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cDNA Hybrid Capture Improves Transcriptome Analysis on
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The use of massively parallel sequencing for studying RNA expression has greatly enhanced our under-
standing of the transcriptome through the myriad ways these data can be characterized. In particular,
clinical samples provide important insights about RNA expression in health and disease, yet these studies
can be complicated by RNA degradation that results from the use of formalin as a clinical preservative and
by the limited amounts of RNA often available from these precious samples. In this study we describe the
combined use of RNA sequencing with an exome capture selection step to enhance the yield of on-exon
sequencing read data when compared with RNA sequencing alone. In particular, the exome capture step
preserves the dynamic range of expression, permitting differential comparisons and validation of
expressed mutations from limited and FFPE preserved samples, while reducing the data generation
requirement. We conclude that cDNA hybrid capture has the potential to significantly improve tran-
scriptome analysis from low-yield FFPE material. (J Mol Diagn 2014, 16: 440e451; http://dx.doi.org/
10.1016/j.jmoldx.2014.03.004)
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RNA sequencing (RNA-Seq) approaches are designed to
characterize the expressed genome in numerous ways1,2

from defining different types of RNA, such as long non-
coding RNAs,3 to comparing RNA expression,4 splice iso-
forms,5e7 allele-specific expression,8e10 fusions,11e14 RNA
editing,15,16 and other complex questions that define RNA.
This inquiry has been enriched by the development of
massively parallel sequencing applications that permit large
data sets to be generated quickly and at relatively low cost.
In particular, the characterization of RNA expression as a
comparator of diseased versus normal cells from clinical
samples extends information gained from DNA-based
studies, often revealing insights that would be impossible
to ascertain by looking at DNA alone, such as allele-specific
or elevated expression levels.10 To date, most of the dis-
covery studies of transcriptome analyses have traditionally
been conducted using fresh frozen (FF) tumor samples with
stringent criteria applied in terms of cellularity, tumor ne-
crosis, and RNA quality. However, most clinical samples
collected are not FF and are complicated by two common
stigative Pathology

.

characteristics; the use of formalin fixation to preserve
protein and cellular structure for pathologic examination of
the tissue causes degradation of the RNA over time due to
cross-linking and backbone breakage, and clinical samples
often are available only in limited amounts that provide an
equally limited yield of nucleic acids. Furthermore, the
nonuniformity of preservation methods (eg, fixation time,
fixative concentration, and tissue size) can negatively affect
sample quality. Limited sample material also results when
flow sorting or laser capture microdissection is used to pu-
rify the cells of interest or when core biopsies or fine needle
aspirates are obtained for clinical diagnostic procedures.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:cmaher@dom.wustl.edu
mailto:cmaher@dom.wustl.edu
http://dx.doi.org/10.1016/j.jmoldx.2014.03.004
http://dx.doi.org/10.1016/j.jmoldx.2014.03.004
http://dx.doi.org/10.1016/j.jmoldx.2014.03.004
http://jmd.amjpathol.org
http://dx.doi.org/10.1016/j.jmoldx.2014.03.004


cDNA-Capture on FFPE Samples
These low-yield samples obviate the possibility of isolating
polyadenylated transcripts in advance of RNA sequencing
because this isolation would further decrease the amount of
RNA available for library construction, which may intro-
duce sample issues, such as biased transcript representation.

Hence, in the context of pursuing several projects of interest
for our cancer genomics research, we attempted to combine
RNA-Seq with an intermediate enrichment step of exome
capture, which we refer to as cDNA-Capture sequencing, as a
means of addressing these challenges. Several studies have set
the precedent in describing targeted approaches to RNA
sequencing, although they focused on monitoring tens to
hundreds of genes using high-qualitymaterial.17e19Our initial
application of cDNA-Capture sequencing was from abundant
samples for the purposes of identifying transcripts that were
mutated and contributed to host immunosurveillance and
immunoediting.20 Subsequent studies, described here, have
further developed the method of obtaining high-quality RNA-
Seq data from samples that have exceptionally low amounts of
total RNA or have compromised RNA quality because of the
use of formalin fixation. In this article, we present our
approach and illustrate the utility of the method for detecting
expressed variants from degraded RNA due to formalin-
mediated damage and for determining gene expression
levels from extremely limited input material. In addition, we
demonstrate that the hybrid capture step provides a cost
advantage for data generation by concentrating the data yield
onto the exome. The resulting data suggest improved valida-
tion rates of single-nucleotide variants (SNVs) and detection
of gene fusions and splice isoforms while preserving the dy-
namic range of detection for low-abundance transcripts.

