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ABSTRACT
Malignant pleural mesothelioma is a rare but devastating
cancer of the pleural lining with no effective treatment.
The tumour is often diffusely spread throughout the
chest cavity, making surgical resection difficult, while
systemic chemotherapy offers limited benefit. Bone
marrow-derived mesenchymal stem cells (MSCs) home to
and incorporate into tumour stroma, making them good
candidates to deliver anticancer therapies. Tumour
necrosis factor-related apoptosis-inducing ligand (TRAIL)
is a pro-apoptotic molecule that selectively induces
apoptosis in cancer cells, leaving healthy cells
unaffected. We hypothesised that human MSCs
expressing TRAIL (MSCTRAIL) would home to an in vivo
model of malignant pleural mesothelioma and reduce
tumour growth. Human MSCs transduced with a
lentiviral vector encoding TRAIL were shown in vitro to
kill multiple malignant mesothelioma cell lines as
predicted by sensitivity to recombinant TRAIL (rTRAIL). In
vivo MSC homing was delineated using dual
fluorescence and bioluminescent imaging, and we
observed that higher levels of MSC engraftment occur
after intravenous delivery compared with intrapleural
delivery of MSCs. Finally, we show that intravenous
delivery of MSCTRAIL results in a reduction in malignant
pleural mesothelioma tumour growth in vivo via an
increase in tumour cell apoptosis.

INTRODUCTION
Malignant mesothelioma (MM) is a rare but devas-
tating malignancy found most commonly within the
pleura. It is largely caused by asbestos exposure1 and
the mortality rate is increasing with >2300 deaths
per year in the UK.2 Current treatment options are
poor, and first-line chemotherapy with cisplatin and
pemetrexed offers an average survival of
12 months.3 The role of radical surgery is contro-
versial with the only large-scale clinical trial
showing a trend to worse outcomes in patients
undergoing extrapleural pneumonectomy.4 Because
of the resistance of malignant pleural mesothelioma
(MPM) to conventional treatments, new therapies
are desperately needed. Most chemotherapy agents
act by inducing tumour cell apoptosis via the intrin-
sic apoptotic pathway; however, MPM is known to
be resistant to activation of this pathway, so interest
has turned to activation of the extrinsic apoptotic
pathway.5

Tumour necrosis factor (TNF)-related apoptosis-
inducing ligand (TRAIL) is a type II transmembrane
protein and member of the TNF superfamily. It
binds via two active transmembrane death recep-
tors, DR4 and DR5, triggering the caspase cascade
resulting in apoptosis. TRAIL is an exciting antican-
cer molecule as it induces cell death in cancer cells
without affecting healthy cells.6 Phase I clinical
trials looking at the use of both recombinant
TRAIL (rTRAIL)7 and monoclonal antibodies to
the TRAIL death receptors, DR4 and DR5, have
shown promising results.8 9 However, there are
problems with both of these treatment options.
The half-life of rTRAIL is short at 32 min, meaning
multiple infusions are needed to deliver therapeutic
dose systemic therapy.6 While monoclonal anti-
bodies have the advantage of a receptor-specific
high-affinity binding enabling a prolonged half-life
compared with recombinant TRAIL, this specificity
may be problematic when looking for a therapeutic
effect as there are two active TRAIL receptors and
it is not known which receptor is more important
for apoptotic signalling. This is a potential explan-
ation for the disappointing results with these agents
in clinical trials.10 11
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Bone marrow-derived mesenchymal stem cells (MSCs) are
attractive candidates as vectors for anticancer therapies for mul-
tiple reasons. In vitro migration studies have demonstrated MSC
migration towards both tumour cells and their conditioned
media12 13 while in vivo MSCs have been shown to incorporate
into and persist in tumours following systemic administration in
a wide variety of tumour models, including lung metastases14

and glioma.15 Multiple delivery routes are also effective for
MSC therapy, including intravenous, direct intramyocardial16

and intraperitoneal delivery.17 While multiple growth factors
and chemokines have been postulated to be important in MSC
homing, the precise mechanism by which MSCs accumulate
within tumours is poorly understood.18

In this study, we show for the first time that MSCs expressing
TRAIL (MSCTRAIL) induce apoptosis in MPM cells in vitro
and that MSCs home to and incorporate into tumours in vivo
when delivered via both intrapleural and intravenous routes.
Furthermore, we demonstrate that intravenous MSCTRAIL
delivery causes a significant reduction in tumour growth in an in
vivo model of MPM through a mechanism involving increased
intratumoural MSC retention and tumour cell apoptosis.

