative RT�PCR. Total RNA
was extracted and then RT-PCR reactions were performed as
previously described.(1) The sequence of gene-specific primers
are listed in our previous report.(1) Additional primers used in this
study are listed in Table 1.

Immunoblotting. Total protein was extracted from snap-
frozen tissue samples using lysis buffers and inhibitors for both
protease and phosphatase (Nacalai Tesque, Kyoto, Japan). Samples
were denatured by heating at 95°C for 5 min in a sample buffer
in the presence of 5% 2-mercaptoethanol. Proteins were separated
by SDS-PAGE and transferred onto PVDF membrane (Immobilon-
P, Millipore, Bedford, MA) by electrophoresis. Protein-bound
membranes were treated with target-specific protein antibodies
to p-Akt (Ser473), total-Akt, p-JNK (Thr183/185), total JNK
p-AMPKα (Thr172), total AMPKα, β-actin (Cell Signaling
Technology, Beverly, MA), and SREBP-1c (Santa Cruz Biotech-

nology, Santa Cruz, CA) and visualized using a luminescent
image analyzer (LAS-3000UVmini, Fujifilm, Tokyo, Japan).
The data were also quantified using Malti Gauge software ver. 3.0
(Fujifilm).

Statistical analysis. Results were expressed as means ± SEM.
The significance of differences between the groups was deter-
mined by ANOVA or the nonparametric Kruskal-Wallis test,
followed by a post-hoc test. The significant effects of differences
in dietary carbohydrate and fat were identified by 2-way ANOVA
followed by the Tukey-Kramer post-hoc test. These statistical
calculations were performed using Excel Toukei 2006 (SSRI,
Tokyo, Japan) and Graph Pad Prism ver. 5 (Graph Pad Software,
San Diego, CA). Differences with a p value<0.05 were considered
statistically significant.

Results

Glucose tolerance and whole body insulin sensitivity.
After 4-weeks of feeding, the metabolic phenotypes, including
body weight, visceral fat content, plasma glucose, triacylglyceride
(TG), adipokines and hepatic TG content were similar between the
groups (Table 2). However, OGTT revealed that plasma insulin
levels were consistently higher in the high-linoleic acid groups
(PL and SL) compared with the high-oleic acid groups (PO and
SO) at 3 weeks: plasma glucose levels showed little difference
between the groups, except for a small increase in blood glucose
levels at 120 min in the SL group (Fig. 1A and B). Plasma glucose
levels in the SL group remained lower relative to the reduced
insulin secretion during OGTT at 4 weeks (Fig. 1C). It is note-
worthy that plasma insulin levels were dramatically decreased in
the SL group at 4 weeks (Fig. 1D). At the same time, ITT revealed
that the SL group was modestly sensitive to exogenous insulin
compared with the other groups (Fig. 1E). Overall, the investiga-
tion at 4 weeks was considered to be sufficient to demonstrate
early molecular events induced by the SL diet in Zucker fatty rats.

In vivo glucose uptake in peripheral tissues. To elucidate
the effects of each diet on peripheral insulin sensitivity, in vivo 2-
DG uptake in the peripheral tissues was determined under insulin
stimulation. The results demonstrated that 2-DG uptake tended
to be enhanced both in the skeletal muscle (gastrocnemius and
soleus) and epididymal white adipose tissue (eWAT) in the SL
group compared to other groups (Fig. 2A–C). In addition, hepatic
2-DG uptake was significantly enhanced in the SL group com-
pared to the PO and SO groups (Fig. 2D). Akt phosphorylation
at Ser473 was highest in all tissues isolated from the SL group
in the presence of insulin administration (Fig. 3A–D). Taken
together, the phenotype of the SL group was characterized by
both decreased insulin secretion and increased peripheral insulin
sensitivity at 4 weeks.

