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ABSTRACT

We present a computational method for operon pre-
diction based on a comparative genomics approach.
A group of consecutive genes is considered as a
candidate operon if both their gene sequences and
functions are conserved across several phylo-
genetically related genomes. In addition, various
supporting data for operons are also collected
through the application of public domain computer
programs, and used in our prediction method.
These include the prediction of conserved gene
functions, promoter motifs and terminators. An
apparent advantage of our approach over other
operon prediction methods is that it does not
require many experimental data (such as gene
expression data and pathway data) as input. This
feature makes it applicable to many newly
sequenced genomes that do not have extensive
experimental information. In order to validate our
prediction, we have tested the method on
Escherichia coli K12, in which operon structures
have been extensively studied, through a compara-
tive analysis against Haemophilus in¯uenzae Rd
and Salmonella typhimurium LT2. Our method
successfully predicted most of the 237 known
operons. After this initial validation, we then applied
the method to a newly sequenced and annotated
microbial genome, Synechococcus sp. WH8102,
through a comparative genome analysis with two
other cyanobacterial genomes, Prochlorococcus
marinus sp. MED4 and P.marinus sp. MIT9313. Our
results are consistent with previously reported
results and statistics on operons in the literature.

INTRODUCTION

Operons represent a basic organizational unit of genes in the
complex hierarchical structure of biological processes in a cell

of prokaryotes. They are mainly used to facilitate ef®cient
implementation of transcriptional regulation in microbial
genomes (1). Operons provide highly useful information for
the characterization and construction of biological pathways
and networks, at a large scale. Therefore, the prediction of
operons at the whole-genome level is one of the most
fundamental and challenging computational problems in
microbial functional genomics.

Generally, genes in an operon are arranged in tandem in the
genomic sequence and delimited by an upstream promoter and
a downstream terminator. Operationally, an operon has the
following properties, which can be used for their prediction.
(i) An operon consists of one or more genes, arranged in
tandem on the same strand of a genomic sequence.
(ii) Intergenic distances within an operon are generally shorter
than the inter-operon distances; hence genes within an operon
generally form clusters along the genomic sequence.
(iii) Genes in an operon have a common (upstream) promoter
and a (downstream) terminator, while the intergenic regions
within an operon usually do not contain any promoter or
terminator. (iv) Genes in an operon tend to have related
functions, which are expected to belong to the same functional
category. (v) As a functional unit, the neighborhood relation-
ship of genes in an operon tend to be well conserved across
phylogenetically related species; this makes comparative
genomics a plausible approach to operon prediction. (vi) If
microarray gene expression data are available, genes of the
same operon exhibit highly correlated expression patterns.

Because of the importance of operons in functional studies
of a microbe, in the past decade, a great amount of effort has
been devoted to investigation of effective methods for
predicting operons, and a number of algorithms have been
developed. These algorithms differ mainly in the operon
characteristics that they use, and are summarized here.
(i) Overbeek et al. (2) proposed a method to search for gene
pairs of close bi-directional best hits (PCBBHs) across
genomes. These PCBBH pairs form conserved gene clusters
that can be used to infer functional coupling. Apparently, the
functional coupling information is useful in operon prediction,
although the authors did not specify the connection between
PCBBH pairs and operons explicitly in their paper. (ii)
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Salgado et al. (3) introduced a method using intergenic
distance distributions and gene functional annotations to
predict operons in prokaryotes. However, accurate functional
annotations are usually not available for newly sequenced
genomes. (iii) Ermolaeva et al. (4) proposed a computational
method to estimate the likelihood that a set of conserved genes
forms an operon. This is based on a mechanism of validating
conserved gene pairs by the frequencies of their appearances
in multiple genomes. The method also requires that neigh-
boring genes in an operon are within a certain distance and all
genes in an operon are located on the same strand. However, it
does not consider (conserved) functions of the genes or
promoters and terminators in their upstream and downstream
regions, respectively. (v) Craven et al. (5) developed a
probabilistic learning approach to whole-genome operon
prediction based on statistical characteristics derived from a
variety of operon data including nucleotide sequences (e.g.
intergenic distance distribution), transcription control signals
(e.g. existence of promoters/terminators), gene expression
data and functional annotations associated with genes. This
approach ®rst learns a model for estimating the probability
that an arbitrary sequence of genes constitutes an operon. It
then uses a dynamic programming method to assign each gene
in a given genome to its most probable operon, including
operons consisting of single genes (although such singletons
will not be considered as operons herein). This approach is
based on information present in a single genome and is only
applicable to well-studied genomes. (vi) Sabatti et al. (6)
applied a Bayesian classi®cation scheme to gene microarray
expression data and then validated the resulting potential
operon pairs (POPs), which are simply pairs of adjacent open
reading frames (ORFs) in a genome. This approach again
relies on experimental data from a single genome. (vii) Zheng
et al. (7) developed an algorithm that relies on the fact that
genes in an operon tend to encode enzymes that catalyze
successive reactions in metabolic pathways. Although yield-
ing a high prediction sensitivity as well as speci®city, this
approach has an apparent limitation that metabolic pathways
of studied genes must be given in advance, which is usually
not available for a newly sequenced genome. In fact, operon
information can be essential for the construction of pathways
(8).

