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Autoreactive antibodies can be pathogenic
in a myriad of diseases. Consequently, the
adaptive immune system actively removes
or inactivates self-reactive B cells, while
promoting the survival of B cells that recog-
nize exogenous antigens, including microbial
pathogens (1, 2). These physiological mech-
anisms of immune tolerance are often de-
fective in autoimmune diseases (3, 4), and
much effort is currently being expended
learning how to mitigate autoreactive B-cell
responses in the setting of autoimmune
diseases. An unwelcome consequence of
tolerizing selection is reduction in the poten-
tial diversity of the primary B-cell repertoire
that limits the availability of B cells capable
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of generating protective responses against
pathogens (5). An example of immunological
censoring by tolerance is apparent in the
protective antibodies elicited by HIV-1 in-
fection, called broadly reactive neutralizing
antibodies (bnAbs) (6). The majority of
bnAbs are either polyreactive (reactive
with many unrelated molecules), auto-
reactive (reactive with one specific self-
antigen), or both (7), and in some cases,
reactivity with host antigens is tightly linked
to HIV-1-neutralizing activity (8, 9). Thus,
in contrast to autoimmunity where the goal
is to reduce autoreactive B-cell responses,
vaccinologists are trying to activate and
expand disfavored bnAb B-cell clonal
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Experimental demonstration of autoantibody redemption in the HEL transgenic mouse system. (A) The

immunization schema that allowed detection of rescued anergic autoreactive B cells following HEL-RBC immunization.
HEL-specific B cells from double-transgenic mice, rendered anergic because of their prior encounter with soluble-
expressed HEL, were injected into HEL transgenic mice, together with a HEL-SRBC immunogen. Immunized mice
driven to generate anergic HEL-specific GC B cells were induced to acquire mutations in the HEL antibody HCDR2
region that resulted in decreased affinity for HEL and increased B-cell survival. (B) An illustration of how such
a mechanism may contribute to bnAb responses during HIV-1 infection, and how B-cell populations generated by this
process could be harnessed in the setting of HIV-1 vaccination. Vaccination with HIV-1 Env may result in either
a population of anergic GC B cells, which have accumulated somatic mutations that generate bnAb specifcity (red) and
self-reactivity (black), but may also generate rare B cells with BCR that harbor decreased self-reactivity, while retaining
bnAb HIV-1 Env affinity. The hypothesis is that Env vaccination targeted at disfavored bnAb B-cell clonal lineages could
drive otherwise unfavored and rare HIV-1-specific B-cell clones in GC to survive and proliferate.
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lineages subject to control by immune
tolerance (6-13).

In PNAS, Sabouri et al. (14) outline a
surprising pathway for the utilization or
“redemption” of autoreactive anergic B cells.
The authors demonstrate that B cells that
recognize both foreign and self-antigens can
be activated by immunization and recruited
into germinal centers (GC) where hypermu-
tation of the B-cell antigen receptor (BCR)
can reduce self-reactivity while maintaining
the capacity of the redeemed B cells to rec-
ognize an exogenous antigen (14).

This is a surprising finding, not only
because anergic B cells are refractory to most
activating stimuli (1, 15, 16), but also because
this finding emphasizes the poorly under-
stood capacity of GC to select BCR mutants
with lowered affinity for abundant, soluble
antigen (17). Anergic B cells, it now seems,
are capable of making substantial contribu-
tions to humoral immunity. An important
and exciting corollary of this work is the po-
tential elucidation of novel cellular pathways
for vaccines to target anergic B cells for the
induction of antibody to microbial epitopes
that mimic host antigens (e.g., HIV-1 bnAbs).

B cells develop from progenitors that
generate functional BCR by genomic rear-
rangements of V (variable), D (diversity),
and ] (joining) gene segments (18). This
process results in a highly diverse set of
BCR capable of reacting with virtually any
antigen but also produces autoreactive B
cells (19, 20). Indeed, some 70% of newly
generated (“late pre-B”) human BCR are
autoreactive (19, 21); the majority of these
self-reactive BCR are eliminated or inacti-
vated by immune tolerance mechanisms
(19), including the induction of anergy
or B-cell unresponsiveness (16, 22-24).