Fatty acid composition in peripheral tissues. Fatty acid
composition of the liver, soleus muscle, and eWAT was deter-
mined by gas-liquid chromatography. As expected, the tissue fatty
acid profile was directly affected by fatty acid composition in each
diet: oleic acid levels were increased in the PO and SO groups,
while linoleic acid levels were increased in the PL and SL groups
(Fig. 4A–C). In addition to the dietary fatty acid composition, the
type of dietary carbohydrate was, at least in part, another determi-
nant of the tissue fatty acid profile (Fig. 4A–C). We also found
tissue-specific differences in arachidonic acid levels between the
liver and soleus muscle, however, levels in eWAT were modified
by dietary combinations of carbohydrate and fat (Fig. 4A–C).
Arachidonic acid levels were significantly increased in both
tissues in the SL group compared to other groups at 4 weeks
(Fig. 4A and B).

Tissue�specific change in glucose and lipid metabolism.
To evaluate the influence of the alteration in fatty acid profile

on cellular glucose and lipid metabolism, we examined gene
expression in relation to glucose and lipid metabolism in peri-
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pheral tissues. In the soleus muscle, lipogenic gene expression
was remarkably increased in the SL group (Fig. 5A). More impor-
tantly, the mRNA levels of delta-5 desaturase (D5D) and fatty acid
elongase 5 (Elovl5), which are enzymes converting linoleic acid
to arachidonic acid, and fatty acid translocase/cluster of differenti-
ation 36 (FAT/CD36), respectively, were also significantly in-
creased in the SL group but not the PL group (Fig. 5A). However,

we did not find similar induction levels of genes involved in
glucose and lipid metabolism in the liver and eWAT (Fig. 5C).
Induction of key transcription factors in lipid synthesis, sterol-
regulatory element binding protein 1c (SREBP1c) and carbo-
hydrate responsive element binding protein (ChREBP), may be
partly responsible for the induction of lipogenesis genes in the
soleus muscle by the SL diet (Fig. 5A and D). The SL group also

Fig. 1. Glucose tolerance and whole body insulin sensitivity. OGTT was performed at 3 weeks (A and B) and 4 weeks (C and D). Plasma glucose and
insulin levels were measured in a blood sample collected at each indicated time after glucose administration (2 g/kg BW). (E) ITT was performed at 4
weeks. Plasma glucose levels at each indicated time were represented as the percent of the value at time 0. Results were means ± SEM (n = 5–6).
*p<0.05 vs PL group for SL group, †p<0.05 vs PO group for PL group, and §p<0.05 vs PL group for SO group.
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showed the lowest phosphorylation of 5'AMP-activated protein
kinase (AMPK) in the soleus muscle (Fig. 5E). In contrast, hepatic
mRNA expression of D5D and delta-6 desaturase (D6D) was
decreased in the PL and SL groups (Fig. 5B), indicating a physio-
logical response to maintain a balance of hepatic fatty acid compo-
sition.

Endoplasmic reticulum (ER) stress response in skeletal
muscle. An imbalance between de novo lipogenesis and fatty
acid oxidation causes cellular dysfunction in skeletal muscle
through lipotoxicity-induced cellular responses, such as ER
stress.(18,19) As expected by the enhanced lipogenesis, mRNA
expression of ER stress-inducible genes, such as binding immuno-

globulin protein (Bip), C/EBP homologous protein (Chop), and
X-box binding protein 1 (Xbp1) was remarkably increased in the
SL group compared to the other groups (Fig. 6A). c-Jun NH2-
terminal kinase (JNK) plays an important role in the development
of insulin resistance in response to inflammation and ER
stress.(20,21) We also found that the SL diet could promote JNK
activation in the soleus muscle in the presence of the induction of
ER stress after 4 weeks of feeding (Fig. 6B).

Phospholipid remodelling in skeletal muscle ER. Finally, 
we focused on whether a compositional change in phospholipids
is involved in the induction of ER stress in the soleus muscle. A
member of the membrane-bound O-acyltransferase (MBOAT)

Table 1. Sequence of oligonucleotide primers for quantitative RT�PCR analysis

Gene name Size (bp) Accession No.
Primer sequence

Forward Reverse

ChREBP 113 AB074517 5'�CAGCTTCTCGACTTGGACTG�3' 5'�TTGCCAACATAAGCGTCTTC�3'

Elovl5 150 NM_134382 5'�TTCTTCTGTCAGGGAACACG�3' 5'�GTGCAGGACTGTGATCTGGT�3'