Clearly, most of these algorithms require a signi®cant
amount of experimental data as input (in addition to gene
annotation), which considerably limits their applications. In
this study, we present an operon prediction method that
employs a comparative genomics approach and incorporates
several popular computer programs from the public domain,
including BLASTp (9) for homology search, COGnitor and
the COG database (10,11) for assigning COG IDs and
functional categories, SIGSCAN (12) and the TFD database
for identifying promoters, and TransTerm (13) for ®nding rho-
independent terminators. The supporting information given by
the last three programs is combined to de®ne a likelihood
score for a predicated operon to be a true one. The parameters
used in the likelihood score are estimated by examining the
237 known operons in Escherichia coli K12 (14). This method
requires only a sequenced genome with gene annotation and
can thus be applied to recently sequenced genomes that have
not been under extensive experimental investigation.

In order to evaluate the performance of our prediction, we
tested it on genome E.coli K12, in comparison with genomes
Haemophilus in¯uenzae Rd and Salmonella typhimurium LT2,
and successfully predicted 178 of the 237 known operons.
After the initial validation, we then applied the method to a
newly sequenced and annotated microbial genome,
Synechococcus sp. WH8102 (15), based on comparisons to
the genomes of two other closely related microbes,
Prochlorococcus marinus MED4 and P.marinus MIT9313
(16). Our results are consistent with the known operons in
Synechococcus and previously reported statistics concerning
the distribution of operons in a genome. The detailed
prediction results can be found at the website http://
www.cs.ucr.edu/~xinchen/operons.htm.

A COMPARATIVE GENOMICS APPROACH TO
OPERON PREDICTION

With the availability of a large number of complete genome
sequences (e.g. about 149 complete microbial genomes have
been sequenced so far) for a variety of organisms, comparative
analysis is becoming an invaluable tool for understanding
genomes and has proven to be more powerful than methods
that utilize information from single genomes. Comparative
analysis is based on a common belief that functional segments
tend to co-evolve at slower rates than non-functional seg-
ments, which makes well-conserved regions likely to be of
high interest (2). Comparative genomics methods are espe-
cially useful for analyzing genomes that have been recently
sequenced without extensive experimental studies, as a large
amount of information could be derived through identifying
corresponding genes or other functional elements between a
newly sequenced genome and previously well studied ones.

Our comparative genomics approach for predicting operons
is outlined in Figure 1. Here, we use Synechococcus sp.
WH8102 as the target genome and P.marinus MED4 and
P.marinus MIT9313 as the reference genomes to illustrate the
basic idea of our method, though our approach is applicable to
any microbial genome and related reference genomes. For
simplicity, the names of these genomes are shortened
respectively to WH8102, MED4 and MIT9313 in the rest of
this paper. There are four major steps in our method. Given a
target genome (e.g. WH8102) and some related genomes (e.g.
MED4 and MIT9313) with annotated genes/ORFs, we ®rst
conduct pairwise genome comparison through ®nding corres-
ponding (orthologous) genes for each pair of genomes, using
BLASTp. The program COGnitor is then used to assign each
gene a COG ID. The resulting pairs of matching homologous
genes (i.e. with the same COG IDs) are used to build a
multistage graph (called a gene-matching graph). The second
step is to cluster neighboring genes in the target genome that
are conserved across the reference genomes into gene groups
and to check if they satisfy several constraints that usually
hold for operons, resulting in candidate operons. The third step
is to produce for each candidate operon a likelihood score that
takes into account several pieces of supporting information
such as consistency of function categories among the genes in
the operon and the existence of conserved promoters and
terminators. Finally, predicted candidate operons are sorted
based on their likelihood scores. The details of our method are
described below.
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An interesting question in the above approach is how to
choose the reference genomes. It is known that gene order is
not conserved in microbes (17), but the composition of the
genes in an operon is often conserved in closely related
species. In distantly related species, operon structures have
undergone extensive shuf¯ing during evolution and hence
their gene compositions are generally not conserved (17,18).
Based on these observations, we propose to use genomes that
are closely related to the target genome as the reference
genomes in this comparative genomics method. Of course,
such a preference could potentially lead to more erroneously
predicted operons (i.e. false positives). However, the prob-
ability of getting such false positives should be small, since it
is known that genes in very closely related microbial genomes
such as different strains of E.coli have been extensively
shuf¯ed except for the orthologs belonging to conserved
operons (19,20). Moreover, besides the conservation of genes
and their proximity, our approach also considers several other
issues such as gene functions, promoters and terminators.
These additional considerations should help eliminate some of
the false positives.

