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Abstract

Inflammation contributes to many of the characteristics of plaques implicated in the pathogenesis

of acute coronary syndromes (ACS). Moreover, inflammatory pathways not only regulate

properties of plaques that precipitate ACS but also modulate the clinical consequences of the

thrombotic complications of atherosclerosis. This synthesis will provide an update on the

fundamental mechanisms of inflammatory responses that govern ACS, and also highlight the

ongoing balance between pro-inflammatory mechanisms and endogenous pathways that can

promote the resolution of inflammation. An appreciation of the countervailing mechanisms that

modulate inflammation in relation to ACS enriches our fundamental understanding of the

pathophysiology of this important manifestation of atherosclerosis. In addition, these insights

furnish glimpses into potential novel therapeutic interventions to forestall this ultimate

complication of the disease.

Introduction

Inflammation contributes to many of the characteristics of plaques implicated in the

pathogenesis of acute coronary syndromes (ACS) (Table 1).1 Two mechanisms precipitate

most ACS: a rupture of the plaque's fibrous cap and a superficial erosion of the intima.

Fibrous cap fracture causes most fatal acute myocardial infarctions (MIs). The pathways by

which inflammation promote fibrous cap rupture indisputably involve inflammation.

Superficial erosion has a less clear relationship with inflammation. Therefore this review

will focus on plaque rupture. Falk and Virmani have reviewed characteristics of plaques that

cause ACS in their contribution to this series. 2 These features (Table 1) include a thin

fibrous cap, a multiplicity of macrophages, a large lipid (necrotic) core, spotty calcification,

and expansive remodeling. Substantial evidence supports the participation of inflammatory

pathways in each of these characteristics associated with plaques that have caused ACS.

Inflammation also influences the consequences of a given plaque disruption. While the

“solid state” of the atheroma itself determines the propensity to rupture, the “fluid phase” of
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blood can determine whether a plaque disruption results in a limited mural thrombus that

would evade clinical detection or give rise to a sustained occlusive thrombus that could lead

to an ST segment elevation MI (Figure 1)

Maintenance of homeostasis in health and limiting excessive inflammation responses in

disease requires countervailing mechanisms. This review will illustrate how inflammation

drives the properties of plaques and blood that predispose to ACS, how endogenous anti-

inflammatory and resolution measures mitigate over exuberant inflammatory responses, and

various therapeutic opportunities afforded by the inflammatory aspects of ACS.

Inflammation Drives ACS

Thin fibrous cap

Plaques that have ruptured and caused fatal acute MI generally have thin fibrous caps,

measured in many studies at around 60–70 microns.3 Recent studies with optical coherence

tomography (OCT), which provides splendid near field high-resolution views of the intima,

have corroborated in humans in vivo the observations of pathologists on autopsy specimens

implicating thin fibrous caps in plaque disruption.4 Inflammation decisively governs the

metabolism of collagen, a major constituent of the fibrous cap that confers upon it much of

its tensile strength. As recently reviewed, inflammatory signals such as the TH1 cytokine

gamma interferon impair the ability of the smooth muscle cell (SMC), the source of most

arterial interstitial collagen, to synthesize new collagen required to repair and maintain the

extracellular matrix of the fibrous cap.1 Considerable biochemical and experimental data

support the role of matrix-degrading proteinases, tightly regulated by inflammatory

mediators, as contributors to dissolution of interstitial collagen that thins and weakens the

fibrous cap and hence renders a plaque susceptible to rupture.5 Death of SMCs in the

inflamed atheroma can deplete the plaque of the very cells that synthesize collagen required

to form and maintain the fibrous cap.6, 7

Inflammatory cell recruitment

Observations on human atheroma specimens, in vitro studies, and animal experiments have

elucidated pathways by which leukocytes from blood adhere to the endothelial cells (ECs) at

sites predilected to atheroma formation, enter the intima, and undergo activation to sustain

and amplify inflammation locally (Figure 2). Many recent reviews have highlighted the role

of pro-inflammatory cytokines as inducers of endothelial-leukocyte adhesion molecules that

capture blood leukocytes, most prominently the blood monocyte.8 A series of chemokines

that interact with cognate receptors on various classes of leukocytes cause their directed

migration to penetrate into the intima. 8, 9 Recent refinements of our understanding of

leukocyte accumulation in plaques include an expanded understanding of monocyte/

macrophage heterogeneity.10 In particular, in hypercholesterolemic mice, a pro-

inflammatory subset of monocytes marked by high levels of expression of the surface

marker Ly6c enter plaques early in development of experimental atherosclerotic

lesions.11, 12 A preformed pool of pro-inflammatory monocytes in the spleen provides many

of these pro-inflammatory monocytes that populate early plaques.13 The Ly6c high

monocyte subpopulation uses CCL2/CCR2 or CXCL1/CXCR2 as a major chemokine-
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receptor dyad related to their recruitment. The less inflammatory subpopulation of

monocytes containing low levels of Ly6c may favor fractalkine (CX3CL1) and its receptor

(CX3CR1) and CCR5 as trafficking mechanisms.14 The Ly6c low population may arise

from Ly6c high monocytes, a transition mediated by the transcription factor Nr4a1

