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Abstract

Importance—Diurnal fluctuations of motor and non-motor symptoms and high prevalence of

sleep/wake disturbances in Parkinson’s disease (PD) suggest a role of the circadian system in the

modulation of these symptoms. Yet, surprisingly little is known regarding circadian function in

PD, and whether circadian dysfunction is involved in the development of sleep/wake disturbances

in PD.

Objective—The objective of this study was to determine the relationship between the timing and

amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with

self-reported sleep quality, the severity of daytime sleepiness and disease metrics.

Design—A cross-sectional study, (2009–2012).

Setting—PD and Movement Disorders Center, Northwestern University, Chicago.

Participants—Twenty PD patients on stable dopaminergic therapy and 15 age-matched controls

underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals

for 24 hours under modified constant routine conditions.

Main Outcome Measure(s)—Clinical and demographic data, self-reported measures of sleep

quality (Pittsburgh Sleep Quality Index (PSQI)) and daytime sleepiness (Epworth Sleepiness Scale

(ESS)), circadian markers of the melatonin rhythm, including the amplitude, area-under-the-curve

(AUC), and phase of the 24-hour rhythm.

Results—Participants with PD had a blunted circadian rhythms of melatonin secretion compared

to controls; both the amplitude of the melatonin rhythm and the 24-hour AUC for circulating

melatonin levels were significantly lower in PD participants compared with controls (p<0.001).

Markers of circadian phase were not significantly different between the two groups. Among PD

participants, those with excessive daytime sleepiness (ESS score ≥10) had a significantly lower

amplitude of the melatonin rhythm and the 24-hour melatonin AUC compared with PD

participants without excessive sleepiness (p=0.001). Disease duration, UPDRS scores, levodopa

equivalent dose and global PSQI scores in the PD group were not significantly related to measures

of the melatonin circadian rhythm.

Conclusion and Relevance—These results indicate that circadian dysfunction may underlie

excessive sleepiness in PD. The nature of this association needs to be further explored in

longitudinal studies. Approaches aimed to strengthen circadian function, such as timed bright light

and exercise, might potentially serve as complementary therapies for the non-motor manifestations

of PD.

Introduction

Disturbances of sleep and wake are one of the most common and disabling non-motor

manifestations of Parkinson’s disease (PD), affecting as many as 90% of patients.1,2

Disrupted sleep-wake cycles contribute to poor quality of life and increased risk for
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accidents, leading to increased morbidity and mortality in the PD population.3–5 Current

treatment options for disturbed sleep and alertness in PD are very limited and associated

with undesirable adverse effects. Therefore, there is a great need to understand the

mechanisms leading to sleep-wake dysfunction in PD, and to develop innovative treatment

modalities. The exact pathophysiology of sleep-wake disturbances in PD remains largely

unknown, but the etiology is likely to be multifactorial, including the impact of motor

symptoms on sleep, primary sleep disorders, (sleep apnea and REM Sleep Behavior

Disorder), adverse effects of medications, and neurodegeneration of central sleep-wake

regulatory systems.6–9

Circadian rhythms are physiological and behavioral cycles with a periodicity of

approximately 24 hours, generated by an endogenous biological clock, the suprachiasmatic

nucleus (SCN), located in the anterior hypothalamus.10–12 The SCN actively promotes

arousal during the day by stimulating neural circuits mediating arousal and/or inhibiting

neural circuits mediating sleep. Circadian rhythms can be characterized by their period,

phase and amplitude. Changes in circadian amplitude and/or phase can reduce nighttime

sleep quality, daytime alertness and cognitive performance.13–16 Although the sleep-wake

cycle represents the most apparent circadian rhythm, other processes such as core body

temperature, hormone secretion, cognitive performance, cardiometabolic function and mood

are also regulated by the SCN. For example, the timing of melatonin release from the pineal

gland is regulated by the SCN, and plasma melatonin is a reliable marker of the endogenous

circadian rhythm.17,18

Despite the alerting function of the SCN, little is known about the role of the circadian

system in the regulation of sleep-wake cycles in PD. Several studies have reported daily

fluctuations of clinical and biologic factors in PD, including suppressed daily motor

activity19–21, loss of the normal circadian rhythm of blood pressure and heart rate22–24,

impaired sleep and daytime alertness25–28, as well as fluctuations in catecholamines29,

cortisol30,31 and melatonin levels.32–34 While these investigations suggest modifications of

the circadian system in PD, the observed results reflect influences of both endogenous and

exogenous factors. In this study we aimed to examine endogenous circadian rhythm of

melatonin secretion in participants with PD and healthy controls using a modified constant

routine protocol, which is an experimental protocol designed to allow for the accurate

assessment of the human endogenous rhythmicity by controlling the effects of exogenous

variables.

