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The transcription factor c-MYC is stabilized and activated by phos-
phorylation at serine 62 (S62) in breast cancer. Protein phospha-
tase 2A (PP2A) is a critical negative regulator of c-MYC through its
ability to dephosphorylate S62. By inactivating c-MYC and other
key signaling pathways, PP2A plays an important tumor suppres-
sor function. Two endogenous inhibitors of PP2A, I2PP2A, Inhibi-
tor-2 of PP2A (SET oncoprotein) and cancerous inhibitor of PP2A
(CIP2A), inactivate PP2A and are overexpressed in several tumor
types. Here we show that SET is overexpressed in about 50–60%
and CIP2A in about 90% of breast cancers. Knockdown of SET or
CIP2A reduces the tumorigenic potential of breast cancer cell lines
both in vitro and in vivo. Treatment of breast cancer cells in vitro
or in vivo with OP449, a novel SET antagonist, also decreases the
tumorigenic potential of breast cancer cells and induces apoptosis.
We show that this is, at least in part, due to decreased S62 phosphor-
ylation of c-MYC and reduced c-MYC activity and target gene expres-
sion. Because of the ubiquitous expression and tumor suppressor
activity of PP2A in cells, as well as the critical role of c-MYC in human
cancer, we propose that activation of PP2A (here accomplished
through antagonizing endogenous inhibitors) could be a novel anti-
tumor strategy to posttranslationally target c-MYC in breast cancer.

breast cancer therapy | phosphatase activator

The c-MYC (MYC) oncoprotein is overexpressed in human
breast cancer and this is associated with poor clinical out-

come (1, 2). Expression of MYC is regulated at multiple levels,
including protein stability, which is increased in several cancer
types (1, 3, 4). MYC stability is regulated in part by sequential
and interdependent phosphorylation at two conserved residues,
threonine 58 (T58) and serine 62 (S62) (5). MYC is phosphor-
ylated at S62 (pS62) through the mitogen-activated protein
kinase (MAPK) pathway or cyclin-dependent kinase (CDK)
activation in response to growth signals and this modification
increases its stability and oncogenic activity (5–8). When growth
signals cease, GSK3, in a manner dependent upon prior phos-
phorylation at S62, phosphorylates T58 (pT58) (5, 6). T58
phosphorylation facilitates protein phosphatase 2A (PP2A)-
mediated dephosphorylation of pS62 and recruitment of the
E3 ubiquitin ligase SCFFbw7 to initiate proteasomal destruction
of MYC (9, 10). This process is facilitated by AXIN1, which helps
nucleate a destruction complex for MYC at target gene pro-
moters (11, 12). Our previous work has shown that MYC stability
is increased in breast cancers and that this correlates with high
pS62- and low pT58-MYC (4).
PP2A is a ubiquitously expressed, heterotrimeric serine–

threonine (S/T) phosphatase that mediates 30–50% of cellular S/T
phosphatase activity (13). Target specificity of PP2A is directed
by a variable regulatory (B) subunit, and we have shown that
B56α is the isoform that directs PP2A to MYC (9, 13). Human
cell transformation requires inhibition of PP2A activity and, in
an siRNA screen, B56α, B56γ, and PR72/PR130 were the only B
subunits shown to be critical for regulating human cell trans-
formation (14). PP2A complexes containing these B subunits
regulate MYC, Wnt, and PI3K/Akt signaling, respectively (9, 14).

Whereas loss of PP2A activity is critical for tumor growth,
mutations in PP2A subunits are very rare in breast cancers (15,
16). Alterations in the A subunit that impair integration of the
C and/or B subunits have only been observed in breast cancers at
a low frequency (15–18), suggesting that other mechanisms can
affect PP2A activity and, subsequently, MYC protein levels. In-
deed, endogenous inhibitors of PP2A such as SET and CIP2A
have been shown to be up-regulated in a variety of cancers (13,
19). CIP2A is overexpressed in head and neck squamous cell
carcinoma, colon cancer, and 39% of breast tumors (13, 19).
CIP2A interacts directly with the N terminus of pS62-MYC and
impairs its degradation by inhibiting PP2A-B56α activity (20).
SET binds to at least the C subunit of PP2A and inhibits its activity
(21). SET is overexpressed in malignant brain tumors, tumors of
the head and neck region, testicular cancers, and different types of
hematological malignancies (13, 22, 23), but whether its expres-
sion is altered in breast cancer has not been reported.
Here we show that SET and CIP2A are up-regulated in breast