Pairwise genome comparison

We match a pair of genes based on two pieces of information:
homology measured by the BLASTp program (9) and COG ID
generated by the COGnitor program (11). The program
BLASTp is widely used to identify homologous genes based
on the local alignment of their protein sequences. An E-value
is provided for each BLASTp, representing the expected
frequency of such an alignment appearing in two random
genomes. The smaller an E-value is, the more probable it is
that the two genes are homologous. The COG ID of a gene
assigned by the COGnitor program refers to a cluster of
orthologous groups (i.e. COG) of genes in the COG database
(10). A gene is given a COG ID if it has homologous hits from
at least three lineages recorded in the COG database. Genes
with the same COG ID are predicted to be orthologous or in an
orthologous set of paralogs, and typically share the same
function. We have observed that a pair of genes satisfying one
of the following conditions may not always satisfy the other

one: (i) the E-value of BLASTp for a pair of genes is smaller
than a pre-de®ned threshold (e.g. 1e ± 20 as used in our
experiment on WH8102); and (ii) the two genes have an
identical COG ID as assigned by COGnitor.

Therefore, a pair of genes is considered to be a match only
when they satisfy both of the two conditions. In other words,
we expect matching genes to have the same functions as
de®ned in the COG database. In the case that a gene is not
characterized by COG, we would assume that it has the same
COG ID as any other genes since its function is unknown as
yet. Among the 2517 annotated genes in WH8102, 1343 genes
have been assigned COG IDs. The numbers of genes with
assigned COG IDs in MED4 and MIT9313 are 1060 (out of
1712) and 1241 (out of 2265), respectively; i.e. an average of
56.1% of genes have been characterized by the COG database.
Once all possible pairwise comparisons among all genes in the
target genome are made, we build a multistage gene-matching
graph. Figure 2 shows a simple three-stage gene-matching
graph for three genomes. Notice that, if there are k genomes
under consideration, then a total of k(k ±1)/2 pairwise genome
comparisons by BLASTp and COGnitor will be performed.
The time required by BLASTp for comparing a pair of
genomes is proportional to the total length of the two genomes
(9), and the time required by COGnitor is proportional to the
total number of genes.

Gene clustering

Given a multistage graph of matching genes, a simple and
exhaustive search algorithm is used to cluster genes in the
target genome into groups, each of which satis®es the
following conditions. (i) If the genes are listed in their
sequential order (as given by their locations on the target
genome), then each pair of consecutive genes in a group
{g1,...,gk} should be separated by no more than some pre-
de®ned distance. In our experiment on WH8102, we set the
distance threshold as 150 bp. This threshold was chosen based
on the average distance between all consecutive genes in
WH8102, which is ~96 bp, and the intergenic distance
information from some well characterized operons of
WH8102 and closely related microbes. (ii) All genes in a

Figure 1. An outline of the comparative genomics method for operon prediction.

Nucleic Acids Research, 2004, Vol. 32, No. 7 2149



clustered group have the same transcription direction, i.e. they
are located on the same strand of the target genome. (iii) There
exists at least one other (i.e. reference) genome that contains a
corresponding gene group {g¢1,...,g¢k} so that gi and g¢i are
matched (i.e. there exists an edge between gi and g¢i in the
gene-matching graph) for every index i. The corresponding
gene group {g¢1,...,g¢k} should also satisfy the two conditions
above in its own genome. Observe that the genes in two
matching groups do not necessarily have the same sequential
order in terms of their locations in their respective genomes.
(iv) If there exist two or more reference genomes with
matching gene groups, then these corresponding gene groups
are also required to match each other.

Our prediction method outputs gene groups from the target
genome that satisfy all the above conditions as candidate
operons. As an example, for genome a in Figure 2, two
candidate operons {a1, a2, a3} and {a6, a7, a8} could be
predicted if they satisfy all the conditions listed above. The
detailed procedure for clustering genes is given below. (i) Sort
the list of genes of the target genome in the increasing order of
gene locations and denote the sorted list as g1g2...gn. (ii) Scan
the sorted gene list from the leftmost, i.e. set i = 1, and ®nd the
longest consecutive subsequence gi...gj beginning from gene gi

that satis®es the ®rst two conditions described above. (iii) For
each subsequence of gi...gj, retrieve all the matching gene
groups in the reference genomes from the gene-matching
graph, and check whether there exists one (or more) such
corresponding gene group satisfying the ®rst two of the above
conditions and the fourth condition if it applies. If yes, output
such a gene group as a candidate operon in the target genome.
(iv) Set i = j + 1. If i > n, all genes in the target genome have
been processed and the algorithm is thus terminated; otherwise
go to step (ii).

Although the above procedure is an exhaustive search
algorithm because it has to consider all possible gene groups in
step (ii), it is in practice very fast and requires only a little
memory. This is because a candidate gene group usually
consists of a small number of genes. For example, clustering
genes for the three genomes (WH8102, MED4 and MIT9313),
each with about 2000 genes, takes only 53.4 s on a PC
(2.4 GHz).