(Nur77.) 15 Mononuclear phagocytes can proliferate in plaques.16 The macrophage

scavenger receptor A, known to bind modified lipoproteins, may contribute to mediating this

process.17 Macrophage colony stimulating factor (M-CSF/CSF-1) participates in the

maturation of monocytes to macrophages, induces the expression of scavenger receptors that

permit accumulation of modified lipoproteins within the phagocyte, fostering the formation

of foam cells, the hallmark of the atherosclerotic lesion.18 While less apparent

morphologically, but functionally pivotal, other leukocyte populations reside in plaques

including various classes of T lymphocytes, B lymphocytes, mast cells, and dendritic cells

(DCs).9, 19, 20 A recently recognized population of innate response activator B cells can

produce granulocyte-macrophage colony stimulating factor (GM-CSF/CSF-2) in the spleen

of hypercholesterolemic mice where it can activate dendritic cells which in turn promote

TH1 cells capable of producing gamma-interferon that can migrate to atheroma and activate

plaque macrophages.21

Most depictions of leukocyte recruitment to plaques portray this process as taking place at

the macrovascular luminal surface overlying the lesion. While this locale likely applies to

the nascent lesion, once established, atheromata develop microvasculature.22 The plexi of

plaque microvessels provide an even more abundant surface for leukocyte trafficking.

Indeed, a key adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1) localizes to

the micro- rather than macrovascuar endothelium in human lesions. 23 Plaque hypoxia and

expression of angiogenic growth factors elaborated by inflammatory cells drive this

neovascularization in plaques. 9, 22

Large lipid pools and “necrotic” core (see also24

The Rosenson et al. contribution to this series discusses lipid metabolism and targets in the

context of ACS.24 Therefore, we focus here on inflammatory cell death by apoptosis or

oncosis and defects in the clearance of dead cells, a process known as efferocytosis (Figure

2).

Large necrotic cores characterize plaques that cause ACS (Table 1). Plaque inflammation

can promote necrotic core formation, and, in turn, plaque necrosis can worsen inflammation

in advanced atheromata.25, 26 Necrotic cores contain dead cells and their detritus, and

because most of the dead cells consist of foamy macrophages, lipid debris abounds. Necrotic

cores likely contribute to plaque rupture and ACS as they possess inflammatory, proteolytic,

and thrombogenic properties.27-29 Moreover, the material properties of the lipid-rich

necrotic core places biomechanical stress on the overlying fibrous cap and thereby

contributes to cap rupture.30

The dead cells that accumulate in necrotic cores likely have two origins: secondary cell

death due to the combination of apoptosis and defective clearance of the apoptotic cells

(efferocytosis); and primary cellular necrosis, also known as “necroptosis” or “oncosis.”

Macrophages have relatively long lives, but turnover of intimal macrophages occurs at all
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stages of atherosclerosis. In early-stage lesions, efficient efferocytosis by neighboring

phagocytes, notably macrophages, limits secondary macrophage necrosis. 3126 As lesions

progress, however, intimal cell apoptosis increases for a number of reasons, including

inflammatory stimuli and factors that promote oxidative and endoplasmic reticulum (ER)

stress. These stressors trigger mitochondrial pathways of apoptosis and likely work in

concert with other plaque factors that activate toll-like receptors (TLRs), death receptors,

and additional mitochondrial apoptotic pathways.

As plaques advance, efferocytosis begins to fail promoting secondary necrosis of the

apoptotic cells and loss of efferocytosis-mediated anti-inflammatory signaling. The

cytoplasmic tails of efferocytosis receptors usually mediate these anti-inflammatory

pathways and result in the production of anti-inflammatory/pro-resolving IL-10 and

transforming growth factor beta (TGF-β).32 The release of damage-associated molecular

patterns (DAMPs) from necrosing cells likely further amplifies plaque inflammation.

DAMPs trigger inflammatory pathways in macrophages by activating innate immune

receptors, including TLRs, and DAMPs likely promote plaque progression toward those

prone to provoke ACS.

Many cell types can carry out efferocytosis, but dedicated phagocytes like macrophages and

DCs do so most efficiently. The process involves recognition of particular features on

apoptotic cells, notably cell-surface phosphatidylserine (PS), by efferocyte receptors that

bind PS directly or through a bridging molecule. Although observations in mice with

advanced atherosclerosis have identified macrophage efferocytosis receptors relevant to

necrotic core formation, the mechanisms of defective efferocytosis in advanced atheromata

are not known. In theory, the problem could reside with the efferocytes themselves (e.g.,

receptor or internalization defects), or with an apoptotic cell-related property that decreases

their recognition by efferocytes. As discussed below, failed efferocytosis characterizes

impaired resolution of the inflammatory response.

Primary necrosis refers to a pathway of cell death that is morphologically and biochemically

distinct from apoptosis.33 In contrast to apoptosis, membrane leakiness occurs early in

primary necrosis, chromosome condensation does not occur. Activation of a family of

kinases called receptor-interacting protein (RIP) triggers a particular programmed form of

necrosis, called necroptosis. Deficiency of one of the RIP kinases, RIP3, in myeloid-derived

cells in both Ldlr-/- and Apoe-/- mice leads to a decrease in necrotic macrophages in

advanced atherosclerotic lesions, but no observable changes in early atherosclerosis. The

trigger to necrosis in atheromata remains unknown, but RIP3-dependent cell death can occur

in cultured macrophages exposed to oxidized LDL together with a caspase inhibitor.34

Phagocytes have specific mechanisms for the clearance of necrotic cells, so the presistence

of dead cells in advanced atheroma may indicate a defect in this subtype of efferocytosis.