tumors at both the mRNA and protein levels, and that knock-
down of either SET or CIP2A decreases the tumorigenic po-
tential of breast cancer cells in vitro and in vivo. SET inhibition
with OP449, a SET antagonist (22), also reduces growth and
tumorigenic potential of these cells in vitro and in vivo and
induces apoptosis. SET inhibition, either by RNA interference or
OP449, decreases pS62-MYC levels and MYC transcriptional
activity. Overall, our study suggests that activating PP2A by
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inhibiting SET and/or CIP2A may be an important therapeutic
strategy that posttranslationally targets MYC in breast cancer.

Results
SET and CIP2A Are Frequently Overexpressed in Human Breast Cancer.
Previously, we have shown that pS62-MYC, a more stable and
active form of MYC, is highly expressed in breast cancers (4, 7).
In addition, we found that expression of AXIN1, which nucleates
the MYC degradation complex, is decreased in some breast tumors
(4). To investigate additional mechanisms that lead to MYC
overexpression, we focused on SET and CIP2A, two oncogenic
cellular inhibitors of PP2A, the phosphatase that removes S62
phosphorylation to destabilize MYC. First, we interrogated the
expression of SET, CIP2A, and MYC in multiple breast cancer
cell lines by quantitative RT-PCR (qRT-PCR). We found that
SET and CIP2A mRNA levels were high in breast cancer cells
compared with the immortalized but nontransformed MCF10A
cell line (Fig. 1A). To confirm this in primary tumor samples, we
performed qPCR for SET and CIP2A levels in a cDNA array of
44 breast tumors and four normal samples. We found that SET
was overexpressed in about 60% and CIP2A in about 90% of
these tumors (Fig. 1B). Similar results were observed in RNA-
sequencing (RNA-seq) data from breast cancer cell lines where
SET and CIP2A expression was elevated in about 50% of cell
lines (Fig. S1A). In both of these experiments, when tumors were
grouped by tumor subtype, we found that high SET expression
occurred across all tumor types, whereas high CIP2A expression
was enriched in triple negative tumors on the cDNA array (Fig. 1B)
and in basal and claudin-low subtypes in the cell lines, molecu-
larly classified using PAM50 (a breast cancer intrinsic classifier
using the RT-qPCR assay for 50 genes) (Fig. S1A) (24). Finally,
we measured SET mRNA expression by qPCR in a limited set of
primary human breast tumor samples with patient-matched adja-
cent normal tissue and found that 60% of samples showed higher
expression of SET in tumor compared with the matched normal

(Fig. S1B). Together these data demonstrate that SET is overex-
pressed in about 50–60% and CIP2A in about 90% of breast
cancers, and CIP2A overexpression associates with triple negative,
basal, and claudin-low tumor subtypes.

Increased SET, CIP2A, and pS62-MYC Protein Levels Occur in Human
Breast Cancer. We next measured SET, CIP2A, MYC, and pS62-
MYC protein levels in a panel of breast cancer cell lines. As
shown in Fig. 2A, compared with immortalized nontransformed
MCF10A cells, many of the breast cancer cell lines showed
higher expression of these proteins (quantified in Fig. 2A). In
addition, increased pS62-MYC positively correlated with in-
creased SET and CIP2A expression (Fig. S2, Left). To extend this
observation to human breast tumors, we performed immuno-
fluorescence (IF) to assess SET, CIP2A, pS62-MYC, and pT58-
MYC levels in breast tumors and compared them with patient-
matched adjacent normal tissue. We found that SET, CIP2A,
and pS62-MYC levels were higher in tumors, whereas pT58-
MYC, which would be associated with increased PP2A activity,
was lower (Fig. 2B). Together, these data show that SET, CIP2A,
and pS62-MYC proteins are commonly overexpressed in human
breast cancers.