Material and Methods

Transcriptome Sequencing

For the FF tumor RNA samples (LUC4, LUC6, LUC7,
LUC13, LUC20) and LNCaP prostate cancer cells, we
selected poly(A) mRNA from approximately 950 ng of input
total RNA using the Ambion MicroPoly(A)Purist Kit
[Thermo Fisher Scientific Inc., Pittsburgh, PA (previously
Life Technologies, Carlsbad, CA)] and converted 20 ng of
isolated mRNA into cDNA using the Ovation RNA-Seq
System version 2 (NuGEN, San Carlos, CA), as previously
described.10 All FF samples had an RNA Integrity Number
(RIN) value of at least 8.0 except LUC7, which was assessed
in duplicate and had RIN values of 6.5 and 7.4 (Supplemental
Table S1). Because the LUC7-T FF failed to generate cDNA
with poly(A) mRNA, we converted 20 ng of LUC7-T FF
total RNA into cDNA. As part of our standard operating
procedures, the formalin-fixed, paraffin-embedded (FFPE)
LUC6 and LUC7 RNA, 1200 ng and 1120 ng, respectively,
was DNase treated and recovered using a 1:1.6 sample to
RNAClean XP bead ratio. LUC6 and LUC7 FFPE samples
had RIN values of 2.0 and 1.9 and were 4.75 and 5.83 years
old, respectively, when RNA was isolated (Supplemental
The Journal of Molecular Diagnostics - jmd.amjpathol.org
Table S2). FFPE-DNase RNA (150 ng) was used as input
into the Ovation RNA-Seq FFPE System (NuGEN) per the
manufacturer protocol. Because of the already small frag-
ment size distribution of the NuGEN-generated cDNA, no
additional fragmentation was performed. One microgram of
each cDNA sample was converted into Illumina-ready li-
braries as described.

SeqCap EZ Human Exome Library Capture Experiments

The LUCcDNA-converted Illumina librarieswere enriched by
hybridization to the SeqCapEZHumanExomeLibrary version
3.0 reagent (Roche NimbleGen, Madison, WI). The targeted
genomic regions in this kit cover 63.5Mbor 2.1%of the human
reference genome, including 98.8% of coding regions, 23.1%
of untranslated regions (UTRs), and 55.5% of miRNA bases
(as annotated by Ensembl version 7321). Each hybridization
reaction was incubated at 47�C for 72 hours, and single-
stranded capture libraries were recovered and cycle amplified
per the manufacturer protocol. The exome capture experi-
mental specifics are listed in Supplemental Table S3, which
describes RNA type, library mass used per capture, pooling
scheme, and post-capture PCR cycles. Post-capture library
sizing used AMpureXP beads to remove residual primer di-
mers from post-capture PCR amplification, and libraries were
diluted to 2 nmol/L for subsequent Illumina sequencing.

cDNA-Capture Dilution Experiment Using Colon
Specimens

Because clinically relevant RNA sources may be limiting in
quantity, we evaluated the effect of DNase-treated low-input
sources by generating a dilution series. Human adult colon
RNA and human adult colon adenocarcinoma RNA (Agilent
Technologies, Santa Clara, CA) were assessed using Qubit
FluorometricQuantitation and theQuant-iTRNAAssay (Life
Technologies, Grand Island, NY). These samples had RIN
values of 7.9 and 8.0, respectively.We diluted the normal and
adenocarcinoma colon RNA to 5, 1, 0.2, and 0.08 ng/mL in 10
mL of nuclease-free water (Life Technologies, Grand Island,
NY). Each dilution was performed in triplicate and corre-
sponded to an RNA mass of 50, 10, 2, and 0.8 ng per sample,
respectively. Although our initial experiment, using 60 ng of
input RNA, did not undergo a DNase treatment step, we
decided to add this step to the lower RNA inputs to mimic our
in-house protocol for cellular RNA isolates. We assessed the
RIN value for each diluted RNA sample using the Agilent
RNA 6000 Pico Assay chip (Agilent Technologies). Next, we
treated each 10-mL RNA sample with 2 units of TURBO
DNase (Life Technologies), concentrated the DNase-treated
RNA samples using a 1:1.8 sample to RNAClean XP bead
ratio (Beckman Coulter, Indianapolis, IN), and recovered the
RNA in 10 mL of nuclease-free water. Each RIN value was
reassessed as above and reported in Supplemental Table S4.
These four DNase-treated RNA samples and the 60 ng of
noneDNase-treated total RNA were used as input into the
441
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Cabanski et al
Ovation RNA-Seq System version 2 following the manu-
facturer protocol (NuGEN). The generated cDNA was
assessed for concentration using the Quant-iT dsDNA HS
Assay (Life Technologies) (Supplemental Table S5). DNA
molecular weight distribution analysis used BioAnalyzer
2100 (data not shown) and Agilent DNA 7500 Chip Assay
(Agilent Technologies).

We fragmented 100 ng of FF-generated cDNA (for each
RNA input, in triplicate) in 1� DNA Terminator End Repair
Buffer (Lucigen, Middleton, WI) using the Covaris S2 and
microTUBEs (Covaris, Woburn, MA) on the following set-
tings: volume, 50 mL; temperature, 4�C; duty cycle, 5; in-
tensity, 4; cycle burst, 200; and time, 90 seconds. The
fragmented ends were converted to blunt ends by adding DNA
Terminator End Repair Enzyme following the manufacturer
protocol. The blunt-ended DNA was purified using a 1:1.6
sample to AMpure XP bead ratio (Beckman Coulter). Ade-
nylation of the 30 DNA fragments used 15 units of the Klenow
Fragment (30/50 exo; New England BioLabs, Ipswich, MA).
Each sample was then ligated with 90 nmol/L of an Integrated
DNA Technologies (Coralville, IA) synthesized dual same
index adapter (oligonucleotide sequences; Illumina, Inc., San
Diego, CA). These index adapters are similar to Illumina
TruSeq HT adapters but have the same 8 bp index on both
strands of the adapter. Binning of multiplexed sample reads
requires 100% identity from the forward and reverse index
sequencing reaction. For the noneDNase-treated sample (60
ng), the library was generated using the Illumina TruSeq LT
single-index adapter. The ligation reactionswere accomplished
using 5000 units of T4 DNA ligase (New England BioLabs).
To purify each ligation reaction and reduce adapter-dimer
carryover, we used a 1:1.3 sample to AMpure XP bead ratio.
Next, for each library ligation,we performedPCRoptimization
to prevent overamplification. The PCR optimization procedure
used 1 mL of ligated sample into the KAPA SYBRFAST
Universal 2� qPCR Master Mix protocol (Kapa Biosystems,
Inc., Woburn, MA) and the universal Illumina library primers:
forward 50 P5 primer (50-AATGATACGGCGACCACCGA-
GATCTA-30) and reverse 30 P7 primer (50-CAAGCAGAA-
GACGGCATACGAGAT-30). PCR amplifications were
performed using the Mastercycler ep realplex real-time PCR
system (Eppendorf, Hamburg, Germany). Once the optimal
PCR cycle number for each sample was determined, we per-
formed eight PCR reactions per sample using the 2� Phusion
High-Fidelity PCRMaster Mix with HF Buffer (New England
BioLabs) and 200 nmol/L P5 and P7 primers. For each sample
octet, we combined and purified the PCR reactions using
MinElutePCRPurification columns according tomanufacturer
protocol (Qiagen Inc., Valencia, CA). Each amplified ligation
was then assessed for concentration usingQuant-iTdsDNAHS
Assay and for size using the BioAnalyzer 2100 and the Agilent
DNA 1000 Assay (Agilent Technologies).

