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Evidence for two-dimensional solitary
sound waves in a lipid controlled
interface and its implications for
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Biological membranes by virtue of their elastic properties should be capable

of propagating localized perturbations analogous to sound waves. However,

the existence and the possible role of such waves in communication in

biology remain unexplored. Here, we report the first observations of two-

dimensional solitary elastic pulses in lipid interfaces, excited mechanically

and detected by FRET. We demonstrate that the nonlinearity near a maxi-

mum in the susceptibility of the lipid monolayer results in solitary pulses

that also have a threshold for excitation. These experiments clearly demon-

strate that the state of the interface regulates the propagation of pulses

both qualitatively and quantitatively. Finally, we elaborate on the striking

similarity of the observed phenomenon to nerve pulse propagation and a

thermodynamic basis of cell signalling in general.
1. Introduction
In a living system, hydration shells around membranes, biomacromolecules

(e.g. proteins, DNA, etc.) and ions form quasi-two-dimensional interfacial

zones that account for most of the interstitial water. Such an interface can be

characterized thermodynamically by its state diagrams [1] that map the inter-

relationships of physical variables (lateral pressure ! surface density, surface

potential ! charge, etc.). These state diagrams can be obtained experimentally
from macroscopic measurements on the interface. One of us has previously estab-

lished that the state of the interface is a crucial determinant for equilibrium and

non-equilibrium events at the interface [2–4]. For instance, heat capacity or com-

pressibility of the interface [2–4] has been shown to regulate transmembrane

current fluctuations or two-dimensional pulse propagation, during which all

the variables of interface (pressure, temperature, surface potential, fluorescence,

density, charge, etc.) are affected simultaneously as required by Maxwell’s

relations [3,5,6]. Such events derived from fundamental physical principles

may imply certain biological functions (e.g. local membrane transport and com-

munication) and this relationship between state and function can be tested

experimentally. For example, sound waves at the membrane interface have

been proposed as the physical basis of nerve pulses and it is believed that key

features of action potentials (shape stability, all-or-none nature, etc.) result from

nonlinear properties of cell membranes [7–11], an idea first put forward by

Kaufmann [10]. Theoretically, it is not the complexity of membrane composition,

which includes proteins (ion channels and pumps), lipid heterogeneity, etc., but

the nonlinearity in the elasticity of the interface that is necessary to support such

sound waves. Although such conditions on elasticity are met even in a single or

multiple component lipid system, the existence of nonlinear sound waves, also

known as solitary elastic waves, which resemble action potentials, has not been

demonstrated in a hydrated lipid interface, yet.

This study reports the first observation of ‘solitary’ elastic waves in lipid mono-

layers. Propagating waves were excited mechanically and the resulting propagating
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Figure 1. Experimental set-up. The state of the interface was controlled by titrating a lipid-dye solution on a Langmuir trough while measuring the lateral pressure
(at a). A razor blade (b) was actuated horizontally by a piezoelectric element (black stripe) in order to excite longitudinal pulses that were detected by FRET at c,
where the distance b$ c ¼ 1 cm. The cartoon represents a microscopic interpretation of FRET at an interface. In an ordered two-dimensional medium, the FRET
efficiency is �f (r, m1 . m2), where r is the distance and m represent the emission or adsorption dipole, respectively. Therefore along with distance, the relative
orientation of absorption and emission dipoles is also relevant (as opposed to their absolute orientation with respect to the interface). As the pulse arrives the
relative distance and orientation of the transition dipoles of the donor and acceptor molecule change as a function of state represented by (u,p) [6]. Correspond-
ingly, the FRET efficiency changes that leads to anticorrelated changes in the intensity of donor signal and acceptor signal. On the other hand, any motion of the
interface due to capillary modes of the water waves travelling simultaneously with the longitudinal modes will change the donor and acceptor signal in a correlated
manner. The FRET parameter Du/u0 amplifies the anticorrelated parts of the signal while filtering out the correlated parts. Finally, it is the relationship of the
observed velocities to the compressibility of the interface that confirms the compressional nature of the waves (figure 4). (Online version in colour.)
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variations in state were detected by fluorescence energy transfer

(FRET) measurements. The relationship between the thermo-

dynamic state and velocities of the propagating waves

confirmed that they indeed travel within the lipid interface [4].