SET or CIP2A Knockdown Decreases the Tumorigenic Potential of Breast
Cancer Cells. To better understand the impact of SET and CIP2A
overexpression in breast cancer, we performed transient knock-
down experiments in multiple breast cancer cell lines. We trans-
fected MDA-MB-231, MDA-MB-436, and MDA-MB-468 cells
with SET, CIP2A, or nontargeting (NT) siRNAs and measured
population expansion capacity over 3 d (Fig. 3A). We observed a
modest, but significant decrease in population expansion upon SET
or CIP2A knockdown when cells were grown in two-dimensional
(2D) culture compared with NT siRNA transfected cells (Fig. 3A).
To determine whether decreased expression of SET or CIP2A
affected anchorage-independent growth of breast cancer cells,
siRNA transfected cells were plated for soft agar colony-forming
assays. Whereas only a modest decrease in growth in 2D was
observed (Fig. 3A), there was a substantial decrease in colony
number in soft agar following knockdown of either protein
(Fig. 3B). Because we were able to observe long-term knockdown
(12 d) in 2D (Fig. S3A) and reduced soft agar growth (Fig. 3B), we
examined the effects of SET or CIP2A loss on tumorigenic po-
tential in vivo by xenografting cells into the mammary gland of
nonobese diabetic (NOD)/SCID/γ-chain null (NSG) mice after
transfection with siRNA.We found a significant decrease in tumor
growth with knockdown of either SET or CIP2A in all three cell
lines (Fig. 3C). Interestingly, MDA-MB-436 cells, which main-
tained longer-term knockdown in comparison with the other cells
(Fig. S3A), displayed the most dramatic decrease in tumor growth.
To extend this analysis, we developed stable clones with shRNA-

mediated knockdown of SET in MDA-MB-231 cells. We used
clones with significant knockdown (Fig. S3B) to test cell pop-
ulation expansion as well as ability to form colonies in soft agar.
Similar to the experiments with transient SET knockdown, stable
knockdown of SET decreased the rate of cell expansion in 2D
(Fig. S3C), but more significantly inhibited the ability of these cells
to form colonies in soft agar (Fig. S3D). Together, these results
show that SET or CIP2A knockdown in breast cancer cells reduces
their oncogenic potential in vitro and in vivo.

The SET Antagonist OP449 Decreases the Growth of Breast Cancer
Cells and Induces Apoptosis. Given that depletion of two endoge-
nous inhibitors of PP2A, SET, and CIP2A, could reduce the
oncogenic potential of breast cancer cells, development of a
targeted therapeutic that inhibits either of these proteins could
be clinically important. Because inhibitors of CIP2A are not
currently available, we have collaborated with Oncotide Phar-
maceuticals to test their novel SET antagonist, OP449. OP449
(previously referred to as COG449) is a dimer of a chimeric pep-
tide composed of an ApoE mimetic domain that binds to SET,
which is fused to antennapedia, a protein transduction domain
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Fig. 1. SET and CIP2A are frequently overexpressed in human breast cancer.
(A) qRT-PCR analysis of MYC, SET, and CIP2A mRNA expression in 12 breast
cell lines grown in 0.1% serum. Relative expression is calculated by ΔCT nor-
malized to MCF10A. (B) qPCR analysis of SET and CIP2A expression in 44 breast
tumors and four normal samples grouped by histologic subtypes, obtained
from TissueScan Breast Cancer and Normal Tissue cDNA array (array 4).
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(25). OP449 interacts with SET in cells, causing the release of SET
from PP2A and an increase in PP2A activity as demonstrated in
both leukemic cells as well as in some solid tumor cell lines, in-
cluding MDA-MB-231 (22, 25).
To begin to address the therapeutic potential of SET in-

hibition using OP449 as a pharmacological antagonist, we trea-
ted several breast cancer cell lines as well as immortalized
MCF10A cells with OP449 for 24 h and analyzed cell viability by
Trypan blue exclusion. OP449 treatment was cytotoxic in a dose-
dependent manner (Fig. 4A). Flow cytometry for Annexin V in
MDA-MB-231 cells treated with OP449 revealed that OP449
induced apoptosis in these cells as early as 6 h (Fig. 4B). We next
isolated cells from two fresh invasive breast carcinoma samples
and examined the effect of OP449 on these primary cells. Cells
were treated with OP449 for 4 d, and cell colony expansion was
measured over time. Whereas vehicle-treated samples for both
patients showed significant proliferation, colony expansion was
completely inhibited with OP449 treatment at concentrations
above 1.25 μM (Fig. 4C). To determine whether OP449 reduced
anchorage-independent growth of breast cancer cells, MDA-
MB-231, HCC38, SKBR3, MDA-MB-436, and MDA-MB-468
cells were grown in soft agar and treated with OP449. OP449
significantly reduced the anchorage-independent growth of these
cells (Fig. 4D). Because OP449 directly inhibits SET, and SET
has targets in addition to PP2A, we examined the specificity of

OP449 function for PP2A activity. We used siRNA to knock down
the PP2A catalytic C subunit in MDA-MB-468 cells and treated
them with OP449. We found that with 30% knockdown of PP2A C
levels, these cells became partially insensitive to OP449 (Fig. 4E).