Methods

Recruitment, protocol approval, and consent

The PD group was represented by a convenience sample of PD patients recruited from

Northwestern University Parkinson’s Disease and Movement Disorders Center. Control

participants were recruited via advertising throughout the Chicago land area as well as from

the Aging Research Registry of healthy individuals interested to participate in research

within the Northwestern Buehler Center on Aging. The study was approved by the

Northwestern Institutional Review Board. Written consent was obtained from all

participants.
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Study participants

Inclusion criteria were: 1) Diagnosis of idiopathic PD as defined by the United Kingdom

Parkinson’s Disease Society Brain Bank Criteria35, 2) PD Hoehn and Yahr stage 2–4, 3)

Stable dose of PD medications for at least 4 weeks prior to the study screening and

throughout the study period.

Exclusion criteria were: 1) Atypical or secondary forms of parkinsonism, 2) Cognitive

impairment as determined by the Mini-Mental State Examination (MMSE) score of ≤ 26, 3)

Presence of depression defined as the Beck Depression Inventory (BDI) score >14, 4)

Untreated hallucinations or psychosis (drug-induced or spontaneous), 5) Use of hypnotic,

sedative or stimulant medications, 6) Use of antidepressants, unless the participant has been

on a stable dose for at least 3 months prior to enrollment; tricyclics, trazodone, nefazodone,

and mirtazapine were not allowed due to their soporific properties, 7) Use of medications

known to affect melatonin secretion, such as lithium, alpha- and beta-adrenergic antagonists,

8) High sleep apnea risk, as assessed by the Berlin Questionnaire, 9) Shift work, 10) Travel

through two or more time zones within 90 days prior to study screening, 11) Unstable/

serious medical illness. The same exclusion criteria were used for control participants who

were matched for age with the PD participants.

Study protocol

PD severity was assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS) in the

ON condition at the time of study enrollment. Sleep quality and daytime sleepiness were

assessed by the Pittsburg Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS),

respectively. Mini-Mental State Examination (MMSE) and Beck Depression Inventory

(BDI) were administered to all participants. All assessments were performed by a movement

disorders specialist (A.V.). Demographic characterization of the study cohort included age,

gender, education, race, smoking status and caffeine consumption.

Each participant was instructed to maintain a regular (±30 minutes) sleep schedule for 14

days prior to testing, which was confirmed by sleep diaries. The experimental protocol was

conducted in the Clinical Research Unit (CRU) at Northwestern Memorial Hospital.

Participants were admitted to the CRU in the evening hours. Lights-out time was determined

based on the averaged habitual sleep-time, calculated from sleep diaries. Upon awakening

on day 1 (circadian time (CT) 0), participants were fitted with an IV catheter in the forearm

vein for repeated blood sampling, and maintained in a modified constant routine condition

for the 24-hour blood sampling. They remained in a semi-recumbent position with their head

at a 45-degree angle during waking hours, received 150–250 Kcal snacks depending on their

normal food intake at 2-hour intervals while awake. Blood (2 ml) was sampled every 30

minutes from CT 3 until the next CT 3 (total of 24 hours) for assay of melatonin.

Participants were not sleep deprived for the duration of the 24-hour blood sampling period

due to safety concerns for PD participants, and were allowed 8 hours of sleep/time in bed;

therefore this was a modified constant routine protocol. In order not to disrupt participants’

sleep overnight, the indwelling catheter was connected to long plastic tubing that extended

into an adjacent room. During the modified CR routine protocol light levels in the CRU

were maintained ≤ 10 lux during waking hours and reduced to < 3 lux during sleep periods.
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Plasma melatonin levels were measured by a radioimmunoassay (LDN, Nordhorn,

Germany); the sensitivity of the assay = 2 pg/mL, intra assay coefficient of variation = 9.8%

for a concentration of 50 pg/ml, and inter-assay coefficient of variation = 9.6% for a

concentration of 40 pg/ml. Plasma levels were expressed in picograms per milliliter.