A likelihood score based on supporting information

In order to provide a quantitative measure on how likely it is
that a predicted operon is a true one, we assign a score to each
candidate operon as follows. First, we collect a `pro®le' for
each candidate operon using several public domain programs.
The pro®le includes information about the consistency of gene
functions as given by COGnitor and the existence of
conserved promoters and terminators as predicted by
SIGSCAN and TransTerm. Secondly, a likelihood value is
calculated for each item in the pro®le. The sum of all these
likelihood values gives an overall likelihood score for a
candidate operon to be a true one. Finally, all the candidate
operons are sorted based on their overall likelihood scores.
The details are explained below.

Functional categories from COGnitor

Genes in an operon are involved in a speci®c functional
process or pathway. Therefore, such genes tend to share the
same (or related) functional category. Based on this observa-
tion, a con®dence value can be calculated for a predicted
operon by considering whether its genes have the same
functional category. A key issue here is how to derive gene
functions for a newly sequenced genome.

The COGnitor program (11) gives a simple and effective
method to infer gene functional categories without requiring
much experimental knowledge. Recall that the program was
used earlier to classify each gene into a COG. The COGs
comprise a framework for the analysis of evolutionary and
functional relationships among homologous genes from
multiple genomes (10). In particular, the genes belonging to
a COG are likely to be involved in the same or similar
functional processes.

In the COG database, there are four functional categories at
the ®rst level and a total of 16 categories at the second level
(see the Appendix). Intuitively, we would expect the genes in
an operon to share the same ®rst-level COG functional
category and perhaps also the same second-level COG
functional category with high probability. In order to test
this hypothesis, we studied the 237 known operons from E.coli
K12 that have been experimentally veri®ed (14). We collected
the COG functional categories for the genes in these operons
using COGnitor. Because genes in the fourth (®rst-level)
functional category are poorly characterized and their func-
tions are generally unknown, these genes were ignored in the
following consistency checking. Out of the 237 known
operons, only 39 (i.e. 16.5%) consist of genes from different
®rst-level functional categories. In other words, in each of the
remaining 83.5% operons, the genes either belong to the same
®rst-level functional category or fall into the (fourth) poorly
characterized category. We also considered the question of
how many pairs of neighboring genes share the same second-
level functional category. Again, gene pairs that contain at

Figure 2. A simple illustration of a three-stage gene-matching graph. Each
oval represents a genome, and a link between two genomes represents a pair
of matched genes.
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least one gene from the poorly characterized category were
ignored. We found that, for the known operons that are
conserved in only one reference genome, 67.7% (132 out of
195, denoted as p0) of the pairs of neighboring genes share the
same second-level functional category. As a comparison,
among the neighboring gene pairs across the borders, only
24.2% (eight out of 33, denoted as p1) share the same second-
level category. For the known operons that are conserved in
two reference genomes, the corresponding percentages are
84.5% (120 out of 142, denoted as p2) and 23.1% (three out of
13, denoted as p3), respectively. Therefore, the log-likelihood
of a neighboring gene pair being in an operon is de®ned as
follows.

When a putative operon is conserved in only one reference
genome,
L¢0 = ln(p0/p1) » 1.029, if two genes are in the same second-
level category
L¢1 = ln(1 ± p0/1 ± p1) » ±0.853, if two genes are in different
second-level categories.

When a putative operon is conserved in two reference
genomes,
L¢0 = ln(p2/p3) » 1.297, if two genes are in the same second-
level category
L¢1 = ln(1 ± p2/1 ± p3) » ±1.602, if two genes are in different
second-level categories.

The above likelihood values suggest that, if a pair of
neighboring genes have the same second-level functional
category, a putative operon conserved in three genomes is
more likely to be true than one conserved in two genomes. The
overall likelihood for a predicted candidate operon to be a true
one, considering only the functional category information, can
thus be de®ned as:

L0 = (m0L¢0 + m1L¢1)/m

where m0 (or m1) denotes the number of neighboring gene
pairs in the operon belonging to the same second-level
category (or different second-level categories, respectively)
and m denotes the total number of neighboring gene pairs.
Note that the actual values of L¢0 and L¢1 depend on the
number of reference genomes across which the candidate
operon is conserved, and gene pairs with an uncharacterized
gene are ignored in the above likelihood calculation.

Conserved promoters from SIGSCAN

The promoter region of an operon typically consists of several
regulatory elements located upstream of the ®rst gene of the
operon. Such regulatory elements play a key role in the
transcription of the genes of an operon. They are usually
conserved across related genomes and their existence could
thus provide strong support for a predicted operon.
Unfortunately, the promoter information is usually unavail-
able for a newly sequenced genome and they are hard to
predict reliably based on a computational approach.