OP449 Decreases S62-Phosphorylated MYC and MYC Transcriptional
Activity Contributing to Cytotoxicity in Breast Cancer Cells. OP449
has been shown to down-regulate PP2A-regulated pathways
including NFκB, Rac1, nm23-H1, STAT5, and AKT (23, 25).
Because MYC is negatively regulated by PP2A and previous
reports showed reduced expression of pS62-MYC and MYC
upon CIP2A inhibition (13, 19, 20, 26), we wanted to know whether
SET inhibition could also decrease pS62-MYC levels. We there-
fore measured pS62-MYC and total MYC levels after knocking
down SET or CIP2A in MDA-MB-231 and MDA-MB-436 cells.
We observed a decrease in pS62-MYC levels in both cell lines and
total MYC levels in MDA-MB-436 cells (Fig. 5A). Total MYC
levels did not change in some of the cell lines likely due to these
cells having lost Fbw7-regulated MYC degradation (27). We also
observed decreased pS62-MYC levels in the stable SET knock-
down clones from MDA-MB-231 cells (Fig. 5B). To test whether
OP449 also affects pS62-MYC levels in breast cancer cells, MDA-
MB-231, HCC38, MDA-MB-436, and MDA-MB-468 cells were
exposed to OP449 for 4 h and lysates were immunoblotted. We
observed decreased pS62-MYC after OP449 treatment in these
cells (Fig. 5C). Because OP449 functions at least in part through
affecting PP2A activity (Fig. 4E) (22, 25), and PP2A has targets in
addition to MYC, we examined the specificity of PP2A activation
after OP449 treatment on MYC S62 phosphorylation using
okadaic acid (OA), which specifically inhibits PP2A at low doses.
SKBR3 cells were starved for 24 h and then treated for 2 h with
OP449 in the presence or absence of OA. We then examined the
effects on pS62-MYC following stimulation with EGF for 10 min.
We found that, as expected, OP449 treatment inhibited the in-
duction of pS62-MYC by EGF (Fig. 5D, Upper). However, in the
presence OA, pS62-MYC levels were elevated in control cells and
did not change with OP449 treatment (Fig. 5D, +OA, Lower).
To examine the effect of OP449 treatment on MYC tran-

scriptional activity, a chromatin immunoprecipitation (ChIP)
assay was performed in MDA-MB-231 and MDA-MB-468 cells
after OP449 treatment. Consistent with decreased expression of
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Fig. 2. Increased SET, CIP2A, and pS62-MYC protein levels occur in human
breast cancer. (A) Representative Western blots of SET, CIP2A, pS62-MYC,
and MYC protein expression in 10 breast cell lines grown in 0.1% serum.
Quantification of SET, CIP2A, pS62-MYC, and MYC protein expression over
GAPDH was done using a LICOR scanner and software. Quantification is
graphed relative to expression in MCF10A. (B) Immunofluorescence of serial
formalin-fixed, paraffin-embedded sections of breast tumors stained for
pT58-MYC, pS62-MYC, SET, and CIP2A compared with their adjacent normal
breast tissue. The graphs represent quantification of the mean staining in-
tensity per epithelial cell for each protein over DAPI across multiple regions
of interest and then normalized to the adjacent normal. Error bars represent
SD. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Fig. 3. SET and CIP2A knockdown decreases tumorigenic potential of breast
cancer cell lines. (A) Population expansion analysis of the indicated cell lines
over 72 h after transfection with SET or CIP2A siRNA compared with the
control NT siRNA from three independent experiments using live cell im-
aging and IncuCyte analysis software. Representative Western blots show
knockdown. (B and C) Soft agar colony assay and xenograft of these cells
into the fourth mammary glands of NSG mice. Experimental details and
statistics are described in Materials and Methods.
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the transcriptionally active pS62-MYC (12, 28) (Fig. 5C), quanti-
tative ChIP (qChIP) analysis showed that OP449 treatment de-
creased MYC binding to the promoters of its target genes,
Nucleolin, E2F2, and 5s rRNA (Fig. 5E). To gain a more com-
prehensive understanding of the effect of OP449 treatment, or
SET or CIP2A knockdown on MYC transcriptional activity,
we performed RNA-seq to compare gene expression in MDA-
MB-231 cells in control vs. treated or knockdown cells. We then
used Gene Set Enrichment Analysis (GSEA) (29) to test whether
a curated gene set of validated targets of c-MYC transcriptional
activation (30) was affected by treatment or knockdown. We
found that this MYC gene signature was enriched in control cells
versus OP449-treated cells and in control siRNA versus SET or
CIP2A knockdown cells (Fig. 5F and Fig. S4), indicating sup-
pression of MYC target gene expression with OP449 treatment,
or SET or CIP2A knockdown. Together, these data show that
treatment with OP449, or SET or CIP2A knockdown, causes a
decrease in pS62-MYC protein and this leads to a global decrease
in MYC’s transcriptional activity.
PP2A has many targets that likely contribute to tumor growth.