In GC, antigen-specific B cells recruited to
follicular dendritic cells respond to follicular
dendritic cell-associated antigen by prolifera-
tion and the accumulation of V(D)] mutations
introduced by activation-induced cytidine
deaminase. GC mutant B cells are selected
for increasing BCR affinity to antigen in a
Darwinian process mediated by competition
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for T-follicular helper cell (Tgy) survival/
proliferation signals (2). Dominance and
persistence of GC B-cell clonal lineages is
determined by mutant BCR avidity, but
these mutations also generate BCR with af-
finity for self-antigens (25, 26). For this rea-
son, it has long been thought that the GC
should be capable of tolerizing autoreactive
mutants that arise during affinity matura-
tion (17, 27).

Although the mechanisms that ensure self-
tolerance in GC are not well understood, the
work of Sabouri et al. (14) calls attention
to the potential of V(D)] hypermutation not
only to generate autoreactivity but also to
silence it, and to redeem autoreactive B cells.
Sabouri et al. infer clonal redemption by the
analysis of BCR mutations in human B
cells that abrogate the intrinsic autoreactiv-
ity of VDJ rearrangements containing the
IGHV4-34*01 gene segment (28), and by
study of transgenic mice that constitutively
express soluble hen egg lysozyme (HEL)
and the high affinity, HEL-specific Hyl0
BCR. In the latter model, mutations in the
VH gene segment were found to suppress
binding to an HEL self-epitope and, in con-
trast to experiments demonstrating apoptosis
by Hyl0 GC B-cell exposed to soluble HEL
(27), Sabouri et al. (14) demonstrate that
a subset of HEL-reactive Hyl0 GC B cells
do not die, but proliferate and diversify fol-
lowing immunization with HEL. This expan-
sion of Hy10 B cells depends on mutations in
the complementarity determining regions of
the Hyl0 heavy chain (HCDR2) that lower
affinity for HEL (14).

These HCDR2 mutations relax the autor-
eactivity of Hyl10 B cells but not the ability to
respond to exogenous antigen ligands, lead-
ing to their “redemption” (14). Paradoxically,
anergic B cells are able to generate more
progeny in GC than do nonanergic, naive B
cells (14), an observation seemingly in ten-
sion with previous studies (27, 29) but con-
sistent with reports indicating that GC B cells
loaded with antigen expand extensively in
the GC dark zone (23, 30). These findings
are of interest for those trying to develop
vaccines against pathogens bearing neu-
tralizing epitopes that cross-react with
self, with HIV-1 as a prominent example
(6, 10, 12). Only a subset of HIV-1-
infected individuals (~20%) make high
levels of HIV-1 bnAbs, and Env vaccina-
tion does not induce bnAbs. Knock-in
mice that express bnAb BCR exhibit
blockade of B-cell development at the first
tolerance checkpoint with deletion of >90%
of B cells; however, deletion is not complete,
with a minority of anergic bnAb B cells
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surviving (11, 12, 31). These anergic bnAb
B cells can be triggered by vaccine antigens
to generate high titers of bnAb and, similar
to the findings of Sabouri et al. (14), a frac-
tion of bnAb B cells acquired T-cell-depen-
dent BCR mutations that decreased both

The work of Sabouri
et al. calls attention
to the potential of
V(D)J hypermutation
not only to generate
autoreactivity but
also to silence it.

autoreactivity and binding to the HIV-1 Env,
a process termed affinity reversion (Fig. 1)
(12, 32). The similarities and differences be-
tween autoantibody redemption and affinity
reversion merit additional investigation.
Finally, the important findings of Sabouri
et al. (14) raise significant questions. Is the

phenomenon of autoantibody redemption
generalizable to naturally found human
autoantigens to impact microbe vaccine
development? To what degree is autoanti-
body redemption able to patch “holes” in
the primary BCR repertoire created by im-
mune tolerance? Can vaccination strategies
be devised to harness autoantibody redemp-
tion to drive the expansion and persistence of
normally disfavored, autoreactive B cells with
BCR that recognize microbes? Answers to
these questions will be crucial to understand-
ing how microbial pathogens avoid robust
immunity and to defining the role of BCR
mutation in controlling pathogenic B cells
in autoimmune diseases.
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