We used 500 ng of each library for SeqCap EZ Human
Exome Library version 3.0 capture. The aliquots were
then pooled, totaling 3 mg of pooled library per capture
(Supplemental Table S6). Each hybridization reaction was
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incubated at 47�C for 72 hours, and single-stranded capture
hybrid fragments were recovered and cycle amplified per the
manufacturer protocol. Capture libraries were subsequently
sized to approximately 300 to 500 bp using a 1:0.6 sample
to AMpureXP bead ratio to which the supernatant was
added to 0.9� volumes of beads. The resulting supernatant
was discarded, the beads washed, and size-fractioned cap-
ture libraries were eluted and diluted to 2 nmol/L stocks for
subsequent Illumina sequencing. These data are available
through National Center for Biotechnology Information
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/gene;
accession number PRJNA228917).

RNA-Seq and cDNA-Capture Analysis

Quality of raw RNA sequence data were assessed by use of
FastQC version 0.10.0 (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc). Paired 2 � 100ebp sequence reads
were first trimmed to remove single primer isothermal ampli-
fication adapters (ligated during cDNA synthesis) using the
read trimmer FAR/Flexbar version 2.17 (http://sourceforge.
net/projects/flexbar) with the following parameters set:
‘eadapter CTTTGTGTTTGA etrim-end left eadaptive-
overlap yes eformat fastq ewrite-lengthdist yes enr-threads
4 emin-overlap 7 emax-uncalled 150 emin-read length 25’.
After trimming, reads were aligned to a modified version of the
human genome reference sequence (National Center for
Biotechnology Informationbuild37)with alternativehaplotype
sequences omitted. Initial segmented alignments were per-
formed using bowtie version 2.0.0-beta722 followed by spliced
alignments with TopHat version 2.0.4.23 During alignment,
TopHat was supplied transcript models in gene transfer format
(GTF) using the ‘-g’ parameter. Transcript models representing
known and predicted human transcripts were obtained from
Ensembl version 67.21 The binary sequence alignment files
obtained by alignment of RNA-Seq reads with TopHat were
summarized by use of SAMStat version 1.08 and SAM tools
version 0.1.18 (specifically the idxstats and flagstat utilities).24

Reads aligning to the target region were extracted using sam-
tools view (specifying the BED file of target regions with the
‘eL’ parameter). The percentage of enrichment for the targeted
region was calculated as the number of reads with both ends
uniquely aligned to the target region dividedby the total number
of uniquely aligned reads. The quality of alignments was
assessed by use of Picard version 1.52 (specifically the Rna-
SeqMetrics utility; http://picard.sourceforge.net/command-
line-overview.shtml). Duplication rates were calculated using
Picard MarkDuplicates. After alignment, expression estimates
in the form of fragments per kilobase of exon per million bases
mapped (FPKM) were calculated by Cufflinks version 2.0.2.25

Transcript models were supplied to Cufflinks using the ‘-g’
option and the same GTF described above. Transcripts corre-
sponding to mitochondrial and ribosomal genes were masked
during calculation of transcript expression estimates. Exon-
exon junction statistics were obtained by parsing the junc-
tions.bed file produced by TopHat. This file reports the
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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cDNA-Capture on FFPE Samples
coordinates of all introns observed by splice aware alignment
of reads to the genome and the number of reads supporting
each. Each observed exon-exon junctionwas cross-referenced
against the known junctions of Ensembl version 67 human
transcripts.GC content was calculated as the percentage ofGC
bases using Ensembl gene annotations. Genes were split into
four equal-sized bins based on GC content. Gene expression
values were calculated as the mean FPKM across all samples
and were subsequently log2 transformed.

Variant allele frequencies (VAFs) were calculated by
interrogating binary sequence alignment files with the
Bio::DB::Sam BioPerl package at somatic SNV positions
detected in whole genome sequence data from tumor and
normal DNA samples from the same tumors as those profiled
by RNA sequencing. Specifically, the VAF for a variant is the
ratio of variant supporting reads to the total number of reads
covering the variant position. Somatic variants were detected
by a union of VarScan version 2.2.6,26 Somatic Sniper
version 1.0.2,27 and Strelka version 0.4.6.2.28 Variants pre-
dicted from each of these somatic variant callers were filtered
according to the authors’ instructions. Variants considered in
this analysis were further limited to only Tier 1 variants (ie,
those occurring within the protein-coding portion of exons or
anywhere within a predicted noncoding RNA).