As alluded to above, numerous studies using Ldlr-/- and Apoe-/- mice that consume an

atherogenic diet support the overall concepts related to intimal cell death, efferocytosis,

inflammation, and plaque necrosis as a function of lesion stage, and the underlying

molecular-cellular mechanisms. Although these experiments do not recapitulate the

processes of plaque rupture and thrombosis, ACS in humans associate with coronary arterial
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lesional ER stress, intimal cell apoptosis, and the features associated with plaque instability

(Table 1). Moreover, advanced human coronary artery lesions show signs of defective

efferocytosis.35

Spotty calcification characterizes plaques associated with ACS

Traditional thinking has regarded calcification of atherosclerotic plaques as a passive

“degenerative” process. In contrast, contemporary concepts view calcification as a dynamic

active process critically dependent on inflammatory cells and signaling. Mice deficient in

M-CSF, an activator of macrophages, accumulate calcium in atheromata, likely due to

impaired osteoclastic activity of the mononuclear phagocytes.36 Molecular imaging studies

colocalized niduses of inflammation with early mineralization in mouse atheromata.37

Inflammatory mediators also instruct SMCs to alter functions related to the formation of

calcifying foci.

Large plates of calcium mineral may influence the stability of plaques. Recent work using

computational methodology has shown that pinpoint calcification can introduce

biomechanical inhomogeneities implicated in precipitation of plaque rupture.38 Nuclear

imaging studies using NaF provides a quantifiable index related to calcification in carotid

and coronary artery plaque that correlates with Framingham risk. 39, 40 Imaging studies

using computed tomographic (CT) approaches have associated spotty calcification with

propensity of plaques to provoke ACS.41, 42 The implication of inflammation in mechanisms

related to cardiovascular calcification provides a novel link to ACS pathogenesis.

Outward remodeling

The observations of Clarkson in non-human primates and of Glagov in human

atherosclerotic plaques pointed to the role of expansive remodeling or compensatory

enlargement during atherogenesis.43, 44 Imaging studies using intravascular ultrasound and

computed tomography have associated expansive remodeling with risk of plaques to

precipitate ACS.45 Outward remodeling of arteries necessitates degradation of the

extracellular matrix (including collagen) and of elastin, the major protein of the elastic

laminae of arteries. Just as inflammatory mediators influence the expression of proteinases

involved in collagenolysis in thinning of the fibrous cap, similar regulation of elastases and

other matrix-degrading enzymes by inflammatory mediators can control expansive

remodeling.46 In atherosclerosis-susceptible mice, genetically produced alterations in

signaling by the key inflammatory mediator interleukin-1 (IL-1) leads to a failure of

expansive remodeling during atherogenesis.47 In particular, reduced induction of the matrix

metalloproteinase MMP-3 due to lack of IL-1 signaling appears to contribute causally to this

defective remodeling.47 Thus, inflammatory pathways also govern this characteristic of

plaques that provoke ACS.

Thrombogenicity

As indicated above, the consequences of plaque disruption depend on the balance between

pro-coagulant and anti-coagulant and pro-fibrinolytic and anti-fibrinolytic factors both in the

solid state of plaque and fluid phase of blood (Figure 1).48 Within the plaque, a

subpopulation of mononuclear phagocytes and activated SMCs overexpress the potent pro-
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coagulant tissue factor in response to inflammatory stimuli, notably CD40 ligand

(CD154).49-51 The normal intima expresses a number of functions that combat thrombus

accumulation.52 ECs normally express thrombomodulin and endogenous fibrinolytic

mediators urokinase type and tissue type plasminogen activator. The normal intima also

contains heparan sulfate proteoglycans that have anti-coagulant properties. The balance

between these anti-thrombotic and pro-fibrinolytic mechanisms shifts in response to

inflammatory mediators. The local production of plasminogen activator inhibitor-1 (PAI-1),

a major blocker of fibrinolysis, rises in SMCs and ECs exposed to pro-inflammatory stimuli.

Thus, the solid state of the plaque augments thrombogenicity and resists fibrinolysis in

response to inflammatory activation.

Likewise, the fluid phase of blood promotes clot accumulation in response to systemic

inflammation. The hepatocyte augments productions of acute phase reactants in the presence

of systemic inflammation, notably interleukin-6 (IL-6), a pro-inflammatory cytokine

strongly implicated in the pathogenesis of ACS by recent genetic studies.53 Among the acute

phase reactants released by the liver in response to IL-6, fibrinogen participates directly in

clot formation. The hepatocyte also increases production of PAI-1 when exposed to IL-6.

Platelets participate pivotally in the formation of arterial thrombi, and furnish an endogenous

source of preformed mediators that amplify and sustain local inflammatory responses.54

Once plaques have disrupted, neutrophils also enhance local inflammation and oxidative

stress, including through the formation of neutrophil extracellular traps (NETs).55 Hence, in

response to inflammation, both the solid state of plaque and the fluid phase of blood

conspire to promote thrombus accumulation by increased thrombogenicity, decreases anti-

coagulant properties, and impaired fibrinolytic capacity.