Here, we adopt a hybrid approach to promoter prediction.
We consider a promoter region as a series of transcription
factor-binding sites (TFBSs). These transcription factor (TF)-
binding motifs may vary from operon to operon, but they are
likely to be conserved in the upstream regions of matching
operons from different species. Under this assumption, our
prediction method makes use of a public domain program,

SIGSCAN (12), to ®nd TFBSs in the upstream regions of
predicted operons. SIGSCAN searches the transcription factor
database (TFD) developed by Ghosh (21), which has a large
collection of well-characterized TF-binding motifs in both
eukaryotes and prokaryotes, for matching TFBSs. If the found
(prokaryotic) TFBSs are conserved in the upstream regions of
corresponding candidate operons from several genomes, then
we should have more con®dence in the predicted operons.
Moreover, one would expect that the second gene in an operon
is less likely to have such conserved TFBSs.

Because the TFBSs in TFD were mainly extracted from
E.coli K12, we ®rst performed two experiments to test the
applicability of SIGSCAN to our target genome. The ®rst
experiment involved (whole) regions between neighboring
convergently transcribed genes and those between divergently
transcribed genes. The former regions are naturally expected
to have more TFBSs than the latter. In the following statistical
calculations, overlapping gene pairs are excluded since there
are no intergenic (non-coding) regions between them. Among
all intergenic regions of two convergent genes in the WH8102
genome, 112 were found to have TFBSs while 169 regions did
not. As a comparison, in all the intergenic regions of two
divergent genes, 232 regions were found to have TFBSs while
186 did not. In the second experiment, we looked at the
promoter region of homologous genes between WH8102 and
E.coli K12. Sixty-two percent of such homologous genes were
found to either have conserved TFBSs or no TFBSs at all.
These statistics demonstrate that the SIGSCAN program with
TFD does work for cyanobacteria genomes (at least for
WH8102 in our experiment), though its effectiveness and
reliability may not be very high.

We then ran SIGSCAN on the promoter regions of the
known operons from E.coli K12. In order to increase the
amount of training data, 125 veri®ed transcription units each
containing a single gene (14) were also included in the test
(these transcription units are also called single-gene operons in
some studies). Because very few TFBSs were found to be
conserved among the three involved genomes (i.e. E.coli K12,
H.in¯uenzae Rd and S.typhimurium LT2), we did not treat
TFBSs conserved in three genomes and those conserved in
two genomes separately. Operons that are not conserved in
any reference genomes were ignored in the statistics (there are
44 such operons among the 237 known operons and 92 from
the 125 single-gene transcription units). As a result, the ®rst
genes of 43.8% (99 out of 226 = 237 + 125 ± 44 ± 92, denoted
as p0) of the operons have TFBSs conserved in the 100 bp
upstream regions of at least two of the genomes, while 37.6%
(79 out of 210 known operons with conserved second genes,
denoted as p1) of the operons have conserved TFBSs in the
upstream region of their second genes. (Although some TFBSs
are known to appear >100 bp upstream of their respective
coding regions, most key TFBSs that are conserved across
microbes seem to concentrate in the 100 bp upstream region
and we focus on this small window for simplicity herein.) This
only poses a weak discrimination; however, the information
could still be useful and it will be enhanced when more known
operons become available. We de®ne a log-likelihood value
based on conserved TFBSs as:

L¢2 = ln(p0/p1) » 0.152
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For operons that have no conserved TFBSs across the
genomes, we de®ne L¢2 = 0.

We further considered two speci®c TF-binding motifs that
exist in most of the promoter regions of prokaryotes: the
Pribnow box located at ±10 bp from the transcription start site
and the motif at ±35 bp where the s70 transcription factor
usually binds. The consensus sequence for Pribnow boxes is
TATAAT and the consensus for the s70-binding motif is
TTGACA (22). Our algorithm scans the upstream regions of
candidate operons using a position-speci®c score matrix
(PSSM) (23), trained on the known Pribnow boxes and
s70-binding sites, to detect pairs of such motifs separated by
an almost constant distance (~17 bp). A likelihood value based
on the existence of these two TF-binding motifs can be de®ned
in the same way as before: 79.6% (180 out of the 226 known
operons with conserved ®rst genes, denoted as p0) of the
known operons from E.coli K12 were found to have these
motifs conserved in at least two genomes in the 100 bp
upstream region of their ®rst genes, while 43.8% (98 out of the
210 known operons with conserved second genes, denoted as
p1) of the operons have motifs conserved in the upstream
regions of their second genes. Hence, the log-likelihood score
for a candidate operon that has both of the motifs conserved in
its 100 bp upstream region is:

L¢3 = ln(p0/p1) = 0.620

For simplicity, the overall likelihood score for a candidate
operon based on its predicted promoter information is then
de®ned as the average of L¢2 and L¢3, i.e.