Melatonin levels (pg/ml) were adjusted to a percentage of maximum (average of the 3

highest values). The data were subsequently smoothed with the Lowess (Cleveland) curve-

fitting procedure36 and interpolated at 1-min intervals (Graphpad Software, Inc.). Melatonin

acrophase and nadir was defined as the level corresponding to the maximum and minimum

of the best fit curve, and amplitude was defined as 50% of the difference between the

acrophase and nadir values. The area-under-the-curve (AUC) was calculated as a measure of

the secreted amount of melatonin over 24-hour period using the trapezoid method. Circadian

phase was assessed by 1) dim light melatonin onset (DLMO) calculated as 2 standard

deviations (2SD) above the average baseline samples (baseline = the average of three lowest

points between CT 3 – CT 10), 2) DLMO 50% (time that melatonin level rose to 50% of the

maximum level), 3) DLMO 50% off (time that melatonin level declined to 50% of

maximum levels) and 4) melatonin midpoint, defined as the average of DLMO 50% and

DLM 50% off.37

Data analysis

Descriptive summary statistics were calculated and exploratory graphical displays obtained

for all variables of interest. Group differences were analyzed using Kruskal-Wallis test and

Fisher’s exact test. Spearman correlation was used to assess the relationship between

demographic/disease characteristics and parameters of melatonin circadian rhythm. p values

less than 0.05 were considered significant. Statistical analyses were performed using SAS

for Windows (Version 9.3, SAS Institute Inc., Cary, NC, USA).

Results

Twenty participants with PD on dopaminergic therapy and 15 controls completed the study

protocol. Demographics of the study cohort, and disease characteristics are outlined in Table

1. Demographic variables did not differ between PD participants and controls. Global PSQI

score was (mean±SE) 6.1 ± 0.7 in the PD group and 6.7 ± 1.1 in the control group (p=0.50),

indicating similar self-reported sleep quality between PD participants and controls. The

mean ESS score was 10.9 ± 1.1 in the PD group and 6.1 ± 1.0 in the control group

(p=0.006), indicating presence of excessive daytime sleepiness among participants with PD.

Twelve PD participants (60%) and four controls (27%) had excessive sleepiness, as defined

by ESS score ≥10 (p=0.09).

Circadian variations of melatonin secretion are presented in Table 1. There was a preserved

circadian rhythm of melatonin secretion in both groups. Participants with PD had a blunted

circadian rhythm of melatonin secretion (Figure 1A) compared to controls: both the

amplitude of the circadian rhythm of melatonin (p<0.001) and the 24-hour AUC for

circulating melatonin levels (p<0.001) was diminished significantly (four-fold) in PD

participants compared with controls. Both daytime AUC (CT 0–16) and nighttime AUC (CT

16–24) were significantly diminished in the PD group compared with controls (p<0.001).
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Markers of circadian phase, 2SD, DLMO 50%, DLMO 50%off, and melatonin midpoint

were not significantly different between the two groups (Table 1).

Among PD participants, those with excessive daytime sleepiness had a significantly lower

amplitude of the melatonin rhythm compared with PD participants without excessive

sleepiness (p=0.001) (Table 1; Figure 2B). Similarly, the 24-hour melatonin AUC was

significantly lower in PD participants with excessive daytime sleepiness (p=0.001).

Demographics, disease duration, total and part III UPDRS scores, total levodopa equivalent

dose and total PSQI scores were not significantly different in PD participants with or

without daytime sleepiness.

The amplitude of the melatonin rhythm as well as the 24-hour melatonin AUC were

inversely associated with the age of the PD participants (r=−0.54, p=0.01 and r=−0.47,

p=0.04, respectively). Disease duration, age at onset of PD, total and part III UPDRS scores,

total levodopa equivalent dose and global PSQI scores in the PD group were not

significantly related to measures of the melatonin circadian rhythm.

The amplitude of the melatonin rhythm and the 24-hour melatonin AUC were not associated

with the age of the control participants (r=−0.24, p=0.38 and r=−0.15, p=0.57, respectively).

Control participants with (n=4) and without (n=11) excessive daytime somnolence did not

differ in demographic variables, self-reported sleep quality, and circadian markers of

melatonin rhythm (p>0.39).

Discussion

Disruption of sleep-wake cycles in PD negatively affects the quality of life and safety of PD

patients. Mechanisms that underlie poor sleep and alertness in PD are not fully elucidated

and treatment options remain limited. The main finding from this study is a significantly

diminished amplitude and amount of melatonin secretion in PD participants compared to

controls. Among PD patients, those with daytime sleepiness exhibit the most prominent

impairment in circadian melatonin secretion. These findings suggest an important and novel

role of circadian regulation in the manifestation of the excessive sleepiness associated with

PD.