D5D 178 NM_053445 5'�AAGCACATGCCATACAACCA�3' 5'�CAGCGGCATGTAAGTGATGA�3'

D6D 144 NM_031344 5'�ACATCATCGTCATGGAAAGC�3' 5'�CAGAAAGGTGGCCATAATCA�3'

ATGL 148 NM_001108509 5'�GAGATGTGCAAACAGGGCTA�3' 5'�CAGTCCTCTCCTCAGTCACG�3'

DGAT 150 NM_053437 5'�GACAGCGGTTTCAGCAATTA�3' 5'�GGGGTCCTTCAGAAACAGAG�3'

FATP 100 U89529 5'�AGGTGACGTGCTAGTGATGG�3' 5'�CTCCGTGGTGGATACGTTCT�3'

GPAT 116 NM_017274 5'�GTTATCAGAATGCTGCGGAA�3' 5'�GAGAGGGGAGCAGATACAGG�3'

FAT/CD36 145 NM_031561 5'�ATGCCGGTTGGAGACCTACT�3' 5'�CCTCTGGGTTTTGCACGTCA�3'

FABP 174 NM_024162 5'�CATGAAGTCACTCGGTGTGG�3' 5'�TCATCTGCTGTGACCTCGTC�3'

Elovl6 99 NM_134383 5'�AGCAAAGCACCCGAACTAGG�3' 5'�GTACAGGAGCACAGTGATGTGG�3'

5�LOX 198 NM_012822 5'�CCCATCTGCCTGCTGTATAA�3' 5'�CAGATGTGTGCGGAGAAGAT�3'

12�LOX 92 L06040 5'�TCTGGCAGATCATGAATCGG�3' 5'�GCTCTGCAGTTCATAGTCGT�3'

PPARγ 147 AF156665 5'�TCAAACCCTTTACCACGGTT�3' 5'�CAGGCTCTACTTTGATCGCA�3'

TNF�α 143 NM_012675 5'�ATGGATCTCAAGACAACCA�3' 5'�TCCTGGTATGAAATGGCAAA�3'

MCP�1 93 M57441 5'�CCCTAAGGACTTCAGCACCTTTG�3' 5'�AAGTGCTTGAGGTGGTTGTGG�3'

Acrp30 140 NM_144744 5'�GGAAACTTGTGCAAGGTTGGA�3' 5'�GGTCACCCTTAGGACCAAGA�3'

Bip 279 NM_013083 5'�CCTGTTGCTGGACTCTGTGA�3' 5'�AGGAGTGAAGGCCACATACG�3'

Chop 231 NM_001109986 5'�TTGGGGGCACCTATATCTCA�3' 5'�CGCACTGACCACTCTGTTTC�3'

Xbp1 229 NM_001004210 5'�GAGCAGCAAGTGGTGGATTT�3' 5'�GAGGCGCACGTAGTCTGAGT�3'

Atf3 225 NM_012912 5'�CCAGGTCTCTGCCTCAGAAG�3' 5'�GCCACCTCAGACTTGGTGA�3'

Atf6 249 NM_001107196 5'�AGCAGAGCCACTGAAGGAAG�3' 5'�GGGGTCCTTCAGAAACAGAG�3'

LPCAT3 188 NM_001012189 5'�GATGGCCTACCTTCTTGCTG�3' 5'�ATGAGGGGACACCCAGTATG�3'

LPIAT1 177 NM_001134978 5'�ATTGCAGCTTCCCTGGAGTA�3' 5'�GGCACTCCTCAAAACGTAGG�3'

SERCA1 170 NM_058213 5'�AAAGGAAGGAGCCCAGGTTA�3' 5'�GCTCACCCCAAAATAGGACA�3'

SERCA2a 228 NM_001110823 5'�TATTGGCTGGTGAAGGAGGT�3' 5'�GACAATGTCTGCTGGCTCAA�3'

SERCA2b 176 NM_001110139 5'�CCGCTTCCTAAACATTGCAG�3' 5'�CAACAGCTAAAACCCCACTTG�3'

Table 2. Body weight, plasma concentrations, and hepatic lipid content of Zucker fatty rats fed each diet for 4 weeks

Values are mean ± SEM (n = 6). *p<0.05 vs PO, PL, SL groups for SO group.

