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Abstract

The goal of this paper is to make modeling and quantitative testing accessible to behavioral
decision researchers interested in substantive questions. We provide a novel, rigorous, yet very
general, quantitative diagnostic framework for testing theories of binary choice. This permits the
nontechnical scholar to proceed far beyond traditionally rather superficial methods of analysis, and
it permits the quantitatively savvy scholar to triage theoretical proposals before investing effort
into complex and specialized quantitative analyses. Our theoretical framework links static
algebraic decision theory with observed variability in behavioral binary choice data. The paper is
supplemented with a custom-designed public-domain statistical analysis package, the QTesr
software. We illustrate our approach with a quantitative analysis using published laboratory data,
including tests of novel versions of “Random Cumulative Prospect Theory.” A major asset of the
approach is the potential to distinguish decision makers who have a fixed preference and commit
errors in observed choices from decision makers who waver in their preferences.

Keywords

Behavioral decision research; order-constrained likelihood-based inference; Luce's challenge;
probabilistic specification; theory testing

1 Introduction

Behavioral decision researchers in the social and behavioral sciences, who are interested in
choice under risk or uncertainty, in intertemporal choice, in probabilistic inference, or many
other research areas, invest much effort into proposing, testing, and discussing descriptive
theories of pairwise preference. This article provides the theoretical and conceptual
framework underlying a new, general purpose, public-domain tool set, the QTesr software.l
QTest leverages high-level quantitative methodology through mathematical modeling and

Dedicated to R. Duncan Luce (May 1925 - August 2012), whose amazing work provided much inspiration and motivation for this
program of research.
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state-of-the-art, maximum likelihood based, statistics. Yet, it automates enough of the
process that many of its features require no more than relatively basic skills in math and
statistics. The program features a simple Graphical User Interface and is general enough that
it can be applied to a large number of substantive domains.

Consider a motivating analogy between theory testing and diagnostics in daily life. Imagine
that you experience intense abdominal pain. You consider three methods of diagnostics:

1. You may seek diagnostic information from another lay person and/or a fever
thermometer.

2. You may seek diagnostic information from a nurse practitioner.
3. You may seek diagnostic information from a radiologist.

Over recent decades, the behavioral sciences have experienced an explosion in theoretical
proposals to explain one or the other phenomenon in choice behavior across a variety of
substantive areas. In our view, the typical approach to diagnosing the empirical validity of
such proposals tends to fall into either of two extreme categories, similar to the patient either
consulting with a lay person (and maybe a thermometer) or with a radiologist. The
overwhelming majority of ‘tests’ of decision theories either employ very simple descriptive
measures (akin to asking a lay person), such as counting the number of choices consistent
with a theoretical prediction; possibly augmented by a basic general purpose statistical test
(akin to checking for a fever), such as a t-test; or proceed straight to a highly specialized,
sometimes restrictive, and oftentimes rather sophisticated, quantitative test (akin to
consulting with a radiologist), such as a “Logit” specification of a particular functional form
of a theory. The present paper offers the counterpart to the triage nurse: We provide a novel,
rigorous, yet very general, quantitative diagnostic framework for testing theories of binary
choice. This permits the nontechnical scholar to proceed far beyond very superficial
methods of analysis, and it permits the quantitatively savvy scholar to triage theoretical
proposals before investing effort into complicated, restrictive, and specialized quantitative
analyses. A basic underlying assumption, throughout the paper, is that a decision maker,
who faces a pairwise choice among two choice options, behaves probabilistically (like the
realization of a single Bernoulli trial), including the possibility of degenerate probabilities
where the person picks one option with certainty. While the paper is written in a ‘tutorial’
style to make the material maximally broadly accessible, it also offers several novel
theoretical contributions and it asks important new theoretical questions.

2 Motivating Example and lllustration

We explain some basic concepts using a motivating example that also serves as an
illustration throughout the paper. In the interest of brevity and accessibility, we cast the
example in terms of the most famous contemporary theory of risky choice, Cumulative

lQTEST is funded by NSF-DRMS SES 08-20009 (Regenwetter, PI). While a Bayesian extension is under development, we concentrate
on a frequentist likelihood based approach here. QTesr, together with installation instructions, a detailed step-by-step tutorial, and
some example data, are available from http://internal.psychology.illinois.edu/labs/DecisionMakingLab/. An Online Tutorial explains
step-by-step how a novice user can replicate each QTest analysis using the original data, and generate three-dimensional QTest figures
similar to those in the paper. The original Regenwetter et al. data are provided with the software in a file format that QTesr can read

directly.
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Prospect Theory (Tversky and Kahneman 1992). However, since our empirical illustration
only considers gambles in which one can win but not lose money, one can think of the
predictions as derived from certain, more general, forms of “rank-dependent utility”
theories.

Imagine an experiment on “choice under risk,” in which each participant makes choices
among pairs of lotteries. We concentrate on a case where we aim to analyze data separately
for each participant, and where each individual repeats each pairwise choice multiple times.
Table 1 shows 25 trials of such an experiment for one participant. These data are from a
published experiment on risky choice (Regenwetter et al. 2010, 2011a,b) that we use for
illustration throughout the paper.

In this experiment, which built on a very similar, seminal experiment by Tversky (1969),
each of 18 participants made 20 repeated pairwise choices among each of 10 pairs of
lotteries for each of three sets of stimuli (plus distractors). Participants carried out 18 warm-
up trials, followed by 800 two-alternative forced choices that, unbeknownst to the
participant, rotated through what we label ‘Cash I,” ‘Distractor,” ‘Noncash,” and ‘Cash II’
(see Table 1 for 25 of the trials). The 200 choices for each stimulus set consisted of 20
repetitions of every pair of gambles among five gambles in that stimulus set, as was the case
in the original study by Tversky (1969). The distractors varied widely. We will only
consider ‘Cash I’ and “Cash I’ that both involved cash lotteries. Table 2 shows abbreviated
versions of the “Cash 11” gambles: For example, in Gamble A the decision maker has a 28%
chance of winning $31.43, nothing otherwise (see Appendix A for the other cash stimulus
set). The participant in Table 1 made a choice between two Cash Il gambles for the first time
on Trial 4, namely, she chose a 28% chance of winning $31.43 over a 36% chance of
winning $24.44. The Cash Il gambles are set apart by horizontal lines in Table 1. All
gambles were displayed as “wheels of chance” on a computer screen. Participants earned a
$10.00 base fee and one of their choices was randomly selected at the end of the experiment
for real play using an urn with marbles instead of the probability wheel.

For this first illustration, we also consider a specific theoretical prediction derivable from
Cumulative Prospect Theory. We will use the label ¢77 -7 to refer to Cumulative Prospect
Theory with a “power” utility function with “risk attitude” @ and a “Kahneman-Tversky
weighting function” with weighting parameter y (Stott 2006), according to which a binary
gamble with a P chance of winning X (and nothing otherwise) has a subjective (numerical)
value of

PY

(P7+(1 — P)) -

) ()

2=

For this paper, the exact details of this function are not important, other than to note that it
depends on two parameters, yand a. For some of the points we will make, it is useful to pay
close attention to a specific prediction under ¢77 - £7. We consider the weighting function

P'83
(PS34(1 — p).83)(é> and the utility function X-7°, where we substituted = 0.83 and a =
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0.79. These are displayed in Figure 1. We chose these values because that case allows us to
highlight some important insights about quantitative testing. According to this model, the
subjective value attached to Gamble 1 in Pair 1 of Table 2 is

-28'83
(_28.834_.72,83)(%)

T9__
31.4370=4.68. (y

whereas the subjective value attached to Gamble 0 in Pair 1 of Table 2 is

329
(:32534.685%) (=)

T9_
27.50=4.67. (3

Therefore, Gamble 1 is preferred to Gamble 0 in Pair 1, according to ¢#7 - £7 with @ = 0.79,
y=0.83. A decision maker who satisfies ¢P7 - k7 with @ = 0.79, y= 0.83 ranks the gambles
EDABC from best to worst, i.e., prefers Gamble 1 to Gamble 0 in Pair 1, in Pair 2 and in
Pair 5, whereas he prefers Gamble 0 to Gamble 1 in each of the other 7 lottery pairs, as
shown in Table 2 under the header “KT-V4 Preferred Gamble.” We refer to such a pattern of
zeros and ones as a preference pattern. The corresponding binary preferences are shown in
the last column of Table 1.