Pharmacologic anti-inflammatory interventions

Statin drugs have transformed cardiovascular prevention in the last decades. Beyond their

LDL-lowering effects, statins have direct anti-inflammatory actions mediated by inhibition

of prenylation of small G-proteins and induction of transcription factors such as Krüppel-

like factor-2 (KLF-2) that alter inflammatory pathways in a concerted manner.56 Thus, the

statins likely reduce ACS risk in part by these, and perhaps other, anti-inflammatory

properties. Among anti-inflammatory strategies, colchicine has recently demonstrated

promising reductions in cardiovascular events, potentially through inhibiting the

inflammasome pathway in macrophages.57, 58 Other direct anti-inflammatory interventions

that do not affect LDL are currently under investigation.58, 59

The endogenous resolution response and its defect in advanced atherosclerosis

The acute inflammatory response in host defenses unleashes oxidative and protease-

mediated tissue injury that can lead to collateral damage. The inflammatory response

normally also involves a resolution phase that, after attacking the acute injury or infection,

quells inflammation and restores tissue homeostasis.60, 61 Multiple lipid-derived and protein

mediators (Table 2) promote resolution by blocking inflammatory cell influx and promoting

their egress; clearing pathogens, cellular debris, inflammatory cytokines, and dead cells

(efferocytosis); and repairing tissue damage.62, 63 The molecules that mediate the resolution

response include specialized pro-resolving mediators (SPMs), endogenous lipids generated
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actively during inflammation.62 SPM families include lipoxins, resolvins, protectins, and

maresins. Lipoxins derive from omega-6 arachidonic acid, while resolvins, protectins, and

maresins arise from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid

(DHA). Lipoxygenase (LOX)- and cyclooxygenase (COX)-initiated mechanisms

biosynthesize SPMs. SPMs each possess distinct structures that bind and activate select cell-

surface receptors.

In chronic diseases, persistence of the irritative stimulus, such as intimal lipids in

atherosclerosis, can mute the resolution phase, leading to a cycle of persistent tissue injury,

which generates DAMPs that propagate inflammation. Impaired resolution of inflammation

can contribute to many of the features of plaques associated with ACS, including persistent

influx and defective egress of myeloid cells; accumulation of DAMPs; secondary necrosis of

intimal cells due to defective efferocytosis, augmenting necrotic core formation; and

degradation of the extracellular matrix.

Mechanisms of SPM dysregulation relevant to advanced atherosclerosis and ACS

In addition to a persistent inflammatory stimulus, such as retained subendothelial apoB

lipoproteins, additional factors may hamper resolution inflammation in advanced

atherosclerosis. LC-MS-MS profiling in other chronic inflammatory conditions, such as

cystic fibrosis, asthma, and localized aggressive periodontitis has revealed decreased SPMs

compared with healthy controls.64-66 Moreover, lower plasma levels of a specific SPM

called aspirin-triggered LXA4 (ATL) associate with increased risk for peripheral and

coronary atherosclerosis in humans, even after correcting for age, sex, and C-reactive

protein levels.67 Unraveling the mechanism(s) by which SPM concentrations decrease in

chronic inflammatory diseases and whether this drop also applies to advanced

atherosclerosis will require further studies. Possibilities include insufficient substrate

availability (i.e., lack omega-3 fatty acids in the diet); dysregulated signaling, perhaps due to

suppression of SPM receptors; impaired biosynthetic capacity, such as decreased

lipoxygenase expression and/or function; and/or hyperactive catabolism of these SPMs.

Observational studies show that populations that have a high intake of foods containing

omega-3 compared with omega-6 fatty acids have better cardiovascular outcomes.68 Yet,

studies evaluating omega-3 fish oil supplementation in humans have shown variable results.

This discrepancy may result from differences in study endpoints (e.g., incident

atherosclerotic disease versus coronary death), whether subjects entered the studies already

having sufficient omega-3 fatty acid intake, a lack of uniformity and quality of the fish oils

being tested, and/or to the difficulty of showing beneficial effects on subjects already

receiving statins.69 In mice, dietary omega-3 supplementation attenuates atherogenesis,70-72

and high-dose EPA causes lesion regression.73 Genetically-mediated increase of the n-3/n-6

ratio in mice also yields less atherosclerosis.74 Prostaglandin E2, via the macrophage EP4

receptor, can also mitigate vascular inflammation.75

Overexpression of a key SPM biosynthetic enzyme, 12/15-LOX, in chowfed Apoe-/- mice

limited atherosclerosis, providing support for a role of endogenous biosynthesis of SPMs,76

but mice consuming a high-fat diet did not show this protection.77 Consistent with the

concept that a high-fat diet impairs resolution, diet-induced obesity associates with defective
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inflammation resolution.78 Although the mechanisms underlying this experimental

observation remain speculative, the results suggest that diet may modulate ACS risk in part

by effects on inflammation resolution.