PO PL SO SL

Body weight (g) 607.21 ± 11.21 600.76 ± 17.36 624.62 ± 13.25 621.15 ± 11.40

Visceral fat (g/kg BW) 137.34 ± 4.54 135.15 ± 6.63 142.92 ± 3.72 142.62 ± 3.61

Mesenteric fat 37.13 ± 1.42 37.35 ± 2.15 41.10 ± 1.48 39.49 ± 1.85

Epididymal fat 38.41 ± 1.89 36.93 ± 2.47 42.38 ± 2.36 40.74 ± 1.60

Retroperitoneal fat 61.80 ± 5.38 60.87 ± 3.33 59.44 ± 1.34 62.44 ± 1.60

Plasma concentrations

Glucose (mmol/L) 7.68 ± 0.15 6.55 ± 0.46 7.04 ± 0.31 8.07 ± 1.07

Insulin (nmol/L) 1.91 ± 0.21 1.62 ± 0.25 1.31 ± 0.09 2.13 ± 0.43

TG (mg/dL) 147 ± 14 166 ± 23 215 ± 37 150 ± 18

T�Chol (mg/dL) 162 ± 14 159 ± 15 226 ± 24* 171 ± 17

NEFA (mEq/L) 0.68 ± 0.05 0.76 ± 0.05 0.74 ± 0.06 0.74 ± 0.05

Adiponectin (μg/mL) 10.18 ± 3.83 9.25 ± 3.19 13.56 ± 2.18 13.57 ± 3.81

Leptin (pg/mL) 127.4 ± 23.5 93.6 ± 21.1 131.0 ± 14.4 129.0 ± 10.5

Hepatic TG (mg/g tissue) 107 ± 5.0 128 ± 18 121 ± 15 128 ± 18
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family encoding lipid remodeling enzymes, lysophosphatidyl-
choline acyltransferase 3 (LPCAT3) and lysophosphatidylinositol
acyltransferase 1 (LPIAT1, also known as MBOAT7) have been
identified as key enzymes incorporating PUFA and arachidonic
acid into phospholipid species.(22) The SL group showed a trend
towards higher LPCAT3 and LPIAT1 mRNA expression as well
as liver X receptor (LXR) α compared with the other groups
(Fig. 6A). Compositional changes in membrane phospholipids
can affect the membrane fluidity and the activity of proteins which
are located in the phospholipid membrane. Sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) is a Ca2+ pump localized in the
sarcoplasmic reticulum (SR)/ER membrane which transports
Ca2+ from the cytosol to the SR/ER lumen against a large gradient
of concentration. In this study, mRNA expression levels of
SERCA1 tended to increase in the SL group to levels similar to
LPCAT3 and LPIAT1, however, mRNA expressions of SERCA2a
and SERCA2b did not follow this trend (Fig. 6A).

Discussion

We have previously reported that 8-weeks feeding of the SL
diet could strongly contribute to the development of metabolic
complications in Zucker fatty rats.(1) In the present study, we
focused on studying the early molecular events induced by the
adverse interactions between carbohydrate and fat. Here, we
demonstrate that the adverse consequences of the SL diet may be
preceded by changes in the fatty acid profile of peripheral tissues.
In particular, arachidonic acid levels were significantly increased
in the liver and soleus muscle in the SL group at 4 weeks.
However, a significant increase in the mRNA expression of
Elovl5, D5D, and FAT/CD36 was observed only in the soleus
muscle at 4 weeks. These findings indicate that the activation of
arachidonic acid biosynthesis and cellular uptake may be involved