The values a = 0.79, y=0.83 are not the only values that predict the preference pattern
EDABC in ¢r7 -7, We computed all preference patterns for values of a, ythat are
multiples of 0.01 and in the range «, y ¢ [0.01,1]. We consider a < 1, i.e., only “risk averse”
cases, for the sake of simplicity. Table 3 lists the patterns, the corresponding rankings, and
the portion of the algebraic parameter space (the proportion of values of «, yin our grid
search) associated with each pattern.2 We labeled the pattern that gives the ranking EDABC
as KT-V4 here and elsewhere. The complete list of values of «, yyielding KT-V4 (i.e.,
ranking EDABC) is:

Since 5 values of @, yyield this predicted preference, Table 3 reports that the proportion of
the algebraic space for cP7 - 7 that predicts preference pattern KT-V4 is 0.0005. Clearly,
only decision makers with very specific weighting and utility functions are predicted to have
preference EDABC according to c»7 - k7, for example.

How can one test a theory like Cumulative Prospect Theory, or one of its specific
predictions, such as the one instantiated in KT-V4, empirically? If empirical data had no
variability, it would be natural to treat them as algebraic. But if there is variability in

2There were 101 parameter combinations, among the 10,000, where the values associated to two gambles differed by less than 10720,
For reasons of numerical accuracy, we did not make a pairwise preference prediction in those cases. We also omit the technical details
of how to expand the QTest analyses to incorporate “indifference” among pairs of objects, since we focus on two-alternative forced
choice, where a decision maker cannot express “indifference” among pairs of lotteries.
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empirical data, a probabilistic framework is more appropriate. In particular, it is common to
interpret algebraic models of behavior as assuming that behavior is deterministic, which may
be too strong an assumption. Table 2 shows the binary choice frequencies of a hypothetical
decision maker (HDM), as well as those of Participant 1 (DM1) and of Participant 13
(DM13) of Regenwetter et al. (2010, 2011a). We created the data of the hypothetical
decision maker to look as though she acted in a ‘nearly deterministic’ way, with virtually
every binary choice matching the prediction of KT-V4: In Pair 1 she chooses the “correct’
option 18 out of 20 times, in Pairs 2 and 3, she chooses the “correct’ option 19 out of 20
times. While some decision makers display relatively small amounts of variability in their
binary choices, the typical picture for actual participants in the Tversky study and the
Regenwetter et al. study was more like the data in the two right-most columns of Table 2.
But we will see that even data like those of HDM warrant quantitative testing.

What are some common descriptive approaches in the literature to diagnose the behavior of
the three decision makers? Table 2 shows various summary measures.

First, consider the total number of choices of a given decision maker that match KT-V4.
HDM almost perfectly matches the prediction and only picks the ‘wrong’ gamble in 5% of
all choices. The two real decision makers, DM1 and DM2 are not as clear cut. They chose
the “correct’ option about two-thirds of the time. Many authors would consider this a decent
performance of KT-V4,

Second, consider the number of pairs on which the decision maker chose the ‘correct’” option
more often than the ‘wrong’ option, i.e., the number of pairs on which the observed modal
choice matched the prediction of KT-V4. HDM's modal choice matches KT-V4 in every
pair, hence HDM has 10 correct modal choices. The modal choices of DM1 match KT-V4 in
8 or 9 pairs. It depends on whether “modal choice” does or does not include the knife-edge
case where a person chooses either option equally often, as DM1 does in Pair 10. Table 2
shows those choice frequencies int ypewr i t er styl e where the strict modal choice
matches KT-V4, and those choice frequencies underlined where the strict modal choice
disagrees with KT-V4, whereas frequencies at the 50% level are neither in typewriter style
nor underlined. DM13's strict modal choice matches KT-V4 only in four out of 10 gamble
pairs. In the literature, many authors would interpret this finding as indicating a poorer
performance of KT-V4 for DM13 than for DM1, and an inadequate performance for DM13
overall.

A major complication with the analysis so far is that it ignores the magnitude of the
disagreement between KT-V4 and the observed choice frequencies. For instance, even
though DM only had one “incorrect” modal choice (in Pair 8), we should also ask whether
15 out of 20 choices inconsistent with KT-V4 in Pair 8 might be too much of a disagreement
to be attributable to error and/or sampling variability. Likewise, while DM13 shows many
‘incorrect’ modal choices, it may be important to take into account that none of these
involve frequencies that seem very different from 10 (i.e., 50%). Could they have occurred
accidentally by sampling variability, if the decision maker, in fact, tends to choose
consistently with KT-V4 more often than not, in every gamble pair?

Decisions. Author manuscript; available in PMC 2015 January 01.
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Some scholars take a semi-quantitative approach by carrying out a Binomial test for each
gamble pair. A common approach is to consider the Null Hypothesis that the person acts
“randomly” and flips a fair coin for each gamble pair. We report such an analysis in Table 2.
This Null is rejected for all 10 pairs for HDM, it is rejected for 5 pairs in DM1, and it is
rejected in one pair in DM13. Scholars who take this approach, often proceed next to see
whether the pattern of ‘significant’ binary choices is consistent with the theory in question,
here KT-V4. For the hypothetical decision maker, all 10 Binomial tests come out significant
and in favor of KT-V4. For DM1, five significant Binomial tests are supportive of KT-V4,
but one test, the one for Pair 8, suggests that KT-V4 must be wrong, because the decision
maker chooses the ‘wrong’ option in Pair 8 ‘more often than expected by chance.” For
DM13, this analysis draws a completely new picture: The Null Hypothesis that this decision
maker flips coins is retained in 9 of 10 gamble pairs, with the remaining test result (Pair 1)
supporting KT-V4.

This type of analysis, while taking some quantitative information into account, is
problematic nonetheless: Since this analysis involved 10 distinct Binomial tests, Type-I
errors may proliferate, i.e., we may accumulate false significant results. For example, if
these 10 tests commit Type-I errors independently, and if we use a = .05 for each test (as in
Table 2), then the overall combined Type-1 error rate becomes 1 — (.95)10 = .40 after
running 10 separate tests. A “Bonferroni correction” would, instead, reduce the power
dramatically. The second problem arises when we move from testing a single prediction to
multiple predictions (we will later consider 12 distinct predictions, KT-V1 through KT-
V12).

Scholars with advanced expertise in quantitative testing rarely use the descriptive or semi-
quantitative approaches we summarized in Table 2. Instead, they tend to consider primarily
either of two approaches:

1. Tremble, or constant error, models (e.g., Birnbaum and Chavez 1997, Birnbaum
and Gutierrez 2007, Birnbaum and Bahra 2012, Harless and Camerer 1994) assume
that a person facing a pairwise choice will make an incorrect choice with some
fixed probability € and choose the preferred option with a fixed probability 1 — «.
According to these models, a decision maker satisfying ¢»7 - £7 with y=0.83 and
a=0.79 will choose Gamble 1 in Pair 1 of Table 2 with probability 1 — & because
the value of Gamble 1 is higher than that of Gamble O (see Equations 2 and 3).
Generally, scholars in this branch of the literature consider error rates around 20 —
25%, i.e., values of € around 0.20 — 0.25, to be reasonable. So, a tremble model of
erT - KT with y=0.83 and a = 0.79 would typically predict that, in Pair 1 of Table
2, Gamble 1 should be chosen with probability exceeding 0.75. In particular,
constant error models predict that the preferred option in any lottery pair is the
modal choice (up to sampling variability).

2. Econometric models (which we use as a generic term to include, e.g., “Fechnerian,
“Thurstonian,” “Luce choice,” “Logit,” and “Probit” models) assume that the
probability of selecting one gamble over the other is a function of the “strength of
preference.” There are many sophisticated models in this domain (see, e.g.,
Blavatskyy and Pogrebna 2010, Hey and Orme 1994, Loomes et al. 2002, Luce

Decisions. Author manuscript; available in PMC 2015 January 01.
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1959, McFadden 1998, Stott 2006, Wilcox 2008, 2011, Yellott 1977, for
discussions and additional references). According to these models, the strength of
preference, according to ¢77 - k7 with y=0.83 and a = 0.79, favoring Gamble 1
over Gamble 0 in Pair 1 of Table 2 is

289 325
—31.43 70— -
(.28,834_.72‘83)(@) (.32.834_.68.83)(@)

27.507"=4.68—4.67=0.01. (4

In these models, this strength of preference is perturbed by random noise of one kind or
another. If the median noise is zero and the noise overwhelms the strength of preference,
then these models predict choice probabilities near 0.50: A person with a very weak strength
of preference will act similarly to someone flipping a fair coin. If the noise is almost
negligible, then choice behavior becomes nearly deterministic. The vast majority of such
models share the feature that whenever the strength of preference for one option over

1
another is positive, then the “preferred” option is chosen with probability greater than > In
other words, they predict that the preferred option in any lottery pair is the modal choice (up
to sampling variability).