Most importantly, only when the system was close to the non-

linear regime of the state diagram, sharp localized pulses with

large amplitudes were observed. Furthermore, these pulses

were excitable only above a critical state-dependent threshold.

These self-supporting solitary wave packets propagating in the

interface bear striking resemblances to action potentials in

living systems.
2. Opto-mechanical experiments on a lipid
interface

From an experimental point of view, the ability to control and

monitor the state of an interface is crucial for a thermodynamic

approach. This is easily achieved in lipid monolayers where the

diagrams of state, for instance lateral pressure or surface poten-

tial versus area, can be obtained at various bulk pH and

temperature conditions [12,13]. We recently showed that the flu-

orescence intensity of dye molecules embedded in the lipid

monolayer is also a thermodynamic observable of the interface

[6], meaning that it can be analysed as any other thermodyn-

amic property of the interface (such as surface potential,

density, etc.) once the equation of state in terms of fluorescence

emission is known. Fluorescence measurements provide a fast

and non-contact means for measuring state changes associated
with propagating pulses. In this study, we use FRET between a

pair of dye molecules, which has two major advantages over

standard fluorescence intensity measurements: (i) ratiometric

measurements provide significantly better signal-to-noise

ratios [14], and (ii) one can distinguish between longitudinal

(compressional) and transversal (capillary) components of a

pulse [15] (figure 1 and electronic supplementary material, S1

Comment). The experimental set-up shown in figure 1 was

used to control and monitor the state of the lipid monolayer at

the air/water interface. A chloroform solution, containing

lipids dipalmitoylphosphatidylcholine (DPPC), the donor

N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-

sn-glycero-3-phosphoethanolamine, triethylammonium salt

(NBD-PE) and acceptor dye molecules Texas Red 1,2-dihexa-

decanoyl-sn-glycero-3-phosphoethanolamine, triethylammo-

nium salt (Texas Red DHPE) from Invitrogen (100 : 1 : 1) was

spread on the water surface of a Langmuir trough. The mean

lateral pressure (p) of the monolayer was measured using a

Wilhelmy plate. FRET between donor and acceptor dye mol-

ecules embedded in the lipid monolayer was measured

ratiometrically (20 kS s21) by the FRET parameter defined as

u ¼ I535 nm

I605 nm

� �
: (2:1)

For this, emission intensities were acquired simultaneously at

two wavelengths (535 and 605 nm), while fluorescence was

excited at 465 nm and the FRET parameter was characterized

as a function of state (p) using the opto-mechanical set-up

described in our previous work [6]. For wave experiments, a
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Figure 2. State dependence of pulse shapes in a lipid interface. Elastic interfacial pulses (a – c) were excited in fundamentally different regimes (i, ii and iii) of the
state diagram (d,e) [6] at p(A) ¼ 3.2, 6 and 12.8 mN m21, respectively. The inset in (e) shows the three regimes on the isothermal compressibility kT(p) curve
calculated from p(A). A distinct pulse (b) only appears near or in the plateau (regime ii) of the state diagram and is an order of magnitude stronger in amplitude
(approx. 40 times) than pulses in regimes (i) and (iii) (see the electronic supplementary material, figure S1 for individual donor and acceptor signals). Although the
sharp pulse as in (b) only appears near the nonlinear regime of the state diagram, the absolute shape is very sensitive to the precise state along (i) to (ii) (see the
electronic supplementary material, figure S2). In these experiments, the state was altered by changing the surface density of lipid molecules but it can equally well
be varied by changing other physical parameters (temperature, pH, lipid-type, ion or protein adsorption, solvent incorporation, etc.). The delay Dt was used to
calculate the experimental propagation velocity cexp. Experimental details: pulses measured via FRET (see equation (2.2) and electronic supplementary material,
figure S1), lipid (DPPC) monolayer at 198C for the excitation resulting from a piezo amplitude of approximately 1 mm (1 A), distance between excitation and
detection was 1 cm. The dashed line in (d ) is a guide to the eye. The similarity of the pulses in the nonlinear regime (ii) with action potentials (see fig. 13
in [17]) is striking. (Online version in colour.)
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razor blade attached to a piezo cantilever (American Piezo