Gene fusions were detected using ChimeraScan version
0.4.529 with default parameters. Read counts for each fusion
were determined by aggregating the encompassing and span-
ning reads identified byChimeraScan. Normalized gene fusion
read support was calculated as the total number of encom-
passing and spanning reads per million reads sequenced.

Figures were created in R version 2.15.2 (http://www.r-
project.org) using packages ggplot230 and VennDiagram.31

Differential Gene Analysis

Read counts were obtained for the set of Ensembl version 67
transcripts using BEDTools version 2.16.232 for each colon
replicate. Transcripts without a corresponding HUGO gene
symbol were removed. If a gene had multiple transcripts,
only the transcript with the highest overall count across all
replicates was kept. For each dilution, lowly expressed
genes were removed by requiring at least three samples to
have at least 50 read counts. Differentially expressed genes
between the three tumor and normal replicates from each
dilution were calculated using edgeR version 3.0.833 with a
false discovery rate cutoff of 10�5. For each pair of di-
lutions, Spearman’s rank correlation and corresponding
P value were calculated between the edgeR log10 P values.

Results

cDNA-Capture on Lung Adenocarcinoma in FF Samples

To evaluate the performance of cDNA-Capture using iso-
lated polyA mRNA from FF samples, we first compared
data from this approach to previously generated RNA-Seq
The Journal of Molecular Diagnostics - jmd.amjpathol.org
data from four lung adenocarcinoma (LUC) patients.10 In
contrast to the 418 million to 445 million transcriptome
reads generated from each RNA-Seq library, only 137
million to 191 million reads were generated from each
cDNA-Capture library (Figure 1A). The percentage of reads
mapped to the genome was similar for RNA-Seq (74% to
86%) and cDNA-Capture (84% to 86%) (Figure 1A and
Supplemental Table S7). However, the distribution of the
alignments varied between the two approaches. Hybrid
capture led to a >30% increase in the proportion of reads
aligning to the targeted regions for each sample (Figure 1B).
As a result, relative to RNA-Seq, all of the cDNA-Capture
libraries displayed both a decrease in the intronic aligning
reads (cDNA-Capture mean, 11.8%; RNA-Seq mean,
30.2%) and an increase in the proportion of reads aligning to
coding regions (cDNA-Capture mean, 68.3%; RNA-Seq
mean, 34.1%) (Figure 1C). The coverage across transcripts
was similar for both cDNA-Capture and RNA-Seq data,
with greatest coverage occurring in the middle of transcripts
(Figure 1D). We also observed a similar distribution in the
depth of gene coverage for RNA-Seq and cDNA-Capture
(Figure 1E). Taken together, this finding suggests that
cDNA-Capture sequencing using FF specimens achieves
similar coverage levels as RNA-Seq, with only one-third the
amount of sequencing reads.

Gene Expression Using cDNA-Capture

To assess the ability of cDNA-Capture to recapitulate gene
expression values observed with RNA-Seq, we measured
gene-level expression and compared the two approaches. Of
the 19,741 protein-coding genes, 98.8% had corresponding
probes in the capture reagent and thus should be enriched by
cDNA-Capture. There existed a high concordance of gene
expression for the set of all protein-coding genes (Pearson
correlation, 0.93 to 0.96; one-sided P < 10�15) across all
four lung tumors (Figure 2A and Supplemental Figure S1).
More than two-thirds of genes (67.7% to 73.2%) had higher
FPKM expression values in cDNA-Capture than RNA-Seq.
There was no clear effect of poor probe design on gene
expression because even genes that contained several short
exons were adequately covered (data not shown). On
average, cDNA-Capture was able to rescue high expression
levels (FPKM > 1) of 25 genes (range, 18 to 37) that were
missed by RNA-Seq (FPKM <0.1). Conversely, for three of
the lung tumors, fewer than four genes (range, 3 to 4) dis-
played high expression in RNA-Seq but were missed by
cDNA-Capture, with the exception of LUC20 (65 genes).
cDNA-Capture also showed a consistent increase in the
percentage of reads spanning exon-exon boundaries, thereby
providing higher read depth for alternative splicing analysis
(Figure 2B).

One challenge with accurately detecting low-abundance
transcripts is that the highest expressing genes consume a
significant proportion of the reads generated. cDNA-Capture
is designed to increase the representation of the lowest
443

http://www.r-project.org
http://www.r-project.org
http://jmd.amjpathol.org


Cabanski et al
expressed genes in the transcriptome while minimizing the
oversequencing of themost highly expressed genes. In all four
lung cancer samples, the percentage of reads spanning splice
junctions consumed by the top 1% of expressed genes was
lower using cDNA-Capture relative to RNA-Seq (Figure 2C).
We chose to measure expression using this metric because
reads spanning exon junctions are less prone to ambiguous
alignments34 and thus may provide a more sensitive and ac-
curate measurement of transcript expression levels. Overall,
this suggests that a greater percentage of the reads generated
by cDNA-Capture were distributed across genes with lower
Figure 1 cDNA-Capture sequencing of FF lung adenocarcinomas. A: Total reads
Capture across four FF lung adenocarcinomas (LUC4, LUC6, LUC13, and LUC20). B:
and cDNA-Capture. C: Distribution of read alignments relative to genomic features
coverage across transcripts for LUC4, LUC6, LUC13, and LUC20 from 50 (left) to 30

2�, 10�, 20�, 50�, 100�, and 500�) using RNA-Seq and cDNA-Capture.