While the “Descriptive Analysis” and “Semi-quantitative Analysis” in Table 2 resemble the
patient who asks a lay person for diagnostic help, possibly supplemented with a simple
quantitative measurement of body temperature, the alternative route of tremble and,
especially econometric, models resembles the patient seeking diagnostics from the
radiologist, with different models corresponding to different specialized, and often highly
technical, medical diagnostics. Just like different medical diagnostic methods vary
dramatically in the skill set they require and in the assumptions they make about the likely
state of health, so do different ways to test theories of decision making vary in the
mathematical and statistical skill set they demand of the scientist, and in the technical
“convenience” assumptions they make for mathematical and computational tractability.

The questions and puzzles we just discussed illustrate a notorious challenge to meaningful
testing of decision theories (e.g., Luce 1959, 1995, 1997): There is a conceptual gap between
the algebraic nature of the theory and the probabilistic nature of the data, especially since
algebraic models are most naturally interpreted as static and deterministic, whereas behavior
is most naturally viewed as dynamic and not fully deterministic. Luce's challenge is two-
fold: 1. Recast an algebraic theory as a probabilistic model. 2. Use the appropriate statistical
methodology for testing that probabilistic model. The first challenge has been recognized,
sometimes independently, by other leading scholars (see, e.g., Blavatskyy 2007, Blavatskyy
and Pogrebna 2010, Harless and Camerer 1994, Hey 1995, 2005, Hey and Orme 1994,
Loomes and Sugden 1995, Starmer 2000, Stott 2006, Tversky 1969, Wilcox 2008, 2011).
Some of these researchers have further cautioned that different probabilistic specifications of
the same core algebraic theory may lead to dramatically different quantitative predictions, a
notion that we will very much reinforce further. Others have warned that many probabilistic
specifications require difficult “order-constrained” statistical inference (Iverson and
Falmagne 1985). Both components of Luce's challenge are nontrivial. From the outside, one

Decisions. Author manuscript; available in PMC 2015 January 01.
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can easily get the impression that virtually any level of rigorous probabilistic modeling and
testing of decision theories requires advanced quantitative skills.

QTest solves many of the problems we reviewed. For example, it lets us formally test the
Null Hypothesis that a decision maker's modal choices match KT-V4, via a single test on all
of a person's binary choice data at once, provided that we have multiple observations for
each choice pair. Table 2 shows the p-values of that test. A standard criterion is to reject a
model or Null Hypothesis when the p-value is smaller than 0.05, the usual significance level.
Hence, small p-values are indications of poor model performance. A p-value of 1 means that
a model cannot be rejected on a given set of data, no matter what the significance level of
the statistical test. Here, HDM fits this Null Hypothesis perfectly because in each row where
KT-V4 predicts preference for Gamble 1, the hypothetical decision maker chose Gamble 1
more often than not, and in each row where KT-V4 predicts preference for Gamble 0, the
hypothetical decision maker chose Gamble 0 more often than not. Hence the modal choice
test of KT-V4 for HDM has a p-value of 1. It is quite notable that DM1 rejects the Null
Hypothesis with a p-value of 0.03. QTesr trades-off between the excellent fit of the modal
choices in eight lottery pairs and the one big discrepancy between modal choice and KT-V4
in Pair 8, and rejects the Null Hypothesis. On the other hand, QTesr does not reject KT-V4
by modal choice on DM13. The p-value of .55 takes into account that, despite the large
number of observed ‘incorrect” modal choices, none of these were substantial deviations.

The quantitative modal choice analysis contrasts sharply with the descriptive modal choice
analysis and depicts a different picture. If we count observed ‘correct’ modal choices, then
KT-V4 appears to be better supported by DM 1 than DM13. Only a quantitative analysis,
such as that offered by QTesr, reveals that DM1's single violation of modal choice is more
serious than DM13's four violations combined. This teaches us that superficial descriptive
indices are not even monotonically related to quantitative goodness-of-fit, hence can be very
misleading. Note that QTesr is also designed to avoid the proliferation of Type-I errors that a
series of separate Binomial tests creates, since it tests all constraints of a given probability
model jointly in one test.

The modal choice test is also useful for the quantitative decision scientist: Since the modal
choice prediction is rejected for DM1, we can conclude that constant error models and a
very general class of econometric models of ¢»7 -7 with y=0.83 and a = 0.79 are likewise
rejected, because the modal choice prediction is a relaxation of their vastly more restrictive
(i.e., specific) predictions.

Table 2 illustrates two more QTesr analyses for KT-V4. We tested the Null Hypothesis that
the decision maker satisfies KT-V4 and, in each gamble pair, chooses ‘incorrectly’ at most
25% of the time, as is required by the common rule of thumb for constant error models.
Again, HDM fits perfectly. However, both DM1 and DM13 reject that Null Hypothesis with
small p-values. We also included another example, more closely related to the first
descriptive approach of counting ‘incorrect’ choices across all gamble pairs. For example,
QTest can estimate binary choice probabilities subject to the constraint that the error
probabilities, summed over all gamble pairs, are limited to some maximum amount, say 0.5
(this is a restrictive model allowing at most an average error rate of 5% per gamble pair),

Decisions. Author manuscript; available in PMC 2015 January 01.
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and provide a goodness-of-fit for KT-V4. Again, HDM fits perfectly, but DM1 and DM13
reject that model with small p-values.

The bottom panel of the table illustrates a very different class of models and their test. In the
first model, the parameters @ and y of ¢»7 - &7 have become random variables, i.e., the
utility and weighting functions of a decision maker are, themselves, no longer deterministic
concepts. This captures the idea that a decision maker satisfying ¢»7 - k7 could waver in his
risk attitude « and in his weighting of probabilities. This model is rejected for DM1 and
yields an adequate fit on the Cash 11 stimuli for DM13. At a significance level of 5%, the
HDM is also rejected by Random ¢»7 - £7, even though that model permits, as one of its
allowable preference states, the pattern labeled KT-V4 in the table, that HDM appears,
descriptively, to satisfy nearly perfectly. However, as we move to Cumulative Prospect
Theory with a two-parameter “Goldstein-Einhorn” weighting function, the data of HDM do
not reject the Random ¢»7 model. In Random ¢»7, variability of choices is modeled as
variability in preferences. The rejection of the Random ¢»7 model with “Kahneman-
Tversky” weighting function means that the slight variability in the choice behavior of HDM
cannot be explained by assuming that this decision maker wavers between different
“Kahneman-Tversky” weighting functions!3

The table shows that DM is consistent neither with the deterministic preference KT-V4
perturbed by random error, nor with two Random ¢»7 models. DM13 is consistent with both
kinds of models, but the deterministic preference KT-V4 is significantly rejected if we limit
error rates < 25% on each gamble pair. The hypothetical decision maker is perfectly
consistent with errorperturbed deterministic preference KT-V4, even with very small error
rates, leading to a perfect fit (p-value = 1) for those models. The fit of Random ¢r7 - K7 is
marginal for HDM and the “Kahneman-Tversky” version is, in fact, significantly rejected
for HDM and DML1. This illustration documents the formidable power of quantitative
testing. It also illustrates how QTesr provides very general tests that lie in the open space
between descriptive or semi-quantitative analyses on the one hand and highly specialized
classic quantitative ‘error’ models on the other hand. QTesr can serve as the ‘triage nurse’ of
theory testing.

This completes our motivating example.

3 The Geometry of Binary Choice

We now introduce a geometric framework within which we can simultaneously represent
algebraic binary preference, binary choice probabilities, as well as empirically observed
binary choice proportions all within one and the same geometric space®. For the time being,

3More precisely, the HDM data are not statistically consistent with having been generated by a random sample from an unknown
probability distribution over preference states consistent with CP7 with “Kahneman-Tversky” weighting functions and “power” utility
functions, where a, yare multiples of 0.01 and in a certain range.

In this paper, we concentrate on asymmetric and complete preferences only. Likewise, empirical data are assumed to be from a two-
alternative forced choice paradigm, where, on each trial one and only one option must be chosen. QTesr is flexible enough to handle
other models but does not currently automate as much for the modeling and analysis processes for such cases. In particular, an
extension of the Graphical User Interface for more general cases is not yet available. Regenwetter and Davis-Stober (2012) used the
MATLAB® core underlying QTesr to test models on ternary paired comparison data where respondents could state indifference
among pairs of gambles.
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we are interested in three-dimensional visualizations, but we will later move to high-
dimensional abstract models.