Company no. 40–2040) was arranged such that the long

edge of the blade touches the air–water interface forming a

meniscus, while the motion of the cantilever moves the blade

horizontally along the interface. The pulses were excited by

using controlled mechanical impulses (Dt � 10 ms) of the

piezo cantilever (figure 1 and electronic supplementary

material, figure S1). The maximum displacement (approx.

1 mm) of the blade represents the upper bound for the ampli-

tude on a relative scale of 0–1A which can be tuned using the

power supply (Grass Instruments S88E) for the piezo element.

This technique has previously been shown to ensure maximum

coupling to the longitudinal mode [16]. The ensuing changes in

state were quantified optically via the relative changes in FRET

parameter derived from equation (2.1) (figure 1)

Du

u
¼ DI535

I535
� DI605

I605
: (2:2)

In order to understand the state dependence, the pulses were

excited at different mean surface pressures.
3. Localized nonlinear pulses controlled by state
of the interface

Figure 2 presents the first observations of nonlinear pulses pro-

pagating along a lipid monolayer. The pulses were measured

optically using equation (2.2) (see also the electronic supplemen-

tary material, figure S1) in fundamentally different regimes of

the state diagram (marked in figure 2d,e). The regimes differ

in terms of their isothermal compressibility kT¼ 2(1/A)(@A/

(@p)T that can be obtained from the p$ A isotherm

(inset figure 2e). kT has a sharp peak in the transition region

around p ¼ 6 mN m21 marked as regime (ii), while regime

(i) at p ¼ 3.2 mN m21 and regime (iii) at p ¼ 12.8 mN m21 rep-

resent the two states that lie far on either side of the peak in kT.

Comparing the pulse shapes in these three different states

reveals at least two striking differences: (i) for the same strength

of excitation the amplitude increases by one to two orders of

magnitude (approx. 40 times) when excited in the transition

regime, and (ii) a significant temporal confinement or steepen-

ing of the pulse appears simultaneously (figure 2a–c). The

latter can be better appreciated in the frequency domain rep-

resentation where the temporal confinement inversely results
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Figure 3. Threshold for excitation of solitary waves. (a) The pulses resulting from varying the excitation strength are shown for a fixed state marked by the circle in (b).
Clearly, a ‘threshold’ for the onset of solitary behaviour exists between excitation strength of 0.67 and 0.83 A in this state, where maximum displacement amplitude of
approximately 1 mm corresponds to 1 A. The inset in (b) represents the idea of a threshold on a generalized state diagram where solitary pulses can be excited by super-
threshold excitation. (c) The corresponding average frequency spectrums of the pulses are shown. The arrow points to the onset of nonlinear behaviour (see the electronic
supplementary material, figure S4). All the pulses in (a) are plotted on same scale for the y-axis representing the variations in FRET parameter. Experiments were
performed on a lipid (DPPC) monolayer at a lateral pressure of 7.2 mN m21 and 218C. (Online version in colour.)
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in a significant spectral broadening (Dv � 1/Dt), as will be dis-

cussed below. In our recent work, on opto-mechanical

coupling [6], it was shown that Du/u � DA/A � DV/V in the

transition region at the interface, where A and V are the surface

area and surface potential respectively. Based on this correspon-

dence, the solitary waves excited in the transition regime with a

relative FRET amplitude Du/u of 1.2 units are estimated to

measure approximately 200 mV in surface potential while

sub-threshold pulses measured outside this region will corre-

spond to a surface potential of approximately 5 mV [5]. The

pulse shape varies strongly as a function of state near the tran-

sition and can be resolved further (electronic supplementary

material, figure S2). The pulses remain highly localized and

deform gradually while they propagate before eventual decay

as discussed later. The exact details of the pulse shape (extent

of sharpness and the prominence of long tail below baseline)