444
expression levels. Because increased representation of lower
expressed genes commensurately decreases the representa-
tion of the highest expressed genes, our next aim was
to determine the accuracy of cDNA-Capture expression levels
of the most highly expressed genes. We measured the corre-
lation between RNA-Seq and cDNA-Capture for the top
1% (n Z 196) of highest expressed genes in RNA-Seq
(Supplemental Figure S2). Excluding LUC20, correlations
ranged from 0.73 to 0.85, suggesting high accuracy of the
expression levels for these genes from cDNA-Capture data.
LUC20 had a significantly smaller correlation of 0.36.
generated (light blue) and aligned (dark blue) for both RNA-Seq and cDNA-
Percentage of reads that aligned uniquely to the target regions for RNA-Seq
, including coding, intergenic, intronic, ribosomal, and UTRs. D: Normalized
(right). E: Frequency of genes expressed at increasing coverage depth (1�,

jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 2 Comparison of cDNA-Capture and RNA-Seq using FF lung tumors. A: Scatterplot of LUC13 gene expression values measured by RNA-Seq and cDNA-
Capture. Gene expression is measured as log2(FPKM þ 1). B: Percentage of reads aligning to exon-exon junctions from RNA-Seq (gray bars) and cDNA-Capture
(black bars). C: Percentage of reads spanning a splice junction that aligned to the highest 1% of expressed genes from RNA-Seq and cDNA-Capture.

cDNA-Capture on FFPE Samples
Interestingly, LUC20 also had a much higher enrichment to
the targeted regions (95%) than the other lung tumors (70% to
80%). Therefore, the capture enrichment step may provide a
large increase in gene expression values for the lowest
expressed genes without sacrificing accuracy of expression
levels for the highest expressed genes.

It has previously been demonstrated that GC content can
bias RNA-Seq expression.35,36 We chose to investigate
whether there is any bias in cDNA-Capture expression
due to the GC content of targeted regions. Compared with
RNA-Seq data, cDNA-Capture data resulted in increased
normalized expression levels across the entire range of
GC content, including much larger gains for genes with
lower GC content (Supplemental Figure S3A). However,
similar to RNA-Seq, cDNA-Capture expression levels
Figure 3 Validation of expressed SNVs in LUC4 FF tissue using RNA-Seq and
whole genome sequencing relative to VAF supported by RNA-Seq (A) and cDNA-Cap
is colored based on its normalized expression level [0 FPKM (yellow) to 10 þ FPKM
Seq and their corresponding normalized expression values. SNVs are color-code
approach (black), cDNA-Capture only (yellow), or RNA-Seq only (red).

The Journal of Molecular Diagnostics - jmd.amjpathol.org
had a bias, providing lower expression levels as GC
content increases.

Validation of SNVs Using FF Samples

An increasingly common application of RNA-Seq is to
validate expressed SNVs identified by whole genome
sequencing. For each LUC sample, we previously con-
ducted whole genome analysis to identify SNVs within
protein-coding genes or Tier 1 SNVs.10 We compared the
ability of RNA-Seq and cDNA-Capture to validate the
expression of these SNVs. Because many SNVs reside in
genes that are not expressed, or expressed at low levels, we
do not expect either RNA-Seq or cDNA-Capture to confirm
all SNVs. Of the 295 SNVs detected in one tumor (LUC4),
cDNA-Capture. Scatterplots highlight the VAF of Tier 1 SNVs discovered by
ture (B) in LUC4 using FF tissue. Each protein-coding gene harboring an SNV
(red)]. C: Correlation of expressed SNVs detected by cDNA-Capture or RNA-
d based on whether they are found by both approaches (green), neither

445
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Figure 4 Comparison of cDNA-Capture and RNA-Seq using archived material. A: Total reads generated and aligned from RNA-Seq and cDNA-Capture on FFPE
material in lung adenocarcinomas LUC6 and LUC7. B: Percentage of reads that aligned uniquely to the target regions for RNA-Seq and cDNA-Capture. C:
Distribution of read alignments relative to genomic features, including coding, intergenic, intronic, ribosomal, and UTRs. D: Normalized coverage across
transcripts. E: Dynamic range of gene coverage at varying depths.

Cabanski et al
RNA-Seq (Figure 3A) and cDNA-Capture (Figure 3B) had
similar validation rates of 46.1% and 39.7%, respectively.
These percentages are fairly consistent across the remaining
samples as cDNA-Capture validated 31.7% to 42.0% of Tier
1 SNVs compared with 37.9% to 45.7% validated by RNA-
Seq (Supplemental Figure S4). The SNVs that were not
confirmed by either cDNA-Capture or RNA-Seq commonly
resided in genes with negligible expression (0 FPKM). Most
SNVs confirmed by RNA-Seq or cDNA-Capture had >3
FPKM, whereas SNVs missed by both RNA-Seq and
cDNA-Capture commonly resided in genes with low
expression (Figure 3C). In addition, as expected based on
the gene expression analysis, FPKM expression of genes
446
harboring SNVs were highly correlated between the two
approaches (Pearson correlation, 0.93 to 0.97; one-sided
P < 10�15) (Figure 3C and Supplemental Figure S4).
Overall, RNA-Seq and cDNA-Capture had similar SNV
validation rates despite having three times more sequence
data generated from RNA-Seq.