We start with lotteries A, B, C of Table 2. There are eight possible preference patterns
among these gambles: the six rankings (each from best to worst): ABC, ACB, BAC, BCA,
CAB, CBA, and two intransitive cycles that we label ABCA and ACBA. Using the binary
0/1 coding of the gambles given in Table 2, we can represent each of these 8 preference
patterns as a corner (called a vertex) of a three-dimensional cube of length 1 (called the unit
cube) in Figure 2. For example, ranking ABC is the point (1,1,1) in the space with
coordinate system (A,B), (A,C), and (B,C)®. The cycle ABCA is the point (1,0,1). The axes
of the geometric space are indexed by gamble pairs and, for representing algebraic
preferences, simply represent the 0/1 coding of gambles in Tables 1 and 2. Note that
“preference patterns” are (deterministic) models of preference, not empirical data.

If we move beyond just the 0/1 coordinates and consider also the interior of the cube, we can
represent probabilities and proportions (observed data). Each axis continues to represent a
gamble pair. For example, Figure 2 also shows a probability model, namely the modal
choice consistent with the ranking ABC: If a person chooses A over B at least 50%, B over
C at least 50%, and A over C at least 50% of the time, then their binary choice probabilities
must lie somewhere in the smaller shaded cube attached to the vertex ABC. In particular, if
a person acts deterministically and chooses A over B 100%, B over C 100%, and A over C
100% of the time, then this person's (degenerate) choice probabilities coincide with the
vertex ABC that has coordinates (1,1,1) and that also represents the deterministic preference
ABC.

Next, we proceed to a joint visualization of an algebraic model (KT-V4), a probability
model (theoretical modal choice consistent with KT-V4), and empirical data (the observed
choice proportions of HDM, DM1, and DM13), again in 3D. Now, and for our later
visualizations, we concentrate on Gambles A, C, and D from Table 2 because they continue
to be particularly informative.

Figure 3 shows KT-V4 as the point (1,0,0) in 3D space, consistent with Table 2 which
shows Gamble 1 as the preferred gamble in Pair 2 (A versus C, marked ¢), Gamble 0 as the
preferred gamble in Pair 3 (A versus D, marked &), and Gamble 0 as the preferred gamble
in Pair 8 (C versus D, marked <). Hence, the three coordinates are the gamble pairs (A,C),
(A,D), and (C,D). If a decision maker acted deterministically and in accordance with KT-
V4, this person would choose A over C 100%, A over D 0%, and C over D 0% of the time,
represented by the point (1,0,0). This point represents both a deterministic preference and a
degenerate case where a person always chooses in a way consistent with that preference.
Our hypothetical decision maker comes very close to such behavior: HDM's choice
proportions were 95% A over C, 5% A over D, and 10% C over D, which corresponds to the
point with coordinates (.95, .05, .10) marked with a star next to the vertex KT-V4 in Figure
3. DM1 has choice proportions giving the star with coordinates (.65, .25, .75). If we use
modal choice as a criterion, a decision maker who satisfies KT-V4 should choose A over C

S5The gamble pair (A,B) gives the x-axis, the pair (A,C) gives the y-axis, and (B,C) gives the z-axis in 3D space.
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at least 50%, A over D at most 50%, and C over D at most 50% of the time, as indicated by
the shaded smaller cube attached to the vertex KT-V4. DM1 has two “correct’ out of three
observed modal choices. Geometrically, this means that the data are represented by a star
located above the shaded cube in Figure 3. Intuitively speaking, the 15 out of 20 choices in
Pair 8 mean that the data point is somewhat ‘far away’ from the shaded cube but has two
coordinates that are consistent with the shaded cube. On the other hand, DM13 translates
into a star “very close’ to the shaded cube, at coordinates (.45, .60, .60), even though each
observed modal choice is the opposite of what KT-V4 predicts (i.e., each coordinate has a

1
value on ‘the wrong side’ of 5)'

Figure 3 shows that counting “correct’ or ‘incorrect’ modal choices is tantamount to
counting the number of coordinates that match the modal choice prediction. This makes it
also obvious why the descriptive tally of ‘correct modal choices,” while common in the
literature, is not a useful measure of model performance. It is analogous to the patient
counting the number of symptoms present while discarding all information about the
intensity or importance of any symptoms. We can encounter data like those of DM1 that
have 2 out of 3 coordinates in the correct range, yet the data are ‘far away’ from the modal
choice predictions, while we can also collect data like those of DM13 that have 3 out of 3
coordinates slightly out of range without statistically violating the modal choice predictions.
Figure 3 only depicts three dimensions. Going back to Table 2, DM1 has 9 out of 10
coordinates in the correct range, yet the data are ‘far away’ from the modal choice
predictions, while DM13 has 4 out of 10 coordinates slightly out of range without
statistically violating the predictions. Note that DM1 and DM13 are real study participants,
not hypothetical persons custom-created to make a theoretical point.

Table 2 provides two other quantitative test results for KT-V4 from QTesr. We now illustrate
these geometrically as well. Again, we project from a 10D space down to 3D space by
concentrating on the same three gamble pairs. Figure 4 shows the three data sets with a
probabilistic model that limits the error rates for each gamble pair to at most 25%. Hence,
the permissible binary choice probability for A over C must be at least .75, the probability of
choosing A over D must be .25 or lower, and the binary choice probability of C over D is
likewise limited to at most .25. Again, HDM has data inside the shaded small cube,
indicating a perfect fit. DM1 and DM13 are located ‘far away’ from the shaded cube, which
is reflected in the rejection of the model on both data sets in Table 2, with very small p-
values. This is the so-called 0.75-supermajority specification. An upper bound of 25% errors
per gamble pair per person is consistent with a general rule of thumb that has been explored
in the literature (see, e.g., Camerer 1989, Harless and Camerer 1994, Starmer and Sugden
1989). In fact, one can set the supermajority specification level anywhere from .5 to .999 in
the QTesr program.

The last QTes analysis for KT-V4 we reported in Table 2 considers a different probability

model. Instead of limiting the error rate for each gamble pair individually, we limit the sum
of all error rates, added over all gamble pairs. This allows a decision maker to have a higher
error rate on one gamble pair as long as they have a lower error rate on another gamble pair.
Figure 5 illustrates, how, once again, HDM fits such a model perfectly because HDM's data
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lie inside the shaded pyramid, whereas DM1 and DM13 are again ‘far away’ from the
model. Note that the tests in Table 2 are carried out in a 10D space whose coordinates are
the 10 gamble pairs, whereas we only consider the 3D projection for Gambles Pairs 2, 3, and
8 in these figures. In other words, the tests in Table 2 are somewhat more complicated than
the illustrative figures convey.

Once we have moved to the geometric representation where algebraic models are vertices of
a unit cube whose axes are formed by gamble pairs, where probability models are
permissible ‘regions’ inside a unit cube (viewed as a space of binary choice probabilities),
and where data sets are points in the same unit cube (viewed as a space of choice
proportions), it appears that quantitative theory testing should be almost trivial. We have
also seen how some data sets are ‘“far away’ from some models, others are ‘nearby’ some
models, and some are even inside (and hence “perfect fits” for) some models. However, as
we discuss next, the intuitive interpretation of ‘distance’ between theory and data is an
oversimplification. Each of the models in Figures 3-5 can be characterized mathematically
as a probability model with so-called “order-constraints” on the parameters (say, each choice
probability is < 1/2). We discuss these models informally here. Appendix B gives formal
details and Davis-Stober (2009) provides the likelihood-based statistical inference
framework for binary choice data that we build on.6

Maximum-likelihood estimation and goodness-of-fit analysis, say, of the best fitting binary
choice probabilities for DM13, subject to the modal choice specification of KT-V4, as QTesr
provides in Figure 3, is nontrivial, for several reasons. For one thing, there are equally many
parameters (binary choice probabilities) as there are empirical cells (binary choice
proportions), yet we can tell from the figures that the models can be extremely restrictive,
especially in highdimensional spaces, and hence, must be testable. As explained in Davis-
Stober and Brown (2011) one cannot simply count parameters to evaluate the complexity of
these types of models. The second reason, returning to data like those of DM1 and DM 13 in
Figure 3 is that the best fitting parameters, i.e., the maximume-likelihood estimate, satisfying
an order-constrained model may lie on a face, an edge, or even a vertex of the shaded modal
choice cube. This becomes even more complicated in higher dimensional spaces, where the
modal choice model has surfaces of many different dimensions. Standard likelihood
methods will break down when the best-fitting parameter values are on the boundary of the
model, because the log-likelihood goodness-of-fit statistic will not have the usual and
familiar asymptotic 42 distribution. Rather, the distribution depends on the geometry of the
model in question. The best fitting model parameters also need not be the orthogonal
projection of the data onto the model in the geometric space. In sum, statistical testing of
these models is difficult. QTesr is specifically designed to carry out the appropriate “order-
constrained” maximum-likelihood estimation and goodness-of-fit tests for virtually all of the
models we discuss.’