To examine how much of OP449’s activity is through its effect
on pS62-MYC, we took advantage of our MCF10A-tetracycline
responsive (TR)-MYC inducible cell lines, in which either wild-
type (WT) or a mutant form of MYC (T58A) can be induced
with doxycycline (Dox). MYCT58A cannot be phosphorylated at
T58 and is resistant to PP2A-mediated S62 dephosphorylation,
maintaining constitutive pS62 (5, 6, 9). Ectopic MYC was in-
duced for 4 h before treatment with OP449 for 48 h. Although
expression of MYCWT on its own was mildly toxic in MCF10A

cells, OP449 still induced cell death, whereas expression of the
PP2A-resistant MYCT58A mostly rescued this effect (Fig. 5G).
Together, these results demonstrate that MYC activity is sup-
pressed by OP449 treatment through its effects on PP2A and this
in part underlies its cytotoxic activity.

OP449 Treatment Decreases Tumor Growth in Vivo and Increases
PP2A Activity in Tumors. Because we observed that OP449 treat-
ment could decrease the growth of breast cancer cell lines and
induce apoptosis in vitro, we next wanted to test whether OP449
has antitumorigenic properties in vivo. MDA-MB-231, MDA-
MB-436, and MDA-MB-468 cells were xenografted into the
mammary glands of NSG mice. Once tumors were palpable, mice
were randomized into two groups and treated intraperitoneally
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with 5 mg/kg of OP449 or PBS control, three times per week.
Tumor size was determined by repeated caliper measurement. We
found that tumor growth was slowed in mice treated with OP449
compared with controls (Fig. 6A). For MDA-MB-231 tumors, all
mice were killed when control tumors reached 2 cm in diameter,
and tumors were harvested and fixed in formalin for histological
analysis. Consistent with our data in cell lines, this analysis
revealed that the OP449 tumors had an increased number of
apoptotic cells as measured by TUNEL assay and a decreased
number of proliferating cells as measured by the cellular
marker for proliferation, Ki67, staining (Fig. 6 B and C). Fol-
lowing on these results, we performed a second study with MDA-
MB-231 tumors, treating them three times per week for 40 d and
again observed decreased tumor growth with OP449 treatment
(Fig. S5A). On the last day, we injected mice with OP449 or the
vehicle control 2 h before they were killed. Tumors were dis-
sected, flash frozen, and used for Western blot analysis of OP449
in the tumors and for PP2A activity assays. We observed OP449
specifically in the tumors of treated mice (Fig. 6D) and a signif-
icant increase in PP2A activity in the OP449-treated tumors
compared with PBS-treated tumors (Fig. 6E).
To further address the pharmacokinetic, distribution, and

plasma stability of OP449, studies were conducted to detect
OP449 protein in plasma isolated from OP449-infused rats after
1-h infusion of 2 mg/kg. Western blotting indicated that OP449 is
immediately detectable and then rapidly cleared from the blood,
without the appearance of a degradation product (Fig. S5B). We
extended this analysis by incubating OP449 in rat plasma in vitro
for 12, 24, and 48 h at 37 °C followed by Western blotting and
observed that OP449 was stable in isolated plasma with a half-
life of >24 h (Fig. S5C). The rapid clearance of OP449 in vivo
from the blood stream was associated with its detection in tis-
sues, which persists for more than 6 h. Together these results
suggest that OP449 can decrease the growth and the tumorigenic
potential of breast cancer cells in vivo, and this is associated with
increased apoptosis and decreased proliferation. In addition,
OP449 has in vivo bioavailability sufficient for treating tumors
and eliciting a pharmacologically induced increase in PP2A ac-
tivity in the treated tumors.