Gene Fusion Detection Using cDNA-Capture

Because none of the lung tumor samples harbored any
experimentally validated gene fusions, we chose to compare
RNA-Seq and cDNA-Capture on the well-characterized
LNCaP prostate cancer cell line, which contains eight
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 5 Comparison of cDNA-Capture and RNA-Seq using FF and
archived material. Scatterplots comparing LUC6 (A) and LUC7 (B) gene
expression values calculated from FFPE material using cDNA-Capture and
RNA-Seq. The least-squares regression line is shown in gray and the 45� line
in black. Gene expression is measured as log2(FPKM þ 1). Correlation of
LUC6 (C) and LUC7 (D) gene expression values measured from FFPE and FF
material using cDNA-Capture.

cDNA-Capture on FFPE Samples
validated fusions.12 We generated 355 million RNA-Seq
and 192 million cDNA-Capture reads. ChimeraScan29 was
used to identify gene fusions and rediscovered all eight
experimentally validated gene fusions in both RNA-Seq and
cDNA-Capture. cDNA-Capture provided approximately 10
times more reads supporting the fusion between MIPOL1
and DGBK, which has been reported to result in the acti-
vation of the adjacent gene ETV1, an oncogenic transcrip-
tion factor commonly up-regulated in prostate cancer
patients through gene fusions (Supplemental Figure S5A).11

Because we generated almost twice as many sequence reads
using RNA-Seq, we developed a normalized fusion score
representing the total number of fusions supporting reads
per million reads generated. All of the fusions had a higher
cDNA-Capture normalized fusion score compared with
RNA-Seq (Supplemental Figure S5B).

cDNA-Capture Using FFPE Material

We next compared RNA-Seq and cDNA-Capture using
FFPE material from two lung adenocarcinomas, LUC6 and
LUC7. In total, we generated 441 million and 339 million
RNA-Seq reads and 343 million and 318 million cDNA-
Capture reads for LUC6 and LUC7, respectively
(Supplemental Table S7). The percentage of reads aligned
to the genome was nearly equivalent for RNA-Seq (57% to
62%) and cDNA-Capture (62% to 64%) (Figure 4A).
Despite having similar alignment percentages, the genomic
distribution of aligned reads for the FFPE material exhibited
a shift between cDNA-Capture and RNA-Seq. Namely,
cDNA-Capture exhibited a sixfold increase in the propor-
tion of aligned reads that mapped to a targeted region
(Figure 4B). Using cDNA-Capture, the percentage of reads
aligning to coding regions increased by 33.6% and 31.7%
for LUC6 and LUC7, respectively, compared with RNA-
Seq (Figure 4C). There also was a slight increase in the
alignment percentages to the UTRs (mean, 5.2%). These
increases coincide with a corresponding decrease in reads
aligning to the ribosomal (mean, 2.9%), intronic (mean,
21.2%), and intergenic regions (mean, 13.7%). We also
observed a bias in coverage across transcripts toward the 30

end (Figure 4D). However, use of cDNA-Capture resulted
in a shift upstream from the 30 end, thereby improving
coverage across transcripts. In addition, the number of
highly covered genes increased when using cDNA-Capture
relative to RNA-Seq (Figure 4E). For instance, cDNA-
Capture detected a mean of 6744 genes with splice junc-
tions having at least 10� coverage compared with only
2310 genes detected at this coverage level with RNA-Seq.
This was also accompanied by an increase in the propor-
tion of reads aligning to splice junctions (Supplemental
Figure S6).

A comparison of the cDNA-Capture and RNA-Seq gene
expression values using FFPE revealed significant correla-
tions in both LUC6 (correlation, 0.89; one-sided P < 10�15)
(Figure 5A) and LUC7 (correlation, 0.89; P < 10�15)
The Journal of Molecular Diagnostics - jmd.amjpathol.org
(Figure 5B). Furthermore, genes tended to have higher
expression levels in cDNA-Capture, indicated by the least-
squares regression line deviating above what is expected if
the expression levels were identical (the 45� line). This is
likely the byproduct of using an enrichment step to increase
the depth of coverage. Although cDNA-Capture appears to
offer an improvement relative to RNA-Seq when using
FFPE material, we wanted to confirm that it accurately re-
capitulates the biology of the tumor. Therefore, we
compared gene expression between cDNA-Capture from
FFPE and FF material and found significant correlations for
LUC6 (correlation, 0.80; one-sided P < 10�15) (Figure 5C)
and LUC7 (correlation, 0.80, P < 10�15) (Figure 5D). A
similar GC bias was observed for FFPE compared with FF
material (Supplemental Figure S3B). However, cDNA-
Capture from FFPE provided increased expression levels
across the entire range of GC content, including much larger
gains for genes with lower GC content when compared with
RNA-Seq from FFPE.