6Myung et al. (2005) provide a corresponding Bayesian framework.

A prerequisite is that the model in question must be full-dimensional, which holds automatically for “distance-based” specifications.
QTest also assumes an iid sample. Since QTest tests hypotheses about Binomial distributions, we recommend = 20 observations per
gamble pair. We discuss these topics in more detail in the Online Supplement.
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Another unusual, and possibly confusing, feature of these models is that they can allow for a
“perfect fit” where, on certain sets of data, a model cannot be rejected no matter how large
the significance level. This is because many of these models do not make “point
predictions.” Rather they make predictions that occupy a volume in the unit cube of binary
choice probabilities. When a point representing a set of choice proportions (data) is inside
such a model, then the best-fitting choice probabilities are literally equal to the observed
choice proportions, hence giving a perfect fit.

We now move to the full-fledged abstract models and their tests.

4 Aggregation- and Distance-based (Error) Models

Aggregation-based specifications8 of a theory 7 require that aggregated data should be
consistent with the theoretical predictions of 7, while also accounting for sample size. The
prototypical case is majority/modal choice, which requires that the modal choice for each
gamble pair be consistent with the theoretical prediction (up to sampling variability). To
consider KT-V4 in Table 2 again, the theoretical majority/modal choice specification
requires that the choice probability for Gamble 1 must be higher than that of Gamble 0 in
Pairs 1, 2, and 5, whereas Gamble 0 must be chosen with higher probability than Gamble 1
in all remaining pairs.

So far we have focussed on the majority specification of a numerical theory like Cumulative
Prospect Theory. To illustrate how the same approach can apply to theories that do not rely
on numerical utility values, let us consider a simple “lexicographic heuristic” (see, e.g.,
Tversky, 1969):

#: Prefer the gamble with the higher chance of winning unless the probabilities
of winning are within 5 percentage points of each other. If the chance of winning is
similar in both gambles (within 5 percentage points), prefer the gamble with the
higher gain.

A decision maker who satisfies % prefers Gamble 1 to Gamble 0 for Gamble Pairs 1, 5, 8,
and 10 of Table 2, whereas he prefers Gamble 0 to Gamble 1 in Gamble Pairs 2, 3, 4, 6, 7,
and 9 of Table 2. In particular, this decision maker violates transitivity, because, considering
again the three gambles, A, C, D, we see that he prefers Ato C, C to D, but D to A. The
majority/modal choice specification of % is illustrated in Figure 6. If we only considered
Gambles A, C, and D, DM1 would fit perfectly, since the data point is inside the shaded
cube attached to ##in Figure 6. However, we will see in Section 7 that £ is rejected on
the full data in 10D space.

If we think of majority/modal choice specifications as permitting up to 50% errors or noise
in each binary choice, then we are allowing up to 50% of all data to be discarded as noise
(even more, when we take into account sampling variability in finite samples). From that
vantage point, we may want to place stronger constraints on the binary choice probabilities,
so that we do not end up overfitting data by accommodating models that really are poor

8we will keep the discussion here nontechnical in the interest of making QTest as approachable as possible. Appendix B provides
some formally precise details. We leave a much more general theory for a different paper.
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approximations of the cognitive process of interest. In a supermajority specification, we
specify a lower bound on the rate, i.e., the minimum probability with which a decision
maker must choose consistently with their preference, for each gamble pair. For example, in
the data analysis of Section 7 we will consider a supermajority level of 0.9, according to
which a person must choose the preferred gamble in a pair with probability at least 0.9, i.e.,
we permit up to 10% errors (up to sampling variability) for each gamble pair.

As we have seen in Figures 2-6, majority and supermajority specifications require the binary
choice probabilities to be within some range of the vertex that represents the algebraic
theory in question. Distance-based specifications of a theory 7 generalize that idea. They
constrain the choice probabilities to lie within some specified distance of the vertex that
represents 7. Appendix B provides a formal summary of such models for three different
distance measures.

5 Distance-based Models for Theories with Multiple Predictions

There is no reason why we should limit ourselves to theories that only predict a single
binary preference pattern like KT-V4 in Table 2. If a theory permits a variety of preference
patterns, we can build a probabilistic model by combining the various probabilistic models
for all of the permitted patterns. For example, for Gambles A, C, D in Table 2, we can
consider all six possible rankings (each from best to worst): ACD, ADC, CAD, CDA, DAC,
DCA. Figure 7 considers the majority/modal choice specification of that model on the left,
and the supermajority specification of that model with a 0.90-supermajority level on the
right hand side. In these models, the decision maker is allowed to rank order the gambles
from best to worst according to any fixed ranking that is unknown to the researcher, then
choose the preferred gamble in each gamble pair at least 50% (left hand side of Figure 7) or
at least 90% (right hand side of Figure 7) of the time.

The 0.90-supermajority model in the right-hand side of Figure 7 can be interpreted to state
that the decision maker is allowed to have any one of preference states ACD, ADC, CAD,
CDA, DAC, DCA, and for that preference state, chooses the ‘correct’ object in any pair with
probability 0.90 or higher. QTesr finds the best fitting vertex and simultaneously tests
whether the data are compatible with the constraints on binary choice probabilities. The left
hand side of Figure 7 is a property that has received much attention in the literature under
the label of weak stochastic transitivity (WST). WST is the majority/modal choice
specification of the collection of all transitive complete rankings of a set of choice
alternatives. Regenwetter et al. (2010, 2011a) dedicated much attention to the discussion of
this property.9 WST was one of the earliest probabilistic choice models that became known
to require order-constrained inference: Tversky (1969) attempted to test WST but
acknowledged that appropriate order-constrained inference methods were unavailable.
Iverson and Falmagne (1985) derived an order-constrained test for WST and showed that

9n particular, they explained why it is misleading to think of this as a probabilistic model of transitivity per se, since there are many
more transitive preferences than there are rankings for any given set of objects. As Regenwetter and Davis-Stober (2012) discuss, if
we moved beyond two-alternative forced choice, i.e., beyond 0/1 patterns, then there would be very many more pairwise preference
relations to consider. For instance, while there are 5! = 120 rankings for five choice alternatives, there are about 150 thousand
transitive binary preferences and about 33 million intransitive binary preferences for five choice alternatives.
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Tversky's data yielded little evidence for systematic violations. Regenwetter et al. (2010)
provided a complete order-constrained test (using a similar algorithm as that in QTesr) of
WST and found no systematic violations. Returning to the data of our Table 2 in 10D space,
HDM vyields a perfect fit of WST. DML significantly violates WST with a p-value of 0.02
and DM13 yields a perfect fit (see also Table 2 of Regenwetter et al. 2010, for details). Note
that the 3D figure of WST in Figure 7 gives the misleading impression that this might not be
a restrictive property. In 10D space, the set of six shaded cubes in the left of Figure 7
becomes a collection of 120 such “hypercubes.” The two clear regions become 904 different
such regions associated with 904 intransitive 0/1 patterns.

While weak stochastic transitivity provides a very general level of triage, in which all
possible transitive complete rankings are permissible preference states and in which we
employ a modal choice specification, we could alternatively consider only those transitive
complete rankings as permissible preference patterns that are compatible with ¢»7 - k7, but
we could augment that list of preference states by other preference patterns, such as %#; to
form a new, and also very general, Null Hypothesis. As an example, if we focus again on the
three lotteries A, C, D, then there are only four possible preference patterns, namely ACD,
ADC, DAC, and DCA permitted by cr7-x7 . The left panel of Figure 8 shows the modal/
majority choice specification of % in blue in the upper left back corner of the probability
cube, and the specification of Cumulative Prospect Theory, with “Kahneman-Tversky”
probability weighting functions and risk averse “power” utility functions, that is, the
majority/modal choice specifications of the rankings ACD, ADC, DAC, and DCA in orange.
The entire collection forms an extremely general Null Hypothesis that QTesr can test,
similarly to weak stochastic transitivity, namely that the person is satisfying ¢»7 - K7 or %,
with an upper bound of 50% on theoretical error rates. The right hand side of Fig. 8 shows
the 0.90-supermajority specification, where we limit error rates to 10% per lottery pair.