MATERIALS AND METHODS
Cell culture
Tissue culture reagents were purchased from Invitrogen (Paisley,
UK) unless otherwise stated. Human adult bone marrow-derived
MSCs were purchased from Tulane University and cultured in
α-MEM with 16% fetal bovine serum (FBS), 4 mM L-glutamine
with 50 U/mL penicillin and 50 mg/mL streptomycin. MSCs
transduced with a Tet-inducible plasmid had FBS replaced with
Tet-system approved FBS (Clontech, Paris, France). Human
MPM cell lines (MSTO-211H, H28, H2052, ONE58, JU77
and LO68) and the benign mesothelial cell line Met5A were a
kind gift from Professor Bruce Robinson (University of Western
Australia) and were cultured in Dulbecco’s Modified Eagle
Medium with 10% FBS, 4 mM L-glutamine with 50 U/mL peni-
cillin and 50 mg/mL streptomycin.

Lentiviral vectors
TRAIL-IRES-eGFP lentivirus vector was produced as previously
described.14 Luciferase plasmid, pLIONII-HYG-Luc2YFP, was a
gift from Dr Stephen Goldie (Cancer Research Institute,
Cambridge), and lentivirus was produced using calcium phos-
phate transfection as described.19

MSCs were transduced with the TRAIL-IRES-eGFP lentivirus
as previously described.14 Human TRAIL protein production
with and without TRAIL activation in both cell supernatant and
lysates was confirmed by ELISA (R&D Systems). MSTO-211H
and H28 cells were transduced with pLIONII-HYG-Luc2YFP
and selected with hygromycin 200 mg/mL until a pure popula-
tion was achieved.

Flow cytometry for TRAIL receptors
MPM cells were harvested and resuspended at 1×106 cells/mL,
then incubated with antibodies against the four TRAIL receptors
or an isotype control, followed by biotinylated secondary goat
antimouse IgG1 and streptavidin phycoerythrin (PE). Flow cyto-
metry was performed to detect PE.

In vitro co-culture experiments
MSCTRAIL cells were plated in a 1:1 ratio with human MPM
cells, and apoptosis and cell death were determined as described
in online supplementary materials and methods.

In vivo pleural mesothelioma model
All animal studies were approved by the University College
London Biological Services Ethical Review Committee and
licensed under the UK Home Office regulations and the
Evidence for the Operation of Animals (Scientific Procedures)
Act 1986 (Home Office, London, UK). Eight-week-old female
NOD/SCID mice were purchased from Harlan, kept in individu-
ally ventilated cages under specific pathogen-free conditions and
had access to sterile-irradiated food and autoclaved water ad
libitum.

To create pleural tumours, mice were anaesthetised using 2%
isofluorane, the right thoracic wall was shaved and cleaned with
alcohol. A 5 mm incision was made on the right chest wall, and
a right anterolateral thoracotomy was performed in the fourth
intercostal space, followed by installation of luciferase-
transduced MSTO-211H (MSTO-211HLuc) cells in 100 mL
phosphate-buffered saline (PBS). MSCs were either delivered
intrapleurally as described or intravenously using the lateral tail
vein. Animals were weighed twice weekly, and bioluminescent
imaging of tumour burden was performed twice weekly.
Tumours were allowed to develop until mice reached 20%
weight loss or showed signs of distress.

In vivo imaging of MSC homing
8×104 MSTO-211HLuc were delivered intrapleurally and
tumours were left to develop for 5 days. 1×106 untransduced
MSCs were labelled using the fluorescent lipophilic dyes, DiI
(1,10-dioctadecyl-3,3,3030-tetramethylindocarbocyanine perchlo-
rate) and DiR (3,3,30,30 tetramethylindotricarbocyanine iodide)
according to manufacturer’s instructions and delivered either by
intravenous or intrapleural injections 5 days post-tumour cell
injection. Bioluminescence and fluorescence were determined
using an in vivo imaging system (IVIS Lumina, Caliper Life
Sciences) as described in online supplementary methods. At
study termination, mice were killed and tumour samples were
digested for flow cytometry and fixed for histochemical analysis.