Validation of SNVs Using FFPE

We further examined the detection of expressed Tier 1
SNVs in LUC6 and LUC7, comparing RNA-Seq and
cDNA-Capture from FFPE material. Although expressed
SNVs were detected from FFPE specimens, not surprisingly
both LUC6 and LUC7 had a greater number of expressed
SNVs detected by both RNA-Seq and cDNA-Capture from
FF material (Figure 6). Of the SNVs validated from FFPE
material, 80.0% and 77.7% were common to both RNA-Seq
447
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Figure 6 Validation of expressed Tier 1 SNVs using FFPE material.
Scatterplots highlight concordance between expressed Tier 1 SNVs using
cDNA-Capture and RNA-Seq on FFPE and FF material. The x and y axes
indicate the normalized expression level (FPKM) of the genes harboring the
SNVs. Only Tier 1 SNVs with at least one read supporting the variant are
displayed. Circles indicate SNVs supported by both RNA-Seq and cDNA-
Capture, squares for SNVs supported by only RNA-Seq, and diamonds for
SNVs supported only by cDNA-Capture. For SNVs detected by both RNA-Seq
and cDNA-Capture, the color indicates the mean VAF between cDNA-Capture
and RNA-Seq. Otherwise, the color indicates the VAF of the approach
validating the SNV.
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and cDNA-Capture in LUC6 and LUC7, respectively.
Although the SNVs detected only by cDNA-Capture when
using FFPE material had low VAFs, RNA-Seq failed to
validate any SNVs missed by cDNA-Capture. Furthermore,
the genes harboring validated Tier 1 SNVs appeared to have
a slight increase in the normalized expression values
(FPKM) in cDNA-Capture data relative to RNA-Seq data.

Comparison between FF and FFPE cDNA-Capture

We have already demonstrated a high correlation between
cDNA-Capture FF and FFPE gene expression values and a
larger number of expressed SNVs detected in FF
tissueederived RNA than FFPE. We next compared addi-
tional metrics between LUC6 and LUC7 FF and FFPE to
determine the amount of potential information lost when
sequencing FFPE material. Across both RNA-Seq and
cDNA-Capture, a much higher percentage of reads aligned to
the genome when using FF than FFPE (84% to 87% versus
57% to 65%) (Supplemental Table S7). In addition, the FF
samples had a larger proportion of reads aligning to the target
region than FFPE (70% to 95% versus 57% to 61%). How-
ever, when comparing cDNA-Capture reads to RNA-Seq
reads, FFPE material had a much larger gain in target
enrichment than FF material (sixfold versus twofold in-
crease). For both RNA-Seq and cDNA-Capture, a larger
percentage of mapped reads from FF spanned an exon-exon
junction than from FFPE (Supplemental Table S7). Inter-
estingly, cDNA-Capture using FFPE had as many or more
mapped reads span a junction than FF RNA-Seq (LUC6:
19.71% versus 19.55%; LUC7: 17.74% versus 8.32%). This
448
same pattern is observed for the percentage of mapped reads
that aligned to coding regions: FF cDNA-Capture had the
largest percentage (mean, 56%), followed by FFPE cDNA-
Capture (mean, 32%), FF RNA-Seq (mean, 25%), and
FFPE RNA-Seq (mean, 6%). Additional comparisons are
complicated by the large discrepancy in the number of reads
generated among the four experiments. These results
demonstrate that, although more sequencing may be required
for FFPE-derived tissues due to decreased mapping effi-
ciency, FFPE cDNA-Capture appears to have similar per-
formance to FF RNA-Seq.

cDNA-Capture Using Lower-Input Libraries

To assess the consequence of lower-input material on the
quality of sequencing results, we applied our cDNA-Capture
strategy using varying quantities of RNA input (60, 50, 10, 2,
and 0.8 ng), in triplicate, from a colorectal tumor and adjacent
normal tissue. Consistent with our normal protocol, the 50 ng
and lesser inputs underwent DNase treatment. However, for
the 60 ng input amount, this step was skipped. There was a
positive correlation between the quantity of starting material
and total number of reads generated (Supplemental
Figure S7A and Supplemental Table S8). There was also a
slight decrease in the percentage of reads aligning to the
genome for lower-input libraries. Furthermore, the sequence
duplication rate increased as the quantity of starting material
decreased (Supplemental Figure S7B). Of the reads that
aligned, their genomic distribution was fairly consistent
across the varying input levels (Supplemental Figure S7C).
However, despite having a similar distribution, the higher
duplication rates in the lower-input libraries resulted in less
coverage per gene (Supplemental Figure S7D).
One of the primary uses of RNA-Seq from limited ma-

terial is to detect genes with altered expression. Therefore,
differentially expressed genes were calculated using
edgeR33 for each library and compared to assess the degree
of association between the ranked gene lists using Spear-
man’s correlation (Figure 7A and Supplemental Figure S8).
A significant positive correlation was found between the
different RNA inputs (range, 0.15 to 0.79; one-sided
P < 10�15 for each correlation). The most notable decline
in correlation between any two RNA inputs occurred be-
tween 2 and 10 ng (decreasing from 0.75 between 50 and 10
ng to 0.27 between 10 and 2 ng). This finding suggests that
the level of reliable differential gene expression analysis
currently diminishes to <10 ng of RNA input.
Just as the gene coverage decreased as the RNA input level

decreased, the number of differentially expressed genes
identified also decreased (Figure 7, B and C, and
Supplemental Table S9; 0.8 ng libraries not shown). In total,
we observed 6651 differentially expressed genes between the
tumor and normal 60 ng libraries, whereas there were only 40
differentially expressed genes from the 2 ng libraries. How-
ever, the specific genes that were differentially expressed in
the lower-input libraries typically represent a subset of the
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 7 Differential gene expression analysis using cDNA-Capture on low-input libraries. A: Spearman rank correlation of edgeR P values between varying
levels of RNA input. B and C: Venn diagrams show the overlap between the down- (B) and up-regulated (C) genes among the 60, 50, 10, and 2 ng input
amounts. The total number of differentially expressed genes is shown under the RNA input. These plots suggest that the reliability of discovering differentially
expressed genes diminishes for RNA inputs <10 ng.
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differentially expressed genes identified at the highest input,
60 ng. The lack of library-specific differentially expressed
genes suggests that lower-input libraries are capturing a
subset of the expected altered genes without introducing any
additional false-positive results. The largest percent decrease
in the number of differentially expressed genes occurred
between 2 and 10 ng (2019 genes for 10 ng and 40 genes for 2
ng, a 98% decrease). This decrease is despite the fact that the
2 ng input had a greater number of sequenced reads than the
10 ng input. This finding further suggests that the reliability
of discovering differentially expressed genes currently di-
minishes for RNA inputs <10 ng.