The therapeutic potential of SPMs in ACS: inflammation suppression without compromise
of host defense

As impaired inflammation resolution may aggravate atherosclerosis and ACS risk, new

approaches to stimulate resolution have considerable interest. SPMs limit inflammation

without causing immunosuppression, setting them apart from many other current anti-

inflammatory strategies.79 In this context, SPMs can enhance efferocytosis.62 Obese

atherosclerotic mice that consumed an omega-3 fish oil diet containing the SPM precursors

EPA and DHA had amelioration of impaired efferocytosis.80 Conversion of EPA and DHA

to SPMs within the vasculature might contribute to this benefit. Likewise, the resolvins

RvD1 and RvD2 may benefit injured atherosclerotic arteries.81 Indeed, vascular injury in

vivo augments D-series resolvin generation, and therapeutic administration of resolvins

decreases intimal hyperplasia and leukocyte trafficking to injured arteries. These resolvins

block migration, proliferation, monocyte adhesion, and inflammatory signaling in human

primary vascular SMCs. Thus, resolution agonists merit consideration as therapeutic targets

to reduce ACS risk.

Potential resolution-enhancing effects of low-dose aspirin in relation to protection against
ACS

Low-dose aspirin (acetylsalicylic acid [ASA]) prevents recurrent ACS, a benefit

traditionally ascribed to anti-platelet action mediated by COX inhibition.82 Yet, aspirin has

anti-inflammatory actions in humans, such as blocking leukocyte trafficking to inflamed

tissues, that are difficult to attribute solely to reduced prostanoid biosynthesis.83 Indeed,

aspirin alters the active site of COX-2 in a manner that permits conversion of arachadonic

acid (AA) to 15R-HETE in vascular ECs, a precursor for leukocyte production of pro-

resolving 15-epilipoxins.84 Humans taking low-dose aspirin form these lipoxins, which limit

neutrophil infiltration into inflammatory sites and stimulate nitric oxide (NO) production.

COX-2 acetylated by ASA can also process EPA and DHA to boost generation of other

resolvins.85, 86 Thus, non-prostanoid-related, resolution-mediating effects of low-dose

aspirin may contribute to their ability to protect against ACS.

Adaptive immune modulation can also mute inflammation

Some functions of both innate and adaptive immune cells can also counterbalance pro-

inflammatory pathways implicated in ACS and mitigate inflammation (Figure 1). For

example, Ly6c low monocytes and alternatively activated macrophages (denoted “M2”) can

modulate inflammation. While B2 lymphocytes appear to aggravate atherosclerosis, B1

lymphocytes elaborate natural antibodies that can quell atherogenesis.87 TH2 lymphocytes

can elaborate interleukin-4 and interleukin-10 that may limit inflammation and sway

macrophages towards M2 polarization. Regulatory T cells, by elaborating TGF-β, can

balance the pro-inflammatory cascade unleashed by TH1 cells and thus modulate

inflammatory responses in the atheroma.9, 88
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Innate immune modulation in atherosclerosis and its relevance to ACS

The innate immune system represents a defense system against pathogens — a “first

responder” mechanism that can mobilize rapidly against threats and without prior exposure

to the provocateur. The innate immune system also responds to tissue injury to initiate

response and repair processes. Innate immune activation participates centrally in the

pathogenesis of atherosclerosis. Dysregulated lipid metabolism, particularly an abundance of

apolipoprotein B-containing lipoproteins and their retention in the arterial wall, contributes

to the development of macrophage foam cells.89 Such aberrations and the products of

modified or native lipoproteins that accumulate in atherosclerotic plaques can trigger pattern

recognition receptors (PRRs) expressed by macrophages, including the NOD-like receptors

(NLRs), scavenger receptors, and TLRs, thereby activating the inflammatory response. 90, 91

NLRs and atherosclerosis

Atherosclerotic plaques contain cholesterol crystals, both in extracellular spaces and within

plaque macrophages. Although previously considered a feature of advanced plaques, a

recent study showed the presence of cholesterol crystals in early lesions in Apoe-/- mice.92

Macrophages can engulf these crystals, resulting in the induction and activation of the

NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome. This intracellular

complex processes IL-1β to its active form — the target of an ongoing clinical trial

(CANTOS) to prevent recurrent ACS.93 In addition to preformed cholesterol crystals, recent

work indicates that loading of macrophages with cholesterol can lead to de novo formation

of intracellular cholesterol crystals that trigger NLRP3 in a process mediated in part by

CD36.94

Although not yet investigated, other crystalline or amyloid substances in atherosclerotic

plaques, such as calcium phosphate crystals or serum amyloid A, may also represent

DAMPS that could trigger the inflammasome and IL-1β secretion. In addition to specifically

inhibiting IL-1β, blocking of inflammasome activation might offer another strategy to

prevent ACS. That colchicine decreases the prevalence of ACS in gout patients, and the

recent LoDoCo intervention trial in patients without gout but having CAD, affirm the

potential of this approach.57

TLRs and atherosclerosis

The role of TLR signaling pathways in promoting atherosclerosis received support from

mouse studies in which whole-body deletion of Tlr2 or Tlr4 or of the adaptor proteins used

by these TLRs — including IL-1 receptor-associated kinase 4 (IRAK4),79, 80 TNF receptor-

associated factor 6 (TRAF6),81 TIR-domain–containing adaptor protein inducing IFN-β

(TRIF; also known as TICAM-1) and myeloid differentiation primary-response protein 88