Flow cytometry analysis of tumours
Tumours were identified using open cavity bioluminescent
imaging, removed and digested in a solution containing
RPMI-1640 (Invitrogen) with 1 mg/mL collagenase (Sigma) and
DNase I (Roche; 10 mg/mL) for 1 h at 37°C. Red blood cells
were lysed with red blood cell lysis buffer (Sigma) for 1 min,
neutralised with RPMI and filtered. Flow cytometry (LSR
Fortessa, Beckton Dickinson) was performed for YFP to detect
tumour cells and DiR to detect MSCs.

In vivo therapeutic effect of MSCTRAIL
Pleural tumours were established as previously described.
Tumours were left to develop for 5 days and for intravenous
delivery 1×106 MSCTRAIL or untransduced MSCs suspended
in PBS or PBS alone were delivered intravenously on days 5, 9,
12, 15 and 18. For intrapleural delivery, the same protocol was
followed except that animals received intrapleurally delivered
MSCTRAIL, untransduced MSCs or PBS alone on days 5, 9,
12, 15 and 18. All animals received doxycycline at 2 mg/mL in
sterile water containing 3% sucrose. Tumour growth was moni-
tored via bioluminescent imaging twice weekly using IVIS and
tumour burden was determined as described above. Animals
were injected with 10 mg/kg 5-bromo-20-deoxyuridine (BrdU;
Invitrogen) 1 h prior to sacrifice. All tumour tissue and lungs
were removed and weighed prior to fixation and fixed overnight
in 10% neutral buffered formalin (Roche) for histology.
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Immunohistochemistry
Samples were processed as described in online supplementary
methods. Calretinin antibody (Abcam), WT1 antibody (Upstate
Cell Signaling Solutions, New York, USA), TRAIL, DR5 anti-
bodies (ProSci) and Luciferase antibodies (rabbit polyclonal;
Abcam) were used as primary antibodies. BrdU-positive and
TUNEL-positive cells were quantified using Volocity software.

Statistics
Statistical analysis was performed using GraphPad Prism V.4
(GraphPad Software). In vivo experiments with multiple groups
were analysed using repeated measures ANOVA, and single-
group data were assessed using Student t test. All in vitro experi-
ments were performed in triplicate unless specified.

RESULTS
Characterisation of cells and transduction of MSCs
The ability of MSCs to differentiate into fat and bone was con-
firmed along with their colony-forming efficiency as previously
described.14 MSC transduction with TRAIL-IRES-eGFP under
the control of a tetracycline-dependent promoter was successful
(figure 1A,B), and transduction efficiency was >96% following
activation with doxycycline (figure 1C). ELISA confirmed high
TRAIL expression in MSC cell lysates following TRAIL activa-
tion with doxycycline but low levels in cell lysates from inacti-
vated MSCs and cell supernatants (figure 1D).

Immunocytochemistry confirmed both calretinin and Wilms
Tumour antigen 1 (WT1) in all MPM cell lines (see online sup-
plementary figure S1A–F), and they all possessed death receptor
5 (DR5) (see online supplementary figure S1G), the receptor
responsible for the majority of TRAIL signalling. There was no
correlation between the mean fluorescence intensity of DR5
staining and the sensitivity of MPM to MSCTRAIL (see online
supplementary figure S1H). Met5A is shown as a normal meso-
thelial control.