Discussion

The clinical utility of monitoring gene expression can be
exemplified by previous efforts using microarrays and RT-
PCR for biomarker discovery37 and patient stratifica-
tion.38,39 Transcriptome sequencing has further enabled our
ability to reveal functionally relevant events (ie, overex-
pressed oncogenes, gene fusions, alternative splicing vari-
ants, or expressed deleterious SNVs), many of which simply
cannot be detected from DNA-based assays. However,
conventional RNA-Seq using low-input and archived ma-
terial typically results in suboptimal performance. cDNA-
Capture may offer improved results over RNA-Seq at low
input by enriching for coding regions, hence rescuing the
gene expression signals masked by noise from RNA
degradation. Our results suggest that the enrichment is
sufficient to maintain the biological interpretation observed
in FF material, such as gene expression signatures, while
requiring only one-third the amount of sequencing data.
Even with the additional cost of the exome capture kit,
cDNA-Capture costs approximately 50% less per sample
than RNA-Seq when considering the increase in usable read
yield provided by the capture step (Supplemental Table
S10). Although cDNA-Capture may slightly decrease the
accuracy of quantitated gene expression of the most highly
The Journal of Molecular Diagnostics - jmd.amjpathol.org
expressed genes, it results in providing more even and
comprehensive coverage across all expressed genes. This is
a significant advance for generating sufficient transcript
coverage from low-input and archived specimens in a cost-
effective manner and ultimately makes it possible to maxi-
mize the wealth of information offered by monitoring the
transcriptome in these precious clinical samples.

Despite the improved gene coverage using cDNA-
Capture relative to RNA-Seq, the FFPE material lacked
the same conformity as the FF material. This in turn may
have contributed to the reduced ability to fully recapitulate
results from FF samples as exemplified by the lower
quantity of expressed SNVs validated via RNA-Seq and
cDNA-Capture when using FFPE. Although most of the
SNVs were detected by both RNA-Seq and cDNA-Capture,
the only SNVs validated by a single approach were SNVs
with low VAFs detected by cDNA-Capture. Despite the
improved SNV validation rate achieved by cDNA-Capture
in FFPE specimens, transcriptome analysis of archived
material may require a greater depth of coverage to reca-
pitulate results that would have been obtained with higher-
quality FF specimens.

Gene fusion detection is one of the most important features
of transcriptome sequencing. Using a well-characterized
prostate cancer cell line, we were able to identify validated
gene fusions using cDNA-Capture. In addition, we demon-
strated that after normalizing by the total number of reads
generated, cDNA-Capture provided more reads supporting
every fusion than RNA-Seq. Unfortunately, neither of the
FFPE samples studied contained a validated gene fusion.
Therefore, future work is needed to fully elucidate what
limitations may exist when detecting fusions in FFPE mate-
rial using cDNA-Capture.

For the FFPE material, we used 150 ng input into the
Ovation FFPE protocol. Thus, future experiments will eval-
uate improvement of transcript representation by increasing
FFPE RNA input with the single primer isothermal
amplification-based Ovation RNA-Seq FFPE System and
449
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the newly designed Ovation Human FFPE RNA-Seq system
(NuGEN, San Carlos, CA). In cases where FFPE material is
limiting, we will assess methods that first fragment RNA
before the cDNA synthesis. In addition, although we have
evaluated cDNA-Capture using an exome reagent, the probe
design could be customized to cover any specific subset of
the genome, thereby minimizing the cost and maximizing the
coverage for a given experiment. Ultimately, cDNA-Capture
will enable a cost-effective approach to achieve higher depths
of coverage, which can sometimes be beneficial when using
archived specimens.

Another critical hurdle toward conducting transcriptome
analysis of clinically meaningful samples is the ability to
sequence the limited quantities of material extracted from
biopsy specimens. By assaying various levels of RNA input,
we were able to demonstrate a reasonable threshold, of
approximately 10 ng input, for using cDNA-Capture while
reliably recapitulating results compared with higher-input
amounts. Although we observed some diminishing returns
corresponding to lower inputs (ie, fewer differentially
expressed genes), the signal we were able to detect from as
low as 10 ng appeared to be an accurate representation of
gene expression for the genes detected. Because it is diffi-
cult to obtain high RNA yields from FFPE sections, a
similar dilution experiment that involved assaying various
low levels of FFPE could provide additional insights.
However, because of limited amounts of available material,
we were unable to perform this experiment and leave it as an
open research question.

In summary, we have found that cDNA-Capture, the
combination of exome capture and RNA-Seq, provides an
efficient and cost-effective means to monitor expression and
mutational status within a targeted subset of genomic re-
gions using low-input and archived specimens. Although
our results highlight the potential of cDNA-Capture, further
experimentation in a broader range of patients and cancer
types will determine the utility of this technique for routine
clinical use.
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