depend on the boundary conditions (distance from edges of

the trough, figure 1) and the choice of piezo cantilever (blocking

force, resonance frequency, etc.) to a certain extent.
4. Threshold amplitude and ‘all-or-none’ nature
The sensitive dependence of pulse’s shape on state combined

with the abrupt increase in its amplitude and confinement
indicates that the observed phenomenon is of nonlinear

nature. To analyse this nonlinearity further, pulse amplitude

Du and shape (frequency spectrum) were obtained as a

function of excitation strength (peizo amplitude). This exper-

iment presented another remarkable feature of the observed

solitary pulses, the presence of a threshold. Only excitations

of amplitude above a certain threshold could excite solitary

pulses (figure 3). On zooming into the pulse shape, it is

observed that near the threshold the increased excitation

strength is temporally focused onto certain regions along

the pulse shape (electronic supplementary material, figure

S4). This results in excitation dependent steepening and con-

finement of the pulse’s shape along with a nonlinear increase

in its amplitude. This is better represented by the broadening

of the corresponding frequency spectrums (fast Fourier trans-

form; figure 3c). In a linear system, stronger excitations

simply cause elevations or rescaling of spectral features to

higher amplitudes [18]. However, clear qualitative changes

in the spectrum are observed for the pulses presented

herein, which underline the impact of nonlinear effects. The

higher frequencies (100–300 Hz), present at an excitation of

0.83 A, are practically absent at 0.67 A, where A is an arbi-

trary scale between 0 and 1 representing the strength of

excitation. However, a similar rise in excitation strength

from 0.50 to 0.67 A had practically no effect, as represented
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by near complete overlap of the corresponding spectrums.

The onset of higher frequency components near 0.77 A (see

also the electronic supplementary material, figure S3) and

subsequent strong spectral broadening indicate the existence

of a threshold. Although the amplitude-dependent spectral

broadening observed here is typical of systems with nonlinear

susceptibilities [18,19], the precise control over the degree of

nonlinearity is an extraordinary advantage of this set-up.
5. Theoretical considerations
Theoretically, the nonlinearity in the adiabatic compressibility ks

of the interface relates to the evolution of a propagating pulse at

the interface [4,6]. ks is related to the velocity of propagation cg,
which has been measured (cexp) and plotted as a function of

mean pressure and mean FRET parameter u0 (figure 4). The

minimum in cexp is related to a maximum in ks (figures 2e and

4) [4,6] confirming the compressional nature of the optically

observed pulses. The propagation velocity of a wave packet is

represented by the group velocity cg(u,v) ; @v/@k which in gen-

eral is a function of both the amplitude u and frequency v, k
being the wavenumber. The time delayDt, measured experimen-

tally, is inversely related to cg and in a dispersive nonlinear

system Dt varies within a single pulse Du(t), which usually

leads to broadening of the pulse shape as it travels. For a pulse

of amplitudeDu and spectral widthDv, the broadening scales as

DDt � D
1

cg
� @

@v

1

cg
Dvþ @

@u

1

cg
Du � bDv�

c0g
c2

g
Du, (5:1)
where b ; @2k/@v2 is known as the group velocity dispersion

parameter [20] and c0g ¼ @cg/@u represents the nonlinearity in

compressibility. Qualitatively c0g can be estimated from the

phenomenological dependence cg(u)(�cexp(u)) (figure 4),

where the tangent on any point along the curve would be

directly related to c0g. For a preserved pulse shape (DDt!
0) a simple relation, representing the balance between nonli-

nearity and dispersion, can be derived as bDv � (c0g/c2
g)Du.