In vitro co-culture experiments demonstrate variable
sensitivity of MPM cells to MSCTRAIL
MPM tumour cell lines were co-cultured for 48 h with rTRAIL
or MSCTRAIL with doxycycline to activate TRAIL production.
Five out of six cell lines (83%) showed sensitivity to TRAIL.
H28 cells showed a significant increase in apoptosis and death
when treated with MSCTRAIL compared with either rTRAIL
(3.6±0.1% vs 11.3±0.7%, p=0.007) or inactivated
MSCTRAIL (3.4±0.1% vs 11.3±0.7%, p=0.001) (figure 2A,
D). MSTO-211H cells were sensitive to treatment with rTRAIL
showing over 40% cell death compared with inactivated
MSCTRAIL (42.6±4.2% vs 12.9±0.8%, p<0.0001), which
increased to over 58% when treated with MSCTRAIL (12.9
±0.8% vs 58.2±1.2%, p<0.0001) (figure 2B,D). In Met5A,
there was no significant increase in apoptosis and death when
treated with either rTRAIL or MSCTRAIL compared with inac-
tivated MSCTRAIL (1.5±0.2% and 1.9±1.1%, respectively, vs
0.8±0.05%, p=0.283 and p=0.285, respectively) (figure 2C,
D). ONE58, JU77, H2052 and LO68 were also tested and were
sensitive to MSCTRAIL (see online supplementary Fig S2A).

To confirm that cell death was not caused by treatment with
doxycycline, MPM cells were incubated for 48 h with 10 mg/mL
doxycycline, harvested and stained for annexin V and DAPI as
before. Flow cytometry showed no significant increase in cell
death or apoptosis in any of the MPM cell lines tested (see
online supplementary figure S2B).

Bioluminescence is suitable for monitoring longitudinal
MPM tumour growth and a quantitative end point of
tumour burden
MSTO-211H cells were transduced with a luciferase-YFP
(MSTO-211HLuc) lentiviral vector and selected using hygromy-
cin (200 mg/mL) to ensure a pure population (figure 3A) and
increasing cancer cell numbers correlated well with increasing
bioluminescent signal (figure 3B,C).

To determine the kinetics of tumour growth in vivo, 8×104

MSTO-211HLuc cells were injected intrapleurally and tumour
growth was monitored. Bioluminescence images showed increas-
ing signal over 21 days (figure 3D,E). MSTO-211H cells were
used as they are known to be tumourigenic in vivo while H28
are not.20

Intrapleurally and intravenously delivered MSCs home to
MPM in vivo
Tumours were established as described in the methods with
1×106 DiI-labelled MSCs injected into mice either intrapleu-
rally or intravenously. Animals were imaged immediately after
injection and 48 h later to determine the location of both MSCs
and tumours. Tumours were clearly visible on bioluminescent
imaging (figure 4A–C), and fluorescence demonstrated MSC
localisation at the site of the tumours (figure 4E,F). No animals
developed pleural effusions so signal is representative of solid
tumours. Control animals receiving no MSCs showed no fluor-
escent signal, confirming that any signal detected was represen-
tative of MSCs and not luciferase-YFP (figure 4D).
Immunofluorescence confirmed that DiI-labelled MSCs were
located within the tumour stroma when delivered both intra-
pleurally and intravenously (figure 4G–J). No fluorescent signal
was seen outside the lungs, suggesting that MSCs did not reach
other organs and there was no evidence of toxicity.

MSCTRAIL causes a reduction in tumour growth when
delivered intravenously but not intrapleurally
Tumours were established as described and 1×106 MSCTRAIL or
untransduced MSC or 100 mL PBS were delivered intravenously
on days 5, 9, 12, 15 and 18. IVIS imaging demonstrated a signifi-
cant reduction in tumour growth in the MSCTRAIL group com-
pared with the PBS and untransduced MSC group (p<0.001,
repeated measures ANOVA; figure 5A,B). There was also a signifi-
cant reduction in lung weights in MSCTRAIL-treated mice
(p<0.0391; figure 5C).

To determine whether a similar effect was seen with topically
delivered MSCTRAIL, the experiment was repeated using intra-
pleural delivery of 1×106 MSCTRAIL or untransduced MSC or
PBS. In this experiment, there was no significant reduction in
tumour growth or lung weights compared with the PBS and
untransduced MSC-treated groups.