Discussion
In analyses of oncogenic mechanisms in breast cancer, accumu-
lation of the MYC protein has been observed in 46% of primary
breast tumors (1, 31). Many mechanisms have been proposed to
explain the elevated levels of MYC protein in tumors. Previous
work from our laboratory has shown that increased levels of
MYC can result from disruption of the normal MYC protein
degradation pathway rather than increased expression at the
mRNA level (4). Our research also revealed that PP2A-B56α is
a critical negative regulator of MYC protein stability through its
dephosphorylation of serine 62 (10). This is highly relevant be-
cause Hahn and coworkers demonstrated that inhibition of PP2A
activity is required for cell transformation (14, 15). Furthermore,
we have shown that this requirement for PP2A inhibition can be
partially replaced by expression of the more stable MYCT58A

mutant (6). In this report, we studied the role of two cellular
inhibitors of PP2A, SET and CIP2A, in breast cancer to un-
derstand if their expression (i) is common in tumors, (ii) regulates
tumorigenesis, (iii) affects the level and/or activity of pS62-MYC,
and (iv) could be exploited as potential targets for breast
cancer therapy.
We found that SET and CIP2A are frequently overexpressed

in breast cancer cell lines at both the mRNA and protein levels.
In addition, we found that CIP2A, SET, and pS62-MYC, but not
pT58-MYC are frequently co-overexpressed in human primary
tumor samples relative to matched normal tissue. For CIP2A,
these findings confirmed a previous report that CIP2A directly
regulates MYC S62 phosphorylation and stability (20) and that
CIP2A is overexpressed in human breast tumors (19). In con-
trast, our finding that SET is frequently overexpressed in breast
cancers is novel and suggests that overexpression of PP2A in-
hibitors may play an important role in the development of human
breast cancer. Interestingly, we found that CIP2A overexpression
correlated with the triple negative breast cancer subtype, a result
that was further supported with RNA-seq data from human breast
cancer cell lines. This result is important, as the claudin-low breast
cancer subtype associates highly with up-regulation of the MYC/
MYC-associated factor X network (24). This correlation suggests
that CIP2A could potentially be used as a diagnostic biomarker
for more malignant, MYC-driven tumor types. Whereas SET
was overexpressed in greater than 50% of all breast cancer
samples tested, there was no significant correlation between
increased SET levels and any breast cancer subtype, suggesting
that SET plays a broader role in sustaining oncogenic signaling in
breast cancers.
It has been shown that CIP2A deletion results in a reduction of

oncogenic potential for multiple tumors (20, 26, 32). Furthermore,
SET knockdown was shown to negatively affect tumorigenesis in
blast crisis chronic myelogenous leukemia (33). Here we show
that in breast cancer SET and CIP2A, knockdown reduces cell
growth in vitro and significantly attenuates tumor growth in vivo.
Furthermore, loss of these PP2A inhibitors decreased the level
of pS62-MYC in these cells and suppressed global MYC-driven
gene expression. These results suggest that inhibiting either SET
or CIP2A could be a viable strategy to posttranslationally target
MYC and inhibit tumor growth in breast cancer.
Whereas no known inhibitors of CIP2A have been described,

previous work has demonstrated that the SET antagonist OP449
(originally named COG449) activates PP2A, is cytotoxic to primary
chronic lymphocytic leukemia cells, and decreases lymphoma xe-
nograft tumor growth (22). To explore the therapeutic potential for
PP2A activation through SET inhibition as an approach for
breast cancer therapy, we treated breast cancer cells with OP449
and measured growth and oncogenic potential in vitro and in vivo.
OP449 treatment resulted in increased apoptosis and decreased
proliferation in vitro and in vivo. Interestingly, we found that al-
though MYCWT overexpression was additive with OP449 treat-
ment in inhibiting the growth of MCF10A cells, the MYCT58A