in the abundance of arachidonic acid in the skeletal muscle. The
elevated hepatic arachidonic acid may simply reflect plasma
arachidonic acid levels (data not shown), because D5D and
Elovl5 did not increase in the liver at 4 weeks. In addition, mRNA
expression of other lipogenic genes, such as ACC and SCD-1, was
also significantly increased in the skeletal muscle in the SL group.
Therefore, skeletal muscle lipid metabolism is considered to be
more susceptible to the interactions between dietary carbohydrate
and fat in Zucker fatty rats. There is evidence that membrane
fatty acid composition in skeletal muscle may be most responsive
to the balance of dietary n-6 and n-3 PUFA.(23) Generally, oral
administration of linoleic acid can endogenously increase arachi-
donic acid levels in membrane phospholipids.(10–12) Arachidonic
acid biosynthesis is often augmented under hyperglycemic condi-
tions, which in turn links to cellular dysfunction.(24,25) The SL
diet-induced gene expression in skeletal muscle is consistent with
the previous study identifying early inducible genes in skeletal
muscle in response to physiological superimposing hyperglycemia
and hyperinsulinemia.(26) A sucrose-rich diet has a higher glycemic
index than a palatinose-rich diet,(15) and linoleic acid and arachi-
donic acid per se have been reported to have an insulinotropic
effect on pancreatic beta-cells.(27–30) Our results suggest that
simultaneous ingestion of sucrose and linoleic acid could poten-
tially synchronize both hyperglycemia and hyperinsulinemia.
These physiological responses in turn have a large impact on
skeletal muscle glucose and lipid metabolism, leading to the acti-
vation of lipogenesis and an increase in arachidonic acid levels.
Furthermore, the SL group exhibited a rapid induction in ER

stress in the skeletal muscle. An imbalance of phospholipid
species and constituent fatty acids can be implicated in ER stress
and insulin resistance.(18,19) Funai K et al.(31) reported that muscle
lipogenesis regulates cytosolic Ca2+ levels by phospholipid
remodeling in the SR membrane to regulate insulin sensitivity

Fig. 2. In vivo glucose uptake in peripheral tissues at 4 weeks. Insulin�stimulated 2�DG uptake in gastrocnemius (A), soleus (B), epididymal adipose
tissue (eWAT) (C), and liver (D) were determined by non�radioisotopic assay. Results were means ± SEM (n = 4–6). *p<0.05.
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through the calcium/calmodulin-dependent protein kinase kinase
(CaMKK)-AMPK pathway. SERCA plays a key role in the inacti-
vation of the cytosolic CaMMK-AMPK pathway by transporting
Ca2+ from the cytoplasm into the SR lumen.(31) We found that
mRNA expression of SERCA1 was remarkably increased in the
SL group compared to the other groups. Correspondingly, AMPK
activity was lower in the SL group compared with the other
groups. Thus, attenuation of the CaMKK-AMPK pathway, at
least in part due to the decrease in cytosolic Ca2+ levels, may be
responsible for SL diet-induced abnormal metabolic homeostasis
in the skeletal muscle. Given the increased mRNA expression
of LPCAT3 and LPIAT1, as well as LXRα, in the SL group,
preferential incorporation of arachidonic acid into phospholipids
of the SR membrane may be an important modification involved

in the induction of ER stress and increased SERCA levels.
Recently, LXRs have been reported to play an important role in
regulating ER stress through LPCAT3-mediated dynamic modula-
tion of membrane phospholipid composition.(32) Moreover, the
activation of JNK protein kinase was more prominent in the
skeletal muscle of the SL group. In contrast, the PO diet would
be a more beneficial combination in the prevention of skeletal
muscle metabolic abnormalities at 4 weeks. Collectively, we
concluded that these metabolic abnormalities can be followed by
insulin resistance in the skeletal muscle of the SL group rats.
Unexpectedly, ITT demonstrated that enhanced glucose uptake

was observed in the skeletal muscle, eWAT and liver at 4 weeks
in the SL group. This result was supported by the enhancement
of Akt phosphorylation at Ser473, which is a downstream signal