Histopathological analysis showed no significant difference in
tumour cell proliferation (figure 5D–F and K), but there was a
significant increase in apoptosis in tumours from the intravenous
MSCTRAIL-treated group (p<0.0053; figures 5G–J and L),
suggesting that intravenous MSCTRAIL cells reduce tumour size
by inducing apoptosis. Representative H&E sections from
tumours treated with PBS, intrapleural MSCTRAIL and intra-
venous MSCTRAIL (see online supplementary figure S3) show
the presence of pyknotic nuclei and dead cells in the intravenous
MSCTRAIL-treated tumour.
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Intravenous-delivered MSCs incorporate into tumours in
greater numbers than intrapleural- delivered MSCs
To determine why MSCTRAIL is only effective when delivered
intravenously, mice were given 2×105 MSTO-211HLuc intra-
pleurally and tumours were left to establish for 10 days. 1×106

DiR-stained MSCs stained were injected either intravenously or
intrapleurally and imaging was performed daily. Tumours were
successfully established and fluorescent MSCs were clearly visible
following both routes of delivery (figure 6A). There was a signifi-
cant difference in signal 24 h post-MSC injection (p=0.0125;
figure 6B), which was maintained throughout the imaging
period, suggesting that MSCs incorporate into tumours in greater
numbers when delivered intravenously compared with intrapleu-
rally. Flow cytometry of tumour digests confirmed a greater per-
centage of MSCs in the tumours receiving intravenous MSCs
(figure 6C,D), although the overall percentage was low compared
with the number of tumour stromal cells and lung cells.

DISCUSSION
In this study, we have shown that MSCs engineered to express
TRAIL can induce death in multiple MPM cell lines in vitro and
are more efficient at killing than recombinant TRAIL. We have
also demonstrated that MSCs migrate to MPM tumours in vivo
when delivered both intravenously and intrapleurally. However,
only intravenous-delivered MSCTRAIL causes a significant
reduction in tumour growth and the difference in efficacy is
likely due to a higher number of MSCs engrafting within the
tumours causing increased apoptosis.

Using MSCs as vectors for gene therapy is becoming increas-
ingly common as they are easy to extract from bone marrow, are
highly expandable and readily transducible with viral
vectors.21 Once modified they maintain their stem cell proper-
ties22 and can be injected into a recipient without provoking an
immune response.23 Clinical trials using allogeneic and autolo-
gous MSCs in cardiovascular and respiratory diseases have
shown no adverse events or immunological reactions,24 25 but
as yet there are no clinical trials using engineered MSCs in
cancer. The issue of immunological reactions will clearly need
to be monitored for in any phase I clinical trial with engineered
MSCs. MSCs home to multiple tumour types in vitro and in
vivo, and while the precise mechanism of this has not been
clearly established multiple cytokine/receptor pairs have been
investigated.26 In our study, we show that MSCs home to MPM
when delivered both intravenously and intrapleurally and are
incorporated within the tumour tissue. These properties enable
delivery of high-dose-targeted cancer therapy directly to the site
of the tumour while reducing off-target effects, making it a clin-
ically attractive option.

There is some concern that exogenously delivered MSCs have
an unpredictable effect on tumour biology with different in vivo
models suggesting pro-tumourigenic or antitumourigenic prop-
erties,27 but MSCs genetically modified to express pro-apoptotic
molecules ensure an antitumourigenic effect.28 This is in line
with our results where MSCs alone had no pro-tumourigenic
effect and intravenous MSCTRAIL had an antitumourigenic
effect. TRAIL is an exciting prospect for cancer therapy because

Figure 1 MSC transduction. (A) Bright field and (B) fluorescence microscopy to confirm GFP expression following transduction of MSC with
TRAIL-IRES-eGFP lentivirus and activation with doxycycline (10 mg/mL) (magnification, ×5; bar 20 mm). (C) Flow cytometry plots confirming
efficiency of MSC transduction following TRAIL activation with doxycycline and (D) a TRAIL ELISA of MSC cell supernatant and lysate demonstrating
the production of TRAIL protein in cell lysates following MSCTRAIL activation with doxycycline. There is minimal TRAIL production following MSC
transduction in the absence of doxycycline and low levels in cell supernatant from activated MSCTRAIL. MSC, mesenchymal stem cell; MSCTRAIL,
MSCs expressing TRAIL; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.
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of its ability to selectively target cancer cells without killing
healthy cells; however, its short half-life6 means repeated high-
dose systemic treatment would be required to produce a

significant local effect. While human MPM cell lines express
both DR4 and DR5 receptors with higher levels of DR5 than
DR4, this expression does not correlate with TRAIL