mutant, which is resistant to PP2A and has constitutively high S62
phosphorylation, was able to rescue this effect. Importantly,
OP449 inhibited tumor growth at doses that were not toxic to
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Fig. 6. OP449 suppresses breast tumor growth in vivo associated with in-
creased PP2A activity. (A) Tumor growth curve for MDA-MB-231, MDA-MB-
436, and MDA-MB-468 xenografts in the fourth mammary gland of NSG
mice following treatment with OP449 or PBS. (B) TUNEL assay and (C) IF for
Ki67 for MDA-MB-231 harvested xenografts from A. The mean and SD of
total apoptotic cells in 75 random fields or Ki67 positive cells in 25 fields for
three control mice (six tumors) and four OP449-treated mice (eight tumors)
are graphed. (D) Western blot analysis of OP449 with peptide-specific anti-
body in lysates from MDA-MB-231 xenografts (Fig. S5A). (E) Tumor lysates
from D were used to measure PP2A activity as described previously (22).
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mice, and other studies using OP449, showed selective inhibition
of cancer growth, whereas normal fibroblasts remained unaffected
(25). Furthermore, we show here that OP449 has in vivo bio-
availability and can be detected in the tumors of treated mice, and
treated tumors have a resultant increase in PP2A activity.
In summary, inhibiting SET (and potentially CIP2A) may

provide an important therapeutic strategy for the treatment of
breast cancer by targeting MYC in a way that has not yet been
achieved by other means. Furthermore, SET antagonism with
OP449 will facilitate down-regulation of other PP2A-regulated
pathways including NFκB, the nucleoside diphosphate kinase
nm23-H1, the AKT kinase, and the small GTP binding protein
Rac-1 (25), all of which likely contribute to the potent growth
inhibitory effects we observed here in breast cancer. This makes
OP449 a favorable drug because in addition to targeting MYC,
which may have opposing effects on metastasis (34), OP449 can
facilitate down-regulation of these other oncogenes. These
results further validate the use of SET antagonists and PP2A
activators as a novel strategy for breast cancer therapy.

Materials and Methods
Cell Culture, Knockdown, and Cell Population Expansion Assay. All cell lines
were purchased from American Type Culture Collection except SKBR3, which
was a gift from Joe Gray (OHSU, Portland, OR). Cell culture and knockdown
methods are described in SI Materials and Methods. The cytotoxicity assay
was performed in reduced serum (0.1%) due to observed precipitation of
OP449 at higher serum concentrations. Acquisition and culturing of primary
tissue is described in SI Materials and Methods [Institutional Review Board
(IRB) approval no. 3330]. The cell population expansion assay was performed
on an IncuCyte Zoom (Essen Bioscience), and detailed information on this
assay is described in SI Materials and Methods.

Western Blot, ChIP, and IF.Western blot, ChIP, and IF analyses were performed
as described previously (4, 11, 12) and as detailed in SI Materials and Methods.

Patient samples used for IF analysis were obtained from the OHSU Cancer
Pathology Shared Resource (IRB approval no. 6478).

qRT-PCR and RNA-Seq. The TissueScan Breast Cancer cDNA array (array 4),
TaqMan primers, and RNA-seq are described in SI Materials and Methods.
cDNA from patient samples (Fig. S1B) was provided by Dexi Chen (De-
partment of Infectious Diseases, Capital University of Medical Sciences,
You’an Hospital, Beijing) and described in ref. 4.

Orthotopic Xenografts of Breast Cancer Cell Lines and OP449 Pharmacokinetics.
Orthotopic xenograft of breast cancer cell lines is described in SI Materials
and Methods. Briefly, cells were xenografted into the fourth mammary
gland of NSG mice. For the treatment study, once tumors were palpable,
mice were divided into two groups and treated with OP449 or vehicle control
(PBS) 3 d/wk. The xenografted tumors were harvested to perform TUNEL,
Ki67, PP2A activity, and OP449 detection assays (described in SI Materials and
Methods). OP449 pharmacokinetic studies are described in SI Materials
and Methods.

Statistics. SD for all graphs was calculated from three independent experi-
ments (unless otherwise stated in the figure legend) using GraphPad Prism 5.
P values were analyzed by Student t test, with a two-tailed method (*P <
0.05, **P < 0.01, and ***P < 0.001).
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