The results of this investigation differ from observations reported in several prior studies

which examined 24-hour melatonin profiles in PD. Fertl and colleagues reported diurnal

secretion curves of melatonin among nine PD patients treated with levodopa in combination

with benserazide or carbidopa, nine de novo untreated PD patients, and 14 age-matched

controls.33,34 They did not find a difference in the amount of melatonin secreted nor in the

amplitude of the melatonin rhythm between PD and control groups. Similar to our

observations, the motor UPDRS score and the duration of disease were not significantly

associated with the amplitude and AUC of the melatonin rhythm. In another study, Bordet

and colleagues compared melatonin rhythms across different disease stages in eight

untreated and 18 treated PD patients with and without levodopa-related motor

complications.32 While there were no significant differences in the amount of melatonin

secretion across the three PD groups, a progressive, although non-significant, trend to a
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decrease in amplitude of the melatonin rhythm during evolution of PD was observed. In

contrast to the lack of significant changes in the amplitude of melatonin rhythms, studies by

Fertl and Bordet found changes in the phase of the melatonin rhythm.32–34 Fertl et al.

reported an earlier nocturnal melatonin peak in PD patients on levodopa than in the control

group. This advanced phase was, however, not observed in de novo, untreated PD patients.

Similarly, Bordet et al. reported earlier acrophase of melatonin secretion in treated compared

with untreated PD patients. These observations raised the possibility that levodopa or

decarboxylase inhibitors (benserazide and carbidopa) may have phase shifting properties. In

our study, there was no difference in the timing of the melatonin rhythm between the groups.

Differences in the methodology used in our study compared with those in the prior studies

may explain the discordant results. We assayed melatonin in 30-minute intervals over the

24-hour period, compared to 1–2 hours in prior studies. More frequent sampling increased

our ability to more accurately determine the timing of the melatonin rhythm. In addition,

experimental protocols employed in the prior studies did not control for environmental

conditions and behaviors (light exposure, temperature, meal schedules, activity level) that

are known to influence the timing and amplitude of circadian rhythms. Therefore, it is

important to point out that the alterations in melatonin amplitude and phase reported in prior

studies may have been influenced by external factors. To our knowledge, this is the first

study that has examined circadian function in PD using a modified constant routine

experimental design. In the prior studies, sleep quality and daytime sleepiness of the study

participants were not measured. Therefore, observed differences in the amplitude and phase

of the melatonin rhythms may be reflective of different sleep quality and alertness profiles

between the study cohorts. Furthermore, these differences may be due to medication

regimens, in particular the timing of dopaminergic medications. It has been proposed that

administration of levodopa late in the evening may lead to stimulation of endogenous

melatonin secretion, which may influence melatonin phase.33,38

The results of this study raise questions about the mechanism underlying the blunted

circadian melatonin rhythm in PD. A potential confounder may be the effects of

dopaminergic treatment on melatonin secretion. Due to safety and feasibility issues, we

decided to study PD participants on their stable PD medication regimen. While we did not

find associations between the dose of dopaminergic medications and the amplitude/AUC of

the melatonin rhythm, the impact of dopaminergic therapy on circadian function needs to be

further explored in PD patients naive to dopaminergic medications. We propose that the

decreased amplitude of the melatonin rhythm in PD may result from dysfunction of the SCN

and/or its afferent and efferent pathways. For example, reduced light exposure and/or

impaired light transmission, partly due to dopaminergic retinal degeneration39, may affect

the circadian rhythm of melatonin in the PD population. While the structure and function of

the SCN in PD has not been rigorously examined to date, degeneration of the central

circadian pacemaker itself represents another possible mechanism leading to impaired

circadian rhythmicity in PD. Finally, autonomic dysfunction, frequently seen in PD, may

negatively affect melatonin secretion due to a dysfunction within the sympathetic ganglionic

chain that is involved in the SCN regulation of the pineal melatonin rhythm of synthesis and

release.40
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The majority of scholarly work on melatonin in neurodegenerative disorders has been

focused on its potential antioxidant properties and on its therapeutic role for sleep

dysfunction commonly associated these disorders. Circadian disruption, including melatonin

imbalance, has been associated with disorders other that PD, such as cognitive impairment,

Alzheimer’s disease, Huntington’s disease, major depression, bipolar disorder, and headache

disorders.41–44 These disorders are frequently associated with impaired alertness and poor

sleep and favorably respond to circadian-directed interventions such as increased

environmental light, daytime activity and exogenous administration of melatonin.

Based on our findings, we propose that circadian dysfunction may be a novel mechanism

involved in impaired alertness and perhaps in the development of other non-motor

symptoms of PD. Furthermore, therapeutic approaches aimed at strengthening circadian

function, such as timed bright light exposure, melatonin administration and modifications of

physical activity, may have potential as complementary therapies for impaired sleep-wake

cycles in the PD population. Future studies are needed to further explore our observations in

larger cohorts of patients where objective measures of daytime sleepiness and sleep quality

are utilized.
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Figure 1.
Mean (± SD) 24-hour plasma melatonin concentration for: panel A – participants with PD

and controls, panel B – PD participants without and with EDS

CT – circadian time (time since wake); EDS – excessive daytime sleepiness
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