This relationship can be compared with experiments to test

whether the observed nonlinear pulses are indeed of solitary

nature. In figure 3a, it is reasonable to assume that the

values for b and c0g/c2
g do not change significantly between

the two super-threshold pulses. On comparing the spectral

half widths (figure 3c) and amplitudes (figure 3a) of these

two pulses jDu/Dvj0.83 � jDu/Dvj1.00 ¼ 0.0045, indicating

that the pulse shape is indeed conserved as the nonlinearity

and dispersion balance each other. In addition to the solitary

nature of the observed pulses, the relation between dispersion

and nonlinearity also explains the origin of the threshold. The

slope c0g of the phenomenological curve cg(u) (figure 4) changes

sign (negative to positive) on increasing pressure across the

minimum in cg(u). Assuming b does not change its sign, the

dispersion and the nonlinearity can only be balanced on one

side of the minimum, while on the other side the two effects

would rather reinforce each other, smearing out any pulse

propagation immediately (note that Du is observed to be posi-

tive in this region). This is further supported by resolving the

state dependence of the pulse shape more sensitively (elec-

tronic supplementary material, figure S2). Upon a small

increment in p(A) from 5.1 to p(A) ¼ 5.3 mN m21 the signal
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shoots up nonlinearly, indicating a strong threshold when

approaching the transition from the liquid expanded side. In

conclusion, not only the observed pulses are of solitary

nature, they also have a clear threshold for excitation due to

the second-order nonlinear effects at the minimum in cg near

the transition.

Further experiments in different lipid systems are

required for a deeper understanding of the observed

nonlinearity and threshold. Threshold, dispersion and vis-

cosity, which all depend on state [21,22], affect the

evolution of pulse (shape) and hence need to be systemati-

cally examined. As discussed for a solitary pulse of given

amplitude, the width is conserved despite dispersion when

nonlinear effects of the medium counteract sufficiently. How-

ever in a dissipating medium, the decay in amplitude will

result in a corresponding broadening of the pulse to the

point where the nonlinearity cannot balance the dispersion

anymore, i.e. that during propagation the amplitude will

eventually ‘slip’ below the threshold due to dissipation.

This is clearly observed for the solitary pulses reported in

this study (electronic supplementary material, figure S5),

although at this point the primary reason for decay in ampli-

tude is not clear (we imagine dissipative or geometrical

effects as a possible source; figure 1). The role of spatial

confinements [23,24] is currently being explored to under-

stand the geometrical effects which according to our

preliminary analysis seem to be important for the biphasic

nature of the pulse shape.
6. Biological implications
So far, we have tried to emphasize that the solitary pulses

with a threshold for excitation result from a peak in compres-

sibility and we have shown this systematically for a lipid

monolayer. However, the same line of arguments applies

for lipid bilayers and real biological membranes as long

as their equation(s) of state give rise to nonlinearities

[12,25–28]. The latter is experimentally well established in

living cells and single neurons [25,28] and as the measure-

ment of the susceptibilities (cp,kT, etc.) of living systems

(single cells) improve, their relevance for many nonlinear

phenomena in biology will be better established [29,30].

The obvious differences between mono- and bilayer—

although highly important for a detailed analysis—are

therefore irrelevant from a fundamental point of view.

Nevertheless, a brief discussion on mono- versus bilayer as

acoustic mediums may be helpful. The problem of mono-

and bilayer correspondence is steeped in rich literature

[31–33], but its most important aspect relevant to sound

propagation is probably the role of surface tension which is

significantly high (g � 30$ 72 mN m21) in monolayers at

air/water compared with a leaflet in a bilayer where g! 0.