L1 = (L¢2 + L¢3)/2

Conserved terminators from TransTerm

Another key signal that can be used to validate a predicted
operon is the terminator of an operon. A terminator usually
marks the termination of a transcriptional process downstream
of an operon structure. Therefore, we can use knowledge of
terminators to infer operons that appear in upstream regions.
Unfortunately, the prediction of terminator sites reliably is not
a trivial task either.

There are two types of terminators: rho-dependent and
rho-independent transcription terminators. The rho-independ-
ent terminator usually consists of a hairpin structure followed
by a short uracil-rich region. The structure of rho-dependent
terminators varies greatly so they are very hard to predict.
Therefore, most proposed algorithms in the literature focus on
rho-independent terminators. Although there has been some
suspicion that many prokaryotes do not have many rho-
independent terminators for transcription termination (24), the
TransTerm program (13) was able to successfully identify 214
(73 and 244) rho-independent terminators in WH8102 (MED4
and MIT9313, respectively). This indicates that these
microbes do use the hairpin structure in transcription termin-
ation. Therefore, in our algorithm, we use TransTerm to
predict rho-independent terminators in the downstream
regions of candidate operons. The TransTerm algorithm
scans the input genomes to ®nd hairpins with adjacent
uracil-rich stretches and calculates a con®dence value for
each one. The predicted terminators from TransTerm are then

compared across genomes to identify operons with conserved
terminators.

In order to formulate a likelihood score based on predicted
terminators, we ran TransTerm on the data of the 237 known
operons and 125 single-gene transcription units in E.coli K12
as we did for promoters. We did not consider terminators
conserved in three genomes separately. The results of
TransTerm show that 34.9% (78 out of 223 known oeprons
with conserved last genes, denoted as p0) of the operons have
terminators conserved in at least two genomes in their 100 bp
downstream regions, while only 11.3% (23 out of 203 operons
with conserved second last genes, denoted as p1) have
conserved terminators in the 100 bp downstream regions of
their second last genes. We hence de®ne the log-likelihood
value for a candidate operon that has a terminator conserved in
at least two genomes as:

L2 = l´ln(p0/p1) » 1.127´l

where l is the con®dence score of the terminator from
TransTerm (as a measure of the reliability of its prediction). If
the operon has no conserved terminator, then L2 = 0.

Our application results of SIGSCAN and TransTerm above
show that neither of them could reliably predict promoter
elements or terminators, partly due to insuf®cient studies on
prokaryotic promoters and terminators (especially rho-
dependent terminators). The overall likelihood score for a
candidate operon, combining all the above information, is then
given by simply summing up values from each piece of the
supporting information:

L = L0 + L1 + L2.

The summation is based on a simple assumption that all the
supporting pieces of evidence for a candidate operon are
independent of each other. The ®nal step of our prediction
method sorts the candidate operons in the decreasing order of
their likelihood scores L. Roughly speaking, a positive L
would suggest that the involved candidate operon is likely to
be a true one, and a negative L would suggest the opposite.
Note that our program outputs all candidate operons regardless
of their likelihood scores, i.e. no threshold is applied here. This
could be convenient for the users because they could then
choose any threshold and apply it on the ranked list of
candidate operons.

APPLICATION RESULTS

We have implemented the above method using public domain
programs as well as our own algorithms described above and
applied it to predict operons in two bacteria, E.coli K12 and
WH8102, which have completely sequenced and annotated
genomes. The ®rst application serves as a controlled test,
while the second could provide useful information for a US
DoE Genomes to Life (GtL) project (see the website http://
www.genomes2life.org/) and to the research community on
cyanobacteria studies.

Application to E.coli K12

In order to evaluate the performance of the operon prediction
method described above, we applied it to the well-studied
bacterial genome, E.coli K12 (data from GenBank under
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accession number NC_000913). By comparing the genome
with another microbial genome, H.in¯uenzae Rd (data from
GenBank under accession number NC_000907), and using an
intergenic distance threshold of 300 bp (chosen based on the
intergenic distance information in the 237 known), our method
predicted a total of 237 candidate operons shared by these two
genomes. A further examination shows that these include 61
out of the 237 experimentally veri®ed operons of E.coli K12
described in Salgado et al. (14). The result seems quite
promising since only one reference genome was considered
and some of the 237 veri®ed operons might not be conserved
in the reference genome. By comparing these with more
phylogenetically related genomes, we could identify more of
these known operons. For instance, using both H.in¯uenzae
Rd and S.typhimurium LT2 (data from GenBank under
accession number NC_003197) as the reference genomes,
our method predicted 853 candidate operons in E.coli K12,
including 178 of the 237 veri®ed operons.

Since a set of predicted operons may typically include many
false positives, we further look at the cumulative distributions
of the likelihood scores of the 853 predicted operons and the
178 veri®ed operons, which are depicted in Figure 3. The
®gure shows that close to 80% of the predicted operons have
positive likelihood scores, and the veri®ed operons generally
have higher likelihood scores than the predicted ones. For
example, 28% of the predicted operons have likelihood scores
exceeding 1, while 43% of the veri®ed operons have
likelihood scores above 1. This indicates that among the
predicted operons, true positives tend to have higher likeli-
hood scores than false positives.