(MYD88) — confers protection from atherosclerosis.95-103 These findings have initiated

investigations of the endogenous ligands that accumulate during hypercholesterolemia and

in plaques that may trigger these microbial-sensing pathways in macrophages. Among the

candidates proposed, oxidized LDL (oxLDL) species have undergone extensive study,104

but numerous factors and pathways may contribute to the initiation and the maintenance of

TLR-induced macrophage inflammation in atherosclerotic plaques. Nonetheless, oxLDL has

remained firmly in the sights of investigators as a major therapeutic target, with recent
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efforts directed towards a vaccine strategy to reduce ACS risk by eliminating oxLDL as it is

formed — before it can stimulate TLR-related inflammatory pathways in macrophages —

among other potential benefits.105

Macrophage Polarization in the Plaque

Histological analysis of mouse and human plaques has shown the presence of both M1 and

M2 macrophages. For example, in human plaques, M1 macrophages localize to areas

distinct from those in which the less inflammatory M2 macrophages (“alternatively

activated” macrophages) situate.106 Studies of M1 and M2 macrophages polarized in vitro

by, for example, IFN-γ or IL-4, respectively, and in atherosclerotic mice have led to the

simplified view that M1 macrophages promote while M2 macrophages limit plaque

inflammation.107 This construct caricatures the complex range of macrophage functions in

vivo, as macrophages encounter microenvironments of diverse, and even opposing, signals.

For example, in addition to inducing the aforementioned TLR signaling, which can lead to

M1 polarization, oxidized LDL can also induce the expression of the M2 macrophage

phenotypic marker arginase 1 via the activation of peroxisome proliferator activated

receptor-γ (PPARγ).108

The full range of influences in the plaque microenvironment that promote the polarization of

macrophages in vivo in general, and in plaques in particular, remain incompletely defined,

but undoubtedly include interactions with the adaptive immune system; e.g., T helper 1

(TH1) and TH2 cells, important players in plaque inflammation as reviewed earlier, secrete

potent macrophage-polarizing factors (e.g., IFN-γ and IL-4, respectively; Figure 1).107

Although the spectrum of macrophage functions in vivo, particularly in humans, likely

exceeds that typically described in vitro,109 the M1/M2 classification still provides a useful

framework, albeit oversimplified. Considerable data support its main point, that there exist

subsets of macrophages with different properties, such as inflammatory and tissue repair.

This concept has high relevance to the inflammatory state and its resolution in plaques of the

type that cause ACS. For example, M1 macrophages secrete proatherosclerotic

inflammatory cytokines (such as IL-6 and IL-12), as well as reactive oxygen and nitrogen

species that would exacerbate oxidative stress in the plaque. M2 cells, on the other hand,

secrete low levels of IL-6 and IL-12, but high levels of one of the endogenous anti-

inflammatory cytokine, IL-10. M2 macrophages also exhibit scavenging of necrotic debris,

enhanced efferocytotic activity, and reduced production of reactive nitrogen species, all

considered to be pro-resolving processes as explained above.

Atherosclerotic mice display a dynamic balance between M1 and M2 macrophages in

plaques. Advanced lesions have a high proportion of macrophages that express mainly

markers of the M1 state. In various mouse models of regression (aortic transplantation,

generic reversal of hyperlipidemia, anti-miR33 treatment, injection of apoAI, the HDL-

forming protein) the balance between the macrophage polarization markers shifts toward the

M2 panel of functions.110-113 From a functional point of view, the properties of M2

macrophages align well with the macroscopic changes observed in regressing plaques — the

loss of inflammatory cells and the remodeling of tissue to a morphology associated with less

risk of rupture, such as a reduction in the necrotic core.114
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That the M1/M2 state might undergo manipulation in human plaques as a preventive or

therapeutic approach to ACS, as suggested by one (albeit small) clinical study in which

patients who received HDL infusions prior to peripheral atherectomies showed a tendency

for decreased inflammatory mediators in the plaques relative to those excised from the

control group.115 Experimental studies support this notion. Two recent studies in

atherosclerotic mice in which the M2 state was induced and maintained by injection of

either IL-13 (a strong polarizer in vitro, that in addition to IL-4 is secreted by TH1

lymphocytes) or helminth antigens showed reduced atherosclerosis progression and plaque

inflammation.116, 117

In summary, the pre-clinical data in progressing and regressing plaques provide a

considerable rationale for efforts to enrich plaques in M2 macrophages clinically to either

prevent plaques from reaching an “ACS-prone state” or to promote rapid resolution of

inflammation in the ACS setting. Based on the evolving literature, this enrichment might be

accomplished, for example, by treatment with direct (small molecule) mediators of TH2-

related pathways, indirect regulators of M2 polarization, such as HDL, or by plaque targeted

nanoparticle-based delivery of agents, including siRNA, anti-sense RNA, and peptides.