Figure 2 Human MPM exhibit variable in vitro sensitivity to rTRAIL and MSCTRAIL. Flow cytometry plots showing increased apoptosis and cell
death in (A) H28 MPM when treated with rTRAIL and MSCTRAIL+dox and (B) in MSTO-211H MPM cell line with MSCTRAIL+dox compared with
rTRAIL or MSCTRAIL no dox. Control benign mesothelial cells Met5A, (C) show no significant apoptosis or cell death when treated with rTRAIL or
MSCTRAIL+dox. Apoptosis and death were determined using annexin V and DAPI staining, respectively. (D) Flow cytometry data from co-culture
experiments showing an increase in apoptosis and death in both H28 and MSTO-211H following treatment with rTRAIL and MSCTRAIL. (+p<0.0001;
*p=0.001; #p=0.007). MPM, malignant pleural mesothelioma; MSCTRAIL, mesenchymal stem cells expressing TRAIL; TRAIL, tumour necrosis
factor-related apoptosis-inducing ligand.
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Figure 3 Luciferase-transduced MSTO-211H cells injected intrapleurally can be tracked longitudinally and correspond to tumour growth. (A)
Human MPM cells MSTO-211H were transduced with pLIONII-HYG-Luc2YFP and selected with hygromycin (200 mg/mL) until a pure population was
achieved (phase contrast, left panel and immunofluorescence of luciferase transduced, right panel) (magnification 5×; bar 60 mm). (B)
MSTO211HLuc were plated in increasing numbers in a 12-well plate and imaging was performed once cells were adherent. (C) Graph of
bioluminescent signal with increasing cell number showing good correlation between increasing signal and increasing cell number (represented as
average±SEM). (D) IVIS images demonstrate that intrapleural delivery of MSTO-211HLuc cells results in an increase bioluminescent signal over time.
(E) The most rapid increase in tumour growth occurs within the first 10 days following tumour cell inoculation. Weight loss does not occur until
tumour growth slows, suggesting it is a late marker of disease. MPM, malignant pleural mesothelioma.
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sensitivity.29 There are currently no biomarkers to predict sensi-
tivity to TRAIL. The efficacy of rTRAIL-mediated killing of
MPM has been assessed in vitro in combination with multiple
other therapies,30 31 but not as a single agent or in vivo models.
MSCTRAIL is known to eliminate or reduce tumour growth in
other in vivo cancer models,14 15 32 but has not been assessed in
MPM. It can kill the cancer stem cell-like populations of cancer
cells that are thought to be resistant to current chemotherapies
and are a postulated mechanism for tumour recurrence follow-
ing treatment33 . Our results demonstrate for the first time that
MPM cells are sensitive to treatment with MSCTRAIL and
there is a greater level of cell death compared with treatment
with rTRAIL in vitro. This treatment remains effective in vivo
with a significant reduction in tumour burden when
MSCTRAIL is delivered intravenously. During our experiments,
the number of MSCTRAIL cells injected appears high relative to
tumour cell inoculation. However, when the population
doubling time of the MSTO-211H cells of 20 h is considered,
the ratio of tumour cells to MSCTRAIL cells would be
significantly lower.34

When using MSCs as therapeutic delivery vectors, treatment
efficacy is related to the level of MSC accumulation at tumour
sites. Our study shows that while MSC homing occurs regardless
of route of delivery, the level of MSC accumulation following
intravenous delivery is significantly higher than when delivered
intrapleurally. The increase in apoptosis seen in the intravenous
delivery model could be a direct effect of the tumour receiving a
greater number of cells and hence a higher dose of TRAIL. The
first step in MSC accumulation within tumours is adhesion to
vascular endothelial cells, and multiple factors are involved in
this process.35 36 It may be that cells delivered intravenously have
higher accumulation as they are delivered directly to endothelial
cells, making adhesion more likely. Alternatively intrapleurally
delivered cells may have lower intratumoural accumulation as
their delivery is likely to be to areas that are poorly vascularised
and hypoxic and MSCs are more likely to die when located
within a hypoxic microenvironment.37