Application to Synechococcus sp. WH8102

After the initial validation study, we applied our method to a
newly sequenced microbial genome, WH8102 (15), which is
the focus of an ongoing US DoE GtL project (see the website
http://www.genomes2life.org/). The genome was downloaded
from GenBank (under accession number NC_005070), and
was compared with two closely related cyanobacterial
genomes, MED4 and MIT9313 (data from GenBank under
accession number NC_005072 and NC_005071, respectively).
These genomes contain 2517, 1712 and 2265 annotated ORFs,
respectively. In the step of pairwise comparison, 1448 pairs of
matching genes were found between WH8102 and MED4,
1976 pairs were found between WH8102 and MIT9313, and
1422 pairs were found between MED4 and MIT9313. The

three-stage gene-matching graph obtained in this step is
displayed in Figure 4.

The gene clustering process described in the above was then
performed to predict all probable operons in WH8102, using
an intergenic distance threshold of 150 bp that was chosen
based on the average distance between all consecutive genes
in WH8102 (i.e. 96 bp) and the maximum intergenic distance
in some well characterized operons of WH8102 and closely
related microbes. This results in a total of 446 candidate
operons. The conservation of the operons is as follows: (i) 206
of the operons are shared with both reference genomes; (ii) 55
operons are shared with MED4 only; and (iii) 185 operons are
shared with MIT9313 only.

The distribution of the operons in the three genomes is
illustrated in Figure 5. Among these operons, 242 are located
on the positive strand of WH8102 and 204 are on the negative
strand. These candidate operons were ®nally sorted based on
the supporting information collected from COGnitor,
SIGSCAN and TransTerm, and the likelihood score. The
detailed prediction results can be found at http://www.cs.
ucr.edu/~xinchen/operons.htm.

Although very little is known in the literature about the
(true) operons in WH8102, we have been able to identify

Figure 3. Cumulative distributions of the likelihood scores of predicted and
veri®ed operons.

Figure 4. The three-stage gene-matching graph for the three microbial
genomes. Each link between two genomes represents a pair of matched
genes.

Figure 5. The 446 predicted operons in WH8102 and their distributions in
MED4 and MIT9313. Each link represents a candidate operon conserved
between two genomes, and different operons are shown using different
colors.
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several known operons from WH8102 or other cyanobacteria
in the list of the predicted operons, such as the well-known
carboxysome operon whose gene products participate in the
carbon reduction cycle (Calvin±Benson±Bassham cycle) and
some transporter operons (25). Moreover, we have made
several observations about these putative operons.

The average size of the predicted operons (i.e. the average
number of genes in each operon) is 2.89, which is very close to
the average size reported in the literature. For example, Zheng
et al. (7) observed that the average size of operons remains as a
constant at around 3 in most of the genomes. A graphical
illustration of the distribution of the sizes of our predicted
operons is given in Figure 6.

The average distance between neighboring genes in an
operon is 21.8 bp. Salgado et al. (14) analyzed a data set of
operons from RegulonDB and found that intergenic distances
within an operon peak at some very small values. The two
most frequent distances are ±4 bp and ±1 bp (i.e. many
neighboring genes overlap by a few base pairs). This
phenomenon is also observed in our predicted operons, as
shown in Figure 6.

Among the 446 predicted operons, 345 consist of genes
with the same ®rst-level functional categories as assigned by
COGnitor, disregarding genes that fall into the poorly
characterized category. A total of 139 operons were found to
have conserved TFBSs obtained by SIGSCAN in their
upstream regions, while 143 operons have conserved pairs

of Pribnow box and s70-binding motifs. Only 21 operons
have conserved rho-independent terminators obtained by
TransTerm in their downstream regions, which perhaps
manifests the dif®culty of terminator prediction.

We have classi®ed the putative operons into functional
categories as follows. An operon is classi®ed into a functional
category if each of its genes is in this functional category or
the poorly characterized category, and at least one gene must
be in this category. A total of 272 operons were classi®ed, as
shown in Table 1.

The distribution of the likelihood scores of these putative
operons is shown in Figure 7. The bar diagram shows that
most of the operons have positive scores. More precisely,
more than half of the operons have likelihood scores around
0.25. Furthermore, there are 74 operons with scores above 1.0,
making us greatly con®dent that they are perhaps true operons.

Table 2 shows 10 putative operons with the highest
likelihood scores. The functional information inferred from
the COG database indicates that the genes in each operon are
involved in the same biological process and thus the operons
are likely to be true. The information will be useful in a
genome-wide functional analysis (e.g. pathway construction)
for WH8102.