Fig. 3. Akt phosphorylation in peripheral tissues at 4 weeks. Protein samples extracted from gastrocnemius (A), soleus (B), eWAT (C), and liver (D)
under insulin stimulation were subjected to immunoblotting for p�Akt (Ser473) and Akt, as indicated. Intensity of the signals was quantified using
software (Malti Gauge ver. 3.0). Results were means ± SEM (n = 5–6) and calculated as relative expression levels to the PO group. *p<0.05.
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Fig. 4. Fatty acid composition in peripheral tissues at 4 weeks. Fatty acid composition of whole lipid extracted from soleus muscle (A), liver (B), and
eWAT (C) were determined by gas�liquid chromatography. Results were means ± SEM (n = 5–6) and represented as a percentage of total fatty
acid content. *p<0.05. Significant dietary effects of carbohydrate and fat (p<0.05) by 2�way ANOVA were described as C (palatinose vs sucrose) and
F (oleic acid vs linoleic acid).
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Fig. 5. Tissue�specific changes in glucose and lipid metabolism at 4 weeks. mRNA expression in soleus muscle (A), liver (B), and epididymal adipose
tissue (eWAT) (C) was determined by quantitative RT�PCR analysis. (D and E) Protein samples extracted from soleus muscle were subjected to
immunoblotting for SREBP�1c (D), p�AMPKα (Thr172) and total AMPKα, as indicated. Results were means ± SEM (n = 5–6) and calculated as relative
expression levels to the PO group. *p<0.05.
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for the insulin receptor. Therefore, skeletal muscle insulin
sensitivity was enhanced in the SL group under exogenous insulin
stimulation, even in the presence of abnormal lipid metabolism
and ER stress. These results may provide a more satisfactory
explanation for the conflicting observation during OGTT at 4
weeks that the SL group did not exhibit overt hyperglycemia
relative to the decline in plasma insulin levels. It has been reported
that arachidonic acid can play another role in stimulating glucose
uptake by increasing glucose transporter levels in the plasma
membrane and glucose transport activity in adipocytes.(33) It has
also been reported that cellular arachidonic acid potentially
interacts with phosphoinositide 3-kinase (PI3K)/Akt or phos-
phatase and tensin homolog (PTEN) and thereby activates its
downstream signaling in endothelial and cancer cells.(34–36) These
findings suggest that a characteristic distribution of arachidonic
acid in peripheral tissues may be physiologically important to
maintain systemic glucose homeostasis and normal cellular func-
tion. Nevertheless, 8-weeks feeding of the SL diet eventually lead
to severe metabolic disorders in Zucker fatty rats, probably due to
coincidental impaired insulin secretion.(1,37) Indeed, exogenous

insulin administration was required for the high activity of glucose
uptake and insulin signaling shown in the SL group. It is note-
worthy that elevated arachidonic acid in the skeletal muscle and
liver from the SL group was diminished after 8 weeks (data not
shown).
Finally, we should mention the responsibility of the absence of

leptin signaling in Zucker fatty rats due to a mutation in the leptin
receptor gene (Lepr), since peripheral leptin signaling plays an
important role in the prevention of lipotoxicity-induced metabolic
dysfunction in skeletal muscle and pancreas.(38–41) Our results
demonstrate that skeletal muscle and pancreatic islets(37) were an
initial target tissue response to the adverse dietary interactions of
the SL diet in Zucker fatty rats. Further research using other
animal models is needed to determine the effect of deficient
peripheral leptin signaling on the molecular mechanisms reported.
In conclusion, we demonstrate that the adverse consequences of

a dietary combination of sucrose and linoleic acid in Zucker fatty
rats can be initiated by abnormal lipid metabolism in the skeletal
muscle. Although the underlying mechanism is still under investi-
gation, an abnormal accumulation of cellular arachidonic acid

Fig. 6. ER stress response in soleus muscle at 4 weeks. (A) mRNA expression of genes related to ER stress and phospholipid remodeling in soleus
muscle was determined by quantitative RT�PCR analysis. (B) Protein samples extracted from soleus muscle were subjected to immunoblotting for p�
JNK (Thr183/185) and total JNK, as indicated. Results were means ± SEM (n = 5–6) and calculated as relative expression levels to the PO group.
*p<0.05.
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may be involved in the molecular basis of metabolic abnormalities
in the skeletal muscle. Our findings suggest that a selective
combination between dietary carbohydrates and fats can induce
compositional and distributional changes in intracellular fatty
acids in specific tissues, resulting in the development of metabolic
disorders.
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