In this context, it is important to see that algebraic parameter counts and probability
parameter counts do not match up at all. The algebraic version of ¢»7 - 7 has two free
parameters, a and y, that determine the shapes of the weighting and utility function, whereas
ZHhas no free parameters. But, as we see in Figure 8, the probabilistic specifications of the
two theories have the same number of parameters: If we consider the blue cube as
representing one theory (%), and the orange shaded region as representing another theory
(erT - £T), even though the two theories occupy vastly different volumes in the cube, and
even though one is more flexible by virtue of allowing 4 different rankings of the gambles
(12 rankings in 10D), they have the same numbers of parameters because they predict
behavior by using the same number of binary choice probabilities (in the figure, we show
three choice probabilities.) In other words, the usual rule of thumb that counting parameters
determines the ‘complexity’ of a probability model, simply does not apply here.
Furthermore, the Null Hypothesis that a decision maker “satisfies ¢c77 - £7 or %4 has the
same number of parameters as the two nested Null Hypotheses 1) that a decision maker
“satisfies cp7 - k77 and 2) a decision maker “satisfies %" The QTesr user can build
compound Null Hypotheses like the one in Figure 8, but should be aware that model
competitions, e.g., selecting between ¢r7 - k7 and %#’would ideally employ suitable
methods for penalizing more complex (flexible) models. Unfortunately, for direct model
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selection/competition, classical (“frequentist”) statistical approaches, including the current
version of QTesr, are not well-suited (although, see Vuong 1989, for a method to carry out
certain nonnested likelihood ratio tests).

For direct comparisons of the models we consider within QTesr, one could calculate Bayes
factors (e.g., Klugkist and Hoijtink 2007) or Deviance Information Criterion (DIC) values
(Myung et al. 2005). Alternatively, one could carry out model selection via normalized
maximum likelihood (see Davis-Stober and Brown 2011, for an application to order-
restricted binomial models similar to those we consider here). All three of these are under
development for a future version of QTesr.

To this point, we have considered a variety of models that can formally capture the idea that
a decision maker has a (possibly unknown) fixed preference and makes errors in her
individual choices. In each model, the “true’ preference of a person is a vertex of the
probability cube, and the shape attached to each vertex provides constraints on binary choice
probabilities to represent the variable choice behavior that is deemed consistent with that
deterministic preference.

6 Random Preference and Random Utility Models

We now consider models that radically differ from the ones we considered so far. Here,
preferences are not treated as static like they are in aggregation- and distance-based
specifications. In this approach, preferences themselves are modeled as probabilistic in
nature. Here, variability in observed choice behavior is not due to noise/errors in the
responses. Rather, such variability reflects substantive variation and/or uncertainty in the
decision maker's evaluation process. We will see that this type of model is not just different
conceptually, it is also quite different geometrically, from models that assume constant
deterministic preferences (or utilities) perturbed by random errors.

In the introduction, we reviewed ¢»7 - k7, according to which a binary gamble with a chance
P of winning X (and nothing otherwise) has a subjective numerical value of

P o
(P1+(1 — P)’Y)(%) . How can we model a decision maker, who acts in accordance with
this model, but who is uncertain about his risk attitude « and his y in the weighting function?
How can we model decision makers who, when asked to make a choice, sample values of q,
yaccording to some unknown probability distribution over the possible values of these
algebraic parameters and then make a choice consistent with the ¢77 - £7 representation? We
will discuss a new Random ¢»7 - k7 model, in which «, yare allowed to be random
variables with an unknown joint distribution. In order to keep this paper as nontechnical as
possible, we consider a discretized model, in which a and y only take values that are
multiples of 0.01 in the range [0.01,1]. In other words, for simplicity, we consider an
unknown distribution over finitely many possible value combinations of «, y.

According to Random ¢»7 - k7 the probability that a respondent chooses Gamble 1 over
Gamble 0 in Pair 1 of Table 2 is the probability that he uses values of a, y for which
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Can we test such a model without assuming a particular distribution over the values for a
and »? If we can communicate to QTesr what constraints this model imposes on binary
choice probabilities, then the program can carry out a quantitative test. We can derive, for
example, that

D preferred toE < 4220 AL 20~
(474677 (447 +.567)(7)
= —2 _3143*>—32 9750 « Apreferred toB,
(.287+.727)(%) (.327+.687) (%)

no matter which values of «, y we consider (in the specified range). Therefore, no matter
what joint distribution we consider for a, y (in that range), writing Pyy for the binary choice
probability that X is chosen over Y, it must be the case that, 0 < Ppg < Pag < 1. We discuss
in the Online Supplement how one can find a complete and nonredundant list of such
constraints. At present this task is technically challenging. For Random ¢»7 - k7 and Cash I,
such a complete list is

P, <P,z <1 (5

<P
0< Py < Pop <Py S Ppp <Py, <P - B

AE S PBC‘

INIA

In other words, Random c¢77 - £7 for Cash Il is the collection of all binary choice
probabilities Pag, Pac, Pap, Pae, Psc, Pep, Pee: Pcp: Pck, Ppe, for which the constraints
(5) hold. (There is no constraint regarding whether Ppp is greater, equal, or smaller than
Pgc, i.e., all three cases are permissible solutions, as long as the two quantities are greater
than Ppg and smaller than Pac.)

Consider Gambles A, C, D in Table 2 once again. Consider the possibility that the decision
maker, at any point in time, rank orders the gambles from best to worst in a fashion
consistent with ¢r7 - k7, i.e., the ranking at any moment is one of ACD, ADC, DAC, DCA,
and when asked to choose among two gambles, picks the better one in the current preference
ranking. However, that ranking is uncertain and/or allowed to vary. Mixture, aka, random
preference models quantify this variability with a probability distribution over preference
patterns such as, in this case, the four rankings ACD, ADC, DAC, DCA. Figure 9 shows the
binary choice probabilities if a person's preferences fluctuate or if the person is uncertain
about their preference ranking, but permissible preference rankings are limited to the
rankings ACD, ADC, DAC, DCA consistent with ¢r7 - kT,

The shaded region in Figure 9, that forms an irregular pyramid in 3D space, is called a
convex polytope (see the Online Supplement for more details). QTesr is able to evaluate the
maximume-likelihood based goodness-of-fit of any such convex polytope, within numerical
accuracy, provided that 1) the polytope is full-dimensional in that it has the same dimension
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as the full probability space (in Figure 9, the 3D pyramid is full-dimensional in the 3D cube;
see the Online Supplement for nonfull-dimensional examples), and provided that 2) the user
gives the program a complete mathematical characterization of the polytope's mathematical
structure. In practice, this means that the researcher who wants to test a random preference
model will first have to determine the geometric description of the model. If the polytope is
full-dimensional, then they can test the model using QTesr up to computational accuracy.
The characterization of Random ¢77 - £7 on Cash Il via the System of Constraints (5)
happens to be fairly simple (it involves 12 nonredundant “<” constraints). In the Online
Supplement, we provide the corresponding complete system of 784 nonredundant
constraints for Random ¢77 - k7 on Cash |. We also consider Random ¢»7 with “Goldstein-
Einhorn” weighting functions and provide a complete system of 11 nonredundant constraints
on Cash I, as well as 487 nonredundant constraints on Cash I1 in the Online Supplement.

In Figure 9, the shaded region is an irregular pyramid characterized by the constraints

For example, the second to last inequality gives the shaded triangle in the (A, D) x (A, C)
plane forming the base of the pyramid in the right side display, whereas the second
inequality gives the triangle in the (C, D) x (A, D) plane forming the “back wall” of the
pyramid in the right side display. The left hand display is rotated and oriented so as to show
that the data sets of all three decision makers in Table 2 lie outside the Random ¢P7 - k7
model.10

Notice how strongly random preference models differ geometrically from aggregation- and
distance-based specifications. The aggregation- and distance-based models are a collection
of disjoint geometric objects that are attached to the vertices representing permissible
preference states: e.g., four disconnected cubes in Figure 8 for distance-based specifications
of cr7 -7 on Cash 1l gamble pairs (A,C), (A,D), (C,D). A random preference model is
always a single polytope whose vertices are the permissible preference states: e.g., the
irregular pyramid in Figure 9, for Random ¢»7 - £7 on Cash Il gamble pairs (A,C), (A,D),
(C,D). This makes it clear that fixed preference perturbed by error and variable/uncertain
preferences can be distinguished mathematically and experimentally and at a very general
level! In its current classical (“frequentist”) form, QTesr can test each of these models, stated
as a Null Hypothesis, provided that, in the random preference and random utility case, the
user provides the mathematical description of the relevant polytope and that the latter is full-
dimensional.