Retention and clearance of plaque macrophages

As noted earlier, enrichment in macrophages characterizes plaques that have provoked fatal

ACS (Table 1). Major kinetic processes that contribute to determining the content of plaque

macrophages already reviewed include the recruitment of circulating monocytes, their local

proliferation, cell death, and efferocytosis (Figure 2). An inkling that another process — that

of emigration of macrophages from plaques — might also contribute is found in the 1980s

studies of Ross Gerrity in atherosclerotic pigs118 and of Russell Ross in monkeys,119 in

which electron micrographs showed images compatible with macrophage foam cells exiting

between ECs into the arterial lumen. The availability of atherosclerotic mice coupled with

methods to follow cell trafficking that are relatively convenient in mice led to a direct

demonstration after aortic transplantation that during disease progression, emigration was

quite low, but placement of plaques into a regression environment readily demonstrated

macrophage exit.111, 120 Other types of mouse experiments have also documented

macrophage emigration from plaques during atherosclerosis regression, extending these

initial observations.90

The capacity of macrophages to leave plaques appears to depend on at least two sub-

pathways: one that regulates macrophage retention (chemostasis) and one that regulates

macrophage locomotion (chemotaxis). For the former, recent work has shown that neuronal

guidance molecules mediate much macrophage retention in plaques. Macrophages in human

and mouse plaques express the best studied such guidance molecule, netrin-1, which inhibits

the chemotactic responses of macrophages to a number of chemokines in vitro.121 When

Ldlr-/- mice received bone marrow transplants from netrin-1–deficient mice, compared to

Ldlr-/- mice reconstituted with netrin-1–sufficient bone marrow, plaque progression slowed

significantly. Cell trafficking assays showed increased macrophage emigration from the

plaques in the mice lacking leukocyte netrin-1.121 Other factors that inhibit cell movement,

such as adhesion molecules (which are more highly expressed in macrophages in
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progressing versus regressing plaques122), also likely promote the retention of macrophages,

a process that would be expected to contribute to the macrophage enrichment that

characterizes plaques with features associated with precipitating ACS.

The signals that guide macrophages to exit plaques, either by reverse transmigration through

the endothelium to the lumen or by migrating through the media to the adventitial

lymphatics, remain for the most part poorly defined. Data from studies of regression of

atherosclerosis in aortic transplant studies have, however, implicated CCR7 in this

process.123 Emigrating CD68+ cells (predominately macrophages) had augmented

expression of CCR7, the receptor for the chemokines CCL19 and CCL21. Furthermore,

blocking this pathway led to substantial retention of these cells in the plaque.123 The

molecular basis for this augmented CCR7 appears to depend on the presence of a sterol

response element (SRE) in the promoter of the mouse (and human) CCR7 gene.124 Thus, in

a regression environment, which reduces macrophage cholesterol content, CCR7 expression

rises. Further experiments support the concept that the plaque content of macrophages

depends on the balance between retention and chemotactic pathways. Netrin-1 (or another

neuronal guidance molecule, semaphorin 3E) can block macrophage chemotaxis to CCL19

or CCL21, and in regressing plaques — coincident with CCR7 induction — netrin-1 and

semaphorin 3 concentrations fall.121, 125

Manipulating retention or migration factors could be envisioned to have therapeutic

applications to the prevention or treatment ACS by reducing the plaque content of

inflammatory cells. The recent exciting demonstration that siRNA molecules that target

monocyte/macrophage inflammation in vivo can be delivered in nanoparticles126 could be

adapted, for example, to similarly inhibit netrin-1 expression. Statin treatment induces

CCR7 in plaque macrophages in mice and results in macrophage emigration.124 Because the

human CCR7 gene also has a SRE, the same process might occur in humans and contribute

to the known reduction in peri-ACS mortality by high-dose statins.127 In any case, the pre-

clinical findings support the consideration and exploration of strategies based on retention/

migration pathways to limit plaque enrichment in macrophages or to rapidly remove them as

part of preventing or acutely treating, respectively, ACS.

Conclusions

Inflammation drives many aspects of the ACS both locally and systemically. We have come

to appreciate increasingly the critical operation of pro- and anti-inflammatory pathways

implicated in ACS pathogenesis. Thus the risk of ACS depends critically on the prevailing

balance between promotion of inflammation and its resolution through the pathways

discussed herein. Manipulation of this balance provides opportunities for novel therapeutic

manipulation in the future. Yet, a number of unresolved issues present challenges for future

research regarding the role of inflammation in ACS. The role of inflammation in superficial

erosion remains controversial and underexplored. Novel therapies that target inflammation

and its resolution require rigorous evaluation as an adjunct to current standard of care in

preventing ACS. While the concepts of inflammation have transformed our understanding of

the pathophysiology of ACS, we have yet to reap fully the potential therapeutic benefits of

translation of these basic science discoveries to the prevention of ACS in patients.
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Figure 1. Inflammation in plaque rupture and thrombosis
This diagram shows a cross section the intima of part of an artery affected by

atherosclerosis. Altered hydrodynamics, illustrated in the upper left, cause loss

atheroprotective functions of endothelial cells — including vasodilator, anti-inflammatory,

pro-fibrinolytic, and anti-coagulant properties. Antigens presented on antigen-presenting

cells such as dendritic cells (DCs) can activate Th1 lymphocytes to produce interferon

gamma (IFN-γ), which activates macrophages (MΦ, yellow). Other subtypes of lymphocytes

(shown in blue) include Th2 lymphocytes, which can elaborate the anti-inflammatory

cytokine interleukin 10 (IL-10) and regulatory T cells that secrete the anti-inflammatory

cytokine transforming growth factor beta (TFG-β). On its surface, the macrophage contains