In conclusion, this study shows intravenous MSCTRAIL deliv-
ery causes a reduction in tumour growth in an in vivo MPM
model. MSCs home to and incorporate into tumours using both

Figure 4 Human MSCs home to an in vivo model of MPM when delivered both intrapleurally and intravenously. (A–C) IVIS images of animals
with intrapleural bioluminescent MSTO-211HLuc tumour cells. (D) Lack of fluorescent signal in control animal with no DiR-labelled MSCs while
animals receiving (E) pleural MSCs and (F) intravenous MSCs show co-localisation of fluorescent MSCs at the sites of tumour (scale bar 5 mm). (G)
Immunofluorescence images confirm the absence of DiI-labelled MSCs (red) within luciferase positive tumour, while MSCs are visible within the
luciferase-positive tumours following both (H) intrapleural and ( J) intravenous MSC delivery (magnification ×20; bar 60 mm). MPM, malignant
pleural mesothelioma; MSC, mesenchymal stem cell.
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Figure 5 MSCTRAIL reduce the growth of MPM when delivered intravenously. (A) IVIS images of representative animals from each experimental
group showing reduced bioluminescent signal in animals treated with intravenous MSCTRAIL. (B) Line graph to demonstrate a reduction in total
photon count (p/s) seen in animals in the intravenous MSCTRAIL-treated group over 21 days compared with MSC delivery alone, PBS or intrapleural
MSCTRAIL. Photon count was determined using dedicated regions of interest around the whole body to include both pleural tumour burden and any
distant metastatic deposits (Living Image Software, Caliper LifeSciences; p<0.001). (C) Dot plot to show a reduction in lung weights with
intravenous MSCTRAIL treatment compared with all other treatment groups (p<0.05). Immunofluorescence showing proliferating cells (red) and
luciferase-positive tumour cells (green) in tumours treated with (D) PBS, (E) intrapleural-delivered MSCTRAIL and (F) intravenous-delivered MSCTRAIL.
(G) Representative immunofluorescence showing TUNEL-positive apoptotic cells (green) within pleural tumours (red) in animals treated with (G) PBS,
(H) pleural MSCTRAIL and ( J) increased apoptosis in tumours treated with intravenous MSCTRAIL (magnification 4×, bar 60 mm). (K) Proliferating
cells per tumour area were quantified (Volocity Software) with no significant difference in the number of BrdU-positive cells between the treatment
groups. (L) TUNEL-positive cells per tumour area were quantified (Volocity Software), and MSCTRAIL-treated animals showed increased levels of
apoptosis within tumours compared with all other groups (p=0.0053). MPM, malignant pleural mesothelioma; MSC, mesenchymal stem cell;
MSCTRAIL, MSCs expressing TRAIL; PBS, phosphate-buffered saline; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand.
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intravenous and intrapleural delivery routes but greater numbers
engraft when delivered intravenously. The therapeutic effect
seen with intravenous delivery could be related to greater
engraftment of MSCs within the tumour and is an important
finding when considering the future therapeutic role of
MSCTRAIL therapy in the clinic.
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Figure 6 Intravenous-delivered MSCs are incorporated into tumours in greater numbers than when delivered intrapleurally. (A) IVIS images to
show established bioluminescent MPM tumours and corresponding fluorescence from DiR-labelled MSCs on days 1 and 6 following MSC injection.
Intravenous-delivered MSCs show a higher fluorescent signal on day 1 and day 6 following injection compared with intrapleural-delivered MSCs. (B)
Fluorescent signal was quantified and MSCs delivered intravenously showed a higher signal on day 1 compared with cells delivered intrapleurally,
which persisted until day 6 (p=0.0125). (C) Tumours were removed and digested for flow cytometry, which revealed a higher percentage of
DiR-stained MSCs in tumours given intravenous MSCs than in those given intrapleural MSCs. (D) Bar chart to show a significant increase in
DiR-stained MSCs in tumour digests following intravempis delivery compared with pleural delivery (p<0.0412). MPM, malignant pleural
mesothelioma; MSC, mesenchymal stem cell.
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