In the Online Supplement, we discuss a variety of technical issues, including sample size
requirements, assumptions about iid sampling, and conditions under which data can be
pooled across multiple participants.

10Finding a nonredundant minimal complete list of constraints characterizing a random preference model can be very difficult. There
are several public domain programs for this task, such as, e.g., PORTA (http://typo.zib.de/opt-long_projects/Software/Porta) and Irs
(http://cgm.cs.mcgill.ca/$~avis/C/Irs.html).
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7 Testing Cumulative Prospect Theory and £ %

To illustrate some applications of QTesr using the Cash | and Cash Il data of Regenwetter et
al. (2010, 2011a,b) we consider three different theories: %4, cpT - kT, and ¢P7 -é¢. Theory
L is the lexicographic heuristic we introduced earlier and illustrated in several figures. The
main purpose of including Z#is to show that QTesr is not limited to numerical utility
theories, and to illustrate how it can represent and test even intransitive predictions. We have
also seen cr7 - kT earlier. We now add a competing functional form that we label ¢r7 -g¢
because it uses a “Goldstein-Einhorn” weighting function (Stott 2006) with weighting
parameters y € [0,1] and s € [0,10]. According to ¢r7 -¢¢ a gamble with a P chance of
winning X (and nothing otherwise) has a subjective numerical value of

sPY o
spr+(1-py - ©®

We use a € [0,1] as in ¢PT KT,

Table 4 shows the predicted preference patterns according to ¢»7 - k7 and ¢r7-6¢ for Cash |
and Cash Il. For Cash I, there are 22 different rankings possible according to ¢»7 - k7,
whereas there are only 11 different rankings possible according to ¢#7 - £7. In contrast, in
Cash I, there are altogether 43 different preference patterns for ¢»7-¢< and only 12
predicted rankings for ¢7 - k7. This means that either functional form of Cumulative
Prospect Theory can be more or less restrictive for a given experiment, depending on the
stimuli used. In particular, ¢r7 -, which has one more algebraic parameter than ¢r7 - £7
(but does not contain ¢P7 - K7 as a nested subtheory), is actually more parsimonious than
e~ KT in Cash I. Notice also that there are altogether 210 = 1024 different conceivable 0/1-
coded preference patterns, of which 120 are rankings. Of those 120, the rankings predicted
by either version of Cumulative Prospect Theory are only a fraction. This table also shows
that some of the rankings predicted by ¢77 - k7 and/or ¢#7 -¢¢ only occur with a very specific
set of parameter values in the weighting and utility functions. For example, it is very
difficult to find a weighting function and a utility function within “Goldstein-Einhorn” that
will give us a preference ranking ABDCE (GE-V40): only one in the two million
combinations of parameter values that we checked in our grid search of the parameter space
for cr7-c¢ actually gave this ranking, namely a = 0.911, y=0.941 and s = 1.06. That
particular ranking never occurred in our grid search for ¢P7 -7,

On the other hand, each of the two theories can very easily explain two prominent rankings
of both stimulus sets, namely the ranking of the gambles from largest to smallest winning
amount (abcde in Cash | and ABCDE in Cash Il) and the ranking of the gambles from
highest to lowest probability of winning (edcba in Cash | and EDCBA in Cash II). These
two rankings combined correspond to almost all parameter values that we have considered
in the grid search. The fact that two rankings are compatible with virtually all parameter
values means that we may not be able to identify the parameter values at all precisely
whenever the data are in line with one of these two prominent rankings. This is an accident
of reusing published data. On the other hand, this example also shows that it is possible, in
principle, to make extremely specific predictions that could narrow down the possible
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weighting and utility functions underlying binary choices. If a participant were to reliably
provide data consistent with the preference ranking ABDCE (GE-V40) in Cash |1, we would
have a very precise idea of this decision maker's weighting and utility function as suggested
by ¢r7-¢¢ and we would have evidence in favor of ¢#7-¢¢ and against ¢»7 - k7,

Table 5 shows our analysis results for modal choice and supermajority. The top panel
provides the results for the majority/modal choice specification of ¢cP7 -7, er7-é¢, and LA,
At first sight, 7 - k7 fits perfectly for 11 participants in Cash | and for 12 participants in
Cash 11, as indicated by v in the corresponding columns. In each case that we find a theory
to fit the data, we provide the label of the best fitting vertex. Since the Cash | and Cash Il
stimuli were intermixed in the experiment, any model that assumes a decision maker to use a
fixed weighting and a fixed utility function and to make choices based on just those two
functions, plus commit random errors, should be able to account for the Cash I and Cash Il
data jointly without requiring different weighting and utility functions for the two stimulus
sets. In other words, a person's Cash | and Cash Il responses can serve as each others'
replications. When a theory consistently fitted the data of a person for both stimulus sets
with the same weighting and the same utility function, then we marked the vertex labels in
italics to indicate that they are mutually consistent. Whenever a theory is rejected on a given
stimulus set for a given participant, we mark this with “~" and provide the p-value in bold
faced font. The table can be read as follows: For Respondent 1, we find ¢P7 - k7 and 77 -g¢
to fit the Cash | responses, but both theories are rejected on the Cash Il data, whereas ##
fits on both data sets. The column marked “Performance Summary” shows for each theory
whether it is rejected (marked -), whether it fits consistently across the two stimulus sets
(marked k7, £, or %), or whether, even though it fits, it fails to do so consistently across
the two stimulus sets (marked «-).

In the lower part of Table 5, we report the 0.90-supermajority specification of c»7 - k7 and
crT - 6¢. The heuristic Z#is now rejected on every data set. With supermajority of 0.90,
both ¢P7 - &7 and ¢r7 -6z fit on the exact same data sets, namely, participants 3, 5, 8, 10, 11,
and 14. The analysis in the lower half of the table strongly suggests that the inconsistent fits
in the modal choice analysis that we found for Participants 6, 7, 9, 12, 13, 15, and 18 were
examples of ‘overfitting,” that is ‘accidental’ fits of the models. When we are interested in
modeling true preference perturbed by random error, we may want to limit error rates far
below 50% to avoid ‘overfitting.” (Note, however, that econometric models will oftentimes

1
predict choice probabilities close to > notably whenever the strength of preference is
negligible relative to the noise. In such models, choice proportions far from 50% would be
reason for rejection.)

The lower half of Table 5 offers three important insights: First, both versions of Cumulative
Prospect Theory are rejected on two thirds of the participants. Second, in those cases where
either of these versions of Cumulative Prospect Theory fits a participant for one stimulus set,
it does so also in the other stimulus set, hence, the successful fits are highly replicable.
Third, the only predicted preference patterns that are not rejected, are the ranking of the
gambles by decreasing winning amount (abcde in Cash | and ABCDE in Cash I1), and the
ranking of the gambles by increasing probability of winning (edcba in Cash | and EDCBA in
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Cash I1). These two rankings are also consistent with simple heuristics according to which
decision makers either ignore probabilities or outcomes for lotteries like these. The Cash |
and Cash Il stimulus sets were not originally designed to be diagnostic for a full-fledged test
of Cumulative Prospect Theory, hence, we leave it for future work to determine the
performance of ¢r7 - k7 and ¢77 - ¢ more systematically.

While we leave a full formal and theoretical discussion of the relationship among different
types of probabilistic choice models for a different paper, we have mentioned that many
econometric models make predictions that are nested in the majority/modal choice
specification. For example, “Logit,” “Probit,” and “Contextual Utility” models, as well as a
broad range of related econometric models (Blavatskyy 2007, Blavatskyy and Pogrebna
2010, Stott 2006, Wilcox 2008, 2011) are all nested in the modal choice specification. So are
the choice probabilities under “decision field theory” (Busemeyer and Townsend 1992,
1993) in the case of deliberation with no initial bias. All of these models imply that an
option with higher utility has a probability = 1/2 of being chosen. If one were to apply any
one of these probabilistic models to ¢77 - k7 and ¢r7 - ée, for example, then the resulting
binary choice probabilities would lie inside the majority/modal choice model of ¢»7 - k7 and

CPT - G&,

This is an example of how QTesr can serve as a screening device for the quantitatively savvy
decision scientist: It follows from our analyses that these parametric probabilistic models,
when applied to ¢77 - £7 and ¢r7 -¢s, would probably also fit poorly for those five
participants (1, 4, 12, 16, and 18) where we rejected the majority specification of cpP7 - kT
and ¢r7 -c¢, Likewise, in those 7 cases where the modal choice specification fit
inconsistently, many econometric models of ¢»7 - £7 and ¢7 - ¢¢ would probably yield
different, hence mutually inconsistent, parameter estimates on the Cash I and Cash Il stimuli
as well. Majority/modal choice specifications in QTesr can serve as a triage for deciding
whether or not it is worth applying one of these econometric models to a given set of data
and for a given theory. Note that, unlike these econometric models, modal choice models do
not require numerical strength of preference as input. For example, we have illustrated a
modal choice specification of an intransitive model % for which there is no “Logit” or
“Probit” formulation.