Toll-like receptors (TLRs) 2 and 4, which can bind PAMPs and DAMPs (see text). The

intracellular TLRs 3, 7, and 9 may also contribute to lipid accumulation and other pro-

atherogenic functions of the macrophage. Macrophages can undergo stress of the

endoplasmic reticulum (ER) under atherogenic conditions. Cholesterol crystals found in

plaques can activate the NLRP3 inflammasome (see text) that can generate mature IL-1β

from its inactive precursor. The activated macrophage secretes collagenases that can degrade

the triple helical interstitial collagen that lends strength to the plaque's fibrous cap. Activated

macrophages also express tissue factor, a potent pro-coagulant, and elaborate pro-

inflammatory cytokines that amplify and sustain the inflammatory process in the plaque.

When the plaque ruptures due to a collagen-poor, weakened fibrous cap, blood in the lumen

can contact tissue factor in the lipid core, triggering thrombus formation (red). When the
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thrombus forms, polymorphonuclear leukocytes (PMNs) can accumulate and elaborate

myeloperoxidase (MPO), which in turn elaborates the potent pro-oxidant hypochlorous acid.

Dying PMNs extrude DNA that can form neutrophil extracellular traps (NETs), which can

entrap leukocytes and promote thrombosis. Other inflammatory cells modulate

atherosclerosis. B2 lymphocytes secrete natural antibody that can inhibit plaque

inflammation. On the other hand, B1 lymphocytes, in part via B-cell activating factor

(BAFF), can promote inflammation and plaque complication. Mast cells can augment

atherogenesis by releasing histamine and the cytokines IFN-γ and IL-6. The consequences of

a given plaque rupture depend not only on the solid state of the intimal plaque, but also on

the fluid phase of blood, as depicted in the upper right. Systemic inflammation can give rise

to cytokines, culminating in the overproduction of IL-6, the trigger of the hepatic acute

phase response. The acute phase reactant fibrinogen participates directly in thrombus

formation. Another acute phase reactant, plasminogen activator inhibitor-1 (PAI-1), can

impair fibrinolysis by inhibiting the endogenous fibrinolytic mediators, urokinase and tissue-

type plasminogen activators (uPA and tPA).

Libby et al. Page 25

Circ Res. Author manuscript; available in PMC 2015 June 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Life, death, and transit of macrophages in generating the plaque's “necrotic” core
Blood monocytes interact with adhesion molecules expressed by endothelial cells exposed to

inflammatory mediators. They first roll and attach more firmly, and ultimately diapedese

into the intima in response to chemoattractant molecules that bind to surface receptors on the

leukocyte — exemplified here by chemokine receptor 2 (CCR2). The monocytes recruited to

the intimal lesion can proliferate, giving rise to daughter cells, or can differentiate into

macrophages with a pro-inflammatory slant (denoted M1) or those that are alternatively

activated (denoted M2). Macrophages can traffic, including leaving the plaque by

emigration, as shown here on the macrovascular surface. Retention factors such as netrin-1

or semaphorin-3 can promote retention accumulation of mononuclear phagocytes in the

plaque. Macrophages can die by oncosis (sometimes called necrosis) or by programmed cell

death (apoptosis). Advanced plaques show a defect in clearance of apoptotic cells leading to

their accumulation, a process denoted “mummification” due to a defect in efferocytosis (see

text). Dying cells can also release apoptotic bodies and microparticles bearing the potent

pro-coagulant tissue factor that triggers thrombus formation in disrupted plaques. The

detritus of dead and dying cells that accumulate due to defective efferocytosis give rise to

the lipid-rich “necrotic” core of the plaque.
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Table 1

Characteristics of Atherosclerotic Plaques Associated with Rupture and Thrombosis.

Thin fibrous cap128

Large lipid/necrotic core128

Many intimal inflammatory cells128

Few smooth muscle cells in the fibrous cap6, 128

Outward remodeling (compensatory enlargement)129

Spotty or microscopic calcification130
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Table 2

Mediators of Inflammation Resolution Possibly Relevant to Atherosclerosis.

Characteristics of Advanced Lesions Mediators that Reverse Processes Associated with
Advanced Lesions

Refs

Persistent inflammatory cell influx LXA4, RvE1, PD1, AT-PD1, RvD1, RvD2, RvD5, MaR1,
RvD3, Ac2-26, AnnexinA1

131-139

Excessive proinflammatory mediators LXA4, RvE1, PD1, RvD1, RvD2, RvD5, MaR1, RvD3,
Ac2-26, AnnexinA1, IL-10

134-136, 138, 140-144

Defective efferocytosis LXA4, RvE1, PD1, RvD1, RvD2, RvD5, MaR1, RvD3,
Ac2-26, IL-10

79, 137, 138, 142, 145-149

Exuberant oxidative stress LXA4, 15-epi-LXA4, RvE1, PD1, RvD1, RvD2, Ac2-26 81, 150-155

Decreased collagen production/fibrous cap thinning RvE1 156

Impaired egress RvE1, PD1, ATLa, carbon monoxide, CCR7 123, 142, 157

Uncontrolled platelet activation RvE1 158, 159
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