Although not many operons are known in WH8102, we
have looked at a few known operons such as the well-known
carboxysome operon consisting of eight genes (data not
shown) and 19 ABC transporter operons. ABC transporters are
composed of multiple subunits often found on genes in
operons (25). They are the major family of transporters in
WH8102. The individual genes were identi®ed as in Palenik
et al. (15) and collected manually into operons. Our method
was able to predict the carboxysome operon successfully.
Table 3 exhibits the prediction results on the ABC transporter

Figure 6. Distributions of the putative operon sizes and intergenic dis-
tances.

Table 1. The functional categories of the predicted operons in WH8102

Functional categories Number of operons

Information storage and processing 67
Cellular processes 64
Metabolism 141

Figure 7. Distribution of likelihood scores of the putative operons in
WH8102.
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operons. Close to 50% of these operons were predicted exactly
by our method, and most of the remaining operons were
partially predicted. Only two operons were completely
missed. One of these is a likely transporter operon found
only in WH8102, but not in the other genomes. The other
WH8102 operon missed has genes that do not seem to be in an
operon in the other two genomes. Moreover, almost all of
these predictions had positive likelihood scores.

DISCUSSION

The prediction of operons is an important and highly
challenging problem in computational biology. The problem
becomes even more dif®cult when not many experimental data
are available. Here, we have presented an approach based on
comparative genomics that incorporates several public domain
programs such as BLASTp, COGnitor, SIGSCAN and
TransTerm. The approach has been tested on two bacterial
genomes, E.coli K12 and WH8102, with very promising
results. The candidate operons predicted for WH8102 are
being used in the study of functional pathways in the
organism, such as the phosphorus assimilation pathway (8),
and our future effort will include applying the prediction
method to more genomes (e.g. we may include P.marinus sp.
SS120 as an additional reference genome in the analysis of

WH8102) and extending the method to allow gene insertions
and deletions in an operon structure.

Our above prediction on WH8102 was based on the
intergenic distance threshold of 150 bp. It would be interesting
to know the sensitivity of the prediction results to this
threshold (when it is suf®ciently large). We have also
considered two other thresholds, 100 and 200 bp. Using
these thresholds, our method predicted 446 and 451 operons,
respectively, in WH8102. These numbers are the same as or a
little bit higher than the number of operons predicted using the
threshold 150 bp, although the actual predicted operons are
slightly different (data not shown) in all three cases because
some operons could be merged and some new operons could
be added when the distance threshold increases. This suggests
that our overall prediction results on WH8102 were not very
sensitive to the intergenic distance threshold, as long as it is
larger than the average distance between all consecutive genes
in the genome. We also plan to consider replacing the hard
intergenic distance threshold by a more ¯exible constraint that
takes into account the common distribution of intergenic
distances within known operons.
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Table 3. The ABC transporter operons and our prediction results
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(SYNW0708, 0709) Exactly found 1.68
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(SYNW1111, 1112) (SYNW1109, 1110, 1111, 1112, 1113, 1114) 0.00
(SYNW1168, 1169, 1170) (SYNW1167, 1168); (SYNW1170, 1171) 0.08; 0.39
(SYNW1270, 1271, 1272) Exactly found 1.61
(SYNW1283, 1284, 1285) (SYNW1282, 1283, 1284, 1285) 1.03
(SYNW1340, 1341) Exactly found 1.68
(SYNW1415, 1416, 1417) Not found ±
(SYNW1797, 1798) Not found ±
(SYNW1857, 1858) (SYNW1857, 1858, 1859, 1860) ±0.22
(SYNW1915, 1916, 1917) Exactly found 1.42
(SYNW2393, 2394, 2395) Exactly found 0.08
(SYNW2438, 2439, 2440, 2441, 2442) (SYNW2438, 2439, 2440, 2441, 2442, 2443) 1.04
(SYNW2479, 2480, 2481) (SYNW2479, 2480) 1.03
(SYNW2485, 2486, 2487) Exactly found 0.31
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APPENDIX

Functional categories in the COG database (http://
www.ncbi.nlm.nih.gov/COG/):

1. Information storage and processing
a. Translation, ribosomal structure and biogenesis (J)
b. Transcription (K)
c. DNA replication, recombination and repair (L)

2. Cellular processes
a. Cell division and chromosome partitioning (D)
b. Post-translational modi®cation, protein turnover (O)
c. Cell envelope biogenesis, outer membrane (M)
d. Cell motility and secretion (N)
e. Inorganic ion transport and metabolism (P)
f. Signal transduction mechanisms (T)

3. Metabolism
a. Energy production and conversion (C)
b. Carbohydrate transport and metabolism (G)
c. Amino acid transport and metabolism (E)
d. Nucleotide transport and metabolism (F)
e. Coenzyme metabolism (H)
f. Lipid metabolism (I)
g. Secondary metabolites biosynthesis, transport and cata-

bolism (Q)
4. Poorly characterized

a. General function prediction only (R)
b. Function unknown (S)
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