This has direct implications for capillary (transversal)

modes which scale with g and are therefore almost unavoid-

able in monolayers but are likely to be absent in a bilayer

[16,34]. Excitation of longitudinal waves is therefore expected

to be more efficient in lipid bilayers. Still, the crucial differ-

ence in boundary conditions in the two systems and the

role of chemical gradient across the membrane and its inte-

gration into a propagating state change need to be further

investigated [3].
Finally, based on the general role of nonlinear state dia-

grams in our study and given the recent discussion on the

thermodynamic foundation of nerve pulses, we would like

to discuss the biological relevance of our findings. The

shape of the solitary pulses in lipid monolayers and action

potentials in cell membranes can be directly compared

because fluorescence reports membrane potential in both

cases [6,35,36]. There are several striking similarities

between our results on lipid monolayers and the data on

nerve pulses: (i) both systems support ‘all-or-none’ pulses

which propagate as solitary waves and exist only in a

narrow window bound by certain nonlinearities in their

respective state diagrams [28,37,38], (ii) the pulses in both

systems represent an adiabatic phenomenon [39,40] and

are not only electrical but are also inseparably mechanical

(deflection and volume), optical (polarization, chirality, flu-

orescence, turbidity) and thermal (temperature, enthalpy)

pulses [5,6,36,37,39,41–46].

The velocities of the pulses reported herein are in the

same order of magnitude as those reported for action

potentials in plant cells as well as non-myelinated animal

cells [47–49]. Similarly, the biphasic shape (figure 2b) is

quite characteristic of action potentials and its similarity to

the observed pulses in this study is striking and should be

compared with fig. 13 in Hodgkin and Huxley’s famous

work [17]. Interestingly, the biphasic pulse shape obtained

in the monolayer does not require separate proteins and

accompanying ion fluxes to explain different phases (rising,

falling, undershoot) as in an action potential. Despite these

similarities, however, we believe that absolute velocity and

pulse shape are not proper criteria for testing a new theory

of nerve pulse propagation as both vary tremendously, in

cells and as well as in lipid monolayers, depending on

composition, excitation and state of the membrane interface

[50–52]. Rather, it is the variation in velocity as a function of

state cg(p, T ), variation in pulse shape as a function of degree

of nonlinearity c0g(p, T) and the existence of a threshold that

can be explained thermodynamically [22,53–55], as seen in

this study. But before making further such comparisons, the

amplitude velocity relation [56,57], the existence of refractory

period [58] and the behaviour of two pulses under collision

need to be explored for a comprehensive understanding of

these nonlinear effects. For example in nonlinear systems, two

pulses might change or annihilate in general on collision (like

action potentials) or remain unaffected like solitons under

special circumstances [7,57,59–62].

Finally, given that the state of the interface has been

shown to strongly correlate with the activity of membrane-

bound proteins and enzymes [63–65], we are also looking

at the effect of these pulses on protein and enzyme kinetics

as a new mechanism in biological signalling. Further studies

will show whether the solitary elastic pulses as reported here

are indeed a physical basis of nerve pulses and cellular

communication in general [66,67].
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27. Träuble H, Eibl H. 1974 Electrostatic effects on lipid
phase transitions: membrane structure and ionic
environment. Proc. Natl Acad. Sci. USA 71,
214 – 219. (doi:10.1073/pnas.71.1.214)

28. Georgescauld D, Desmazes J, Duclohier H. 1979
Temperature dependence of the fluorescence
of pyrene labeled crab nerve membranes. Mol.
Cell. Biochem. 27, 147 – 153. (doi:10.1007/
BF00215363)

29. Eyzaguirre C, Kuffler S. 1955 Processes of excitation
in the dendrites and in soma of single isolated
sensory nerve cells of the lobster and crayfish.
J. Gen. Physiol. 109, 87 – 117. (doi:10.1085/
jgp.39.1.87)

30. Guharay F, Sachs F. 1984 Stretch-activated single ion
channel currents in tissue-cultured embryonic chick
skeletal muscle. J. Physiol. 352, 685 – 701.

31. Marsh D. 1996 Lateral pressure in membranes.
Biochim. Biophys. Acta 1286, 183 – 223. (doi:10.
1016/S0304-4157(96)00009-3)

32. Feng S. 1999 Interpretation of mechanochemical
properties of lipid bilayer vesicles from the equation
of state or pressure-area measurement of the
monolayer at the air-water or oil – water interface.
Langmuir 15, 998 – 1010. (doi:10.1021/la051216n)
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