Table 6 shows the results of fitting Random ¢77 - k7 and Random ¢»7 -¢¢ on the same data.
There are two noteworthy findings: First, while the full linear order model was very
successfully fit to these data by Regenwetter et al. (2011a), the more restrictive, nested,
Random ¢P7 - &7 and ¢r7 -¢e models, in which only linear orders compatible with
Cumulative Prospect Theory are allowed, are both rejected on two-thirds of the participants.
Second, for Participant 7, we find evidence in favor of Random ¢#7 -¢¢ and against Random
erT - KT, whereas for Participant 13, we find evidence in favor of Random ¢77 - £7 and
against Random ¢»7 -¢¢, This documents that the quantitative analysis has the ability to let
these theories compete. A more targeted experiment in the future could allow a stronger
model competition. Full-fledged model competition and model selection, beyond mere
rejections/retentions of Null Hypotheses, also requires a future extension of QTesr, €.9., to
Bayesian analysis methods that naturally trade-off between competing models based on their
complexity (flexibility).
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8 QTesr as a triage method

Figure 10 gives an overview of how QTesr operates as a triage method. The scholar first
needs to determine all permissible preference patterns according to the theory or theories at

hand.

To model a decision maker who has a fixed preference or utility function perturbed
by error (Sections 4 & 5), QTesr provides highly automated tools to generate and
test distance-based specifications (left column of Fig. 10). For example, weak
stochastic transitivity (shown on the left of Fig. 7) is the majority/modal choice
specification of the collection of all linear orders. Regenwetter et al. (2010)
previously ran a test of weak stochastic transitivity using the computer code
underlying QTesr. Similarly, Fig. 8 gives majority/modal choice and supermajority
specifications of ¢r7 - k7 (orange) and % (blue). For any theory of pairwise
preference (that does not predict indifference among any of the stimuli under
consideration), whether it involves highly specified numerical functional forms like
erT - KT and ¢P7 - ¢, or whether it is characterized by some general property like
L, QTest only needs to know the permissible preference patterns to proceed.
Scholars interested in a very general and abstract, say, ‘nonparametric rank-
dependent’ theory (of which ¢P7 - k7 and ¢r7 -6 are highly specialized
refinements) can likewise use QTesr as long as they specify all permissible
preference patterns according to such a theory. For example, the permissible
preference states may be specified through a list of general “axioms” (rules
defining the mathematical representation of preferences). When a theory predicts a
strength of preference (similar to our Eq. 4), there automatically exist a large
number of econometric specifications, but some theories, such as %#, are not
compatible with an econometric specification because they provide no strength of
preference input to such models. Because tremble and most econometric models
(when they exist) are nested in the majority/modal choice specification, a rejection
of the modal choice specification is a strong argument against applying any such
nested error models to those data (lower left of Fig. 10).11

To model a decision maker who wavers in his preference or utility function
(Section 6), QTesr provides a suitable test, provided that the user enters a complete
mathematical description of the relevant polytope (right column in Fig. 10). The
Random ¢P7 - k7 polytope is illustrated in Fig. 9. The polytope for all linear orders
was previously tested by Regenwetter et al. (2011a) and some lexicographic
semiorder polytopes were tested by Regenwetter et al. (2011b), on these same data.
The linear ordering polytope contains many econometric models as special cases,
but it generally does not contain tremble models, hence a rejection of the linear
ordering polytope would imply rejection of many econometric models (lower right
of Fig. 10).

1A referee pointed out that an econometric model could be a lower dimensional nested model of a modal choice specification. A
rejection of the majority/modal choice specification still implies rejection of that nested econometric model, because the modal choice
specification in such a case remains a generalization of the latter.
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We leave a much more extensive classification of probabilistic models, as well as many new
theoretical developments connecting naturally to QTesr, for future work.

9 Conclusions

QTest provides a highly versatile, yet accessible, quantitative testing environment for
preferential binary choice. We have discussed aggregation- and distance-based
specifications of algebraic theories that encapsulate the notion that the decision maker has a
fixed binary preference and makes occasional erroneous choices, with error rates being
constrained in a variety of ways. This type of model makes it possible to develop
probabilistic specifications of theories that are numerical or nonnumerical, that allow a
single preference pattern or multiple preference patterns. We also reviewed random
preference models including two new probabilistic formulations of Cumulative Prospect
Theory: Random ¢P7 - &7 and Random ¢77 -¢¢, Last, but not least, we have shown an
application of some QTesr analyses on previously published laboratory choice data. We
illustrated how a simple lexicographic heuristic was rejected on (almost) every data set
(even at the modal choice level). We provided tests of ¢77 -7 and ¢r7-¢¢ and concluded
for the supermajority specification that both versions of Cumulative Prospect Theory
account for the exact same six participants, who acted in a fashion consistent with two very
simple heuristics, namely to prefer gambles with higher amounts or to prefer gambles with
higher probabilities of winning. We also documented how QTesr was “diagnostic’ between
Random ¢P7 - k7 and Random CPT - GE in retaining one while rejecting the other as a Null
Hypothesis. A full model selection framework, however, will require further refinements,
such as Bayesian extensions, for example. As we saw in Table 2, Random ¢»7 - KT is even
rejected on the data of the hypothetical decision maker HDM whose data appeared to be
nearly in perfect agreement with KT-V4.

Since the Regenwetter et al. stimuli were designed as a replication of Tversky (1969), to test
transitivity, not to be diagnostic among competing theories, we leave it for follow-up work
to carry out more direct tests and comparisons of decision making theories using QTesr.
Likewise, work is under way to test theories on other domains, such as in intertemporal
choice and probabilistic inference, using the same modeling and analysis framework.
Furthermore, Bayesian extensions and parallelized versions of QTesr for multicore computer
systems are under development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Cash I lotteries in Regenwetter et al. (2010, 2011a,b)

Gamble a: 7/24 chance of gaining $28, gain or lose nothing otherwise.
Gamble b: 8/24 chance of gaining $26.60, gain or lose nothing otherwise.
Gamble c: 9/24 chance of gaining $25.20, gain or lose nothing otherwise.
Gamble d: 10/24 chance of gaining $23.80, gain or lose nothing otherwise.
Gamble e: 11/24 chance of gaining $22.40, gain or lose nothing otherwise.

For ease of notation we use small letters for Cash | and capital letters for Cash Il (see Table
2).

B Probabilistic Specification

We introduce minimal mathematical notation to be concise. For a (deterministic) decision
theory 7, and for each pair of choice alternatives, f, g, write

0% ()= 1 if fis strictly preferred to g accorting to 7,
f9 "] 0 if fis not strictly preferred to g accorting to .. Y

For KT-V4 of Table 2, we have

0% (T)=0" _(T)=0%_(T)=1,
0:17(9):(921«7(9):0;7(y)ZQZE(g)ZQZD(g):GZE(g):(g* (y):o

DE

and thus (we also have the redundant information),

07 (T)=6%, (T)=0"(T)=0,
0: (7)=0% (T)=6" (T)=0%,(T)=6" (T)=0% (T)=0%,(7T)=1
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We call the vector 7> =(074(7)) ,, the vertex representation of 7. Leaving out the
redundant coordinates above, the vertex representation of KT-V4 yields the following
“vertex” of the unit “hypercube” in 10-space:

Vier_va=(1,1,0,0,1,0,0,0,0,0). (g)

Our first step in probabilizing theories about binary choice is to replace each coordinate 6%,
by a parameter g € [0,1] of a Bernoulli process. The Bernoulli process could model the
random selection of a respondent, in which case the parameter ¢y denotes the probability
that such a respondent chooses f over g. Alternatively, the Bernoulli process could model a
fixed respondent's selection of a choice alternative in a randomly sampled observation. In
that case, g denotes the probability that the respondent chooses f over g in such an
observation. With multiple paired comparisons, under certain iid sampling assumptions, the
by form the parameters of a product of binomial distributions. Throughout, we assume a
two-alternative forced choice paradigm where each ¢y =1 - G (and, for consistency,

Opg=1—05s.)

Taking Gy( 7) as 05,(.7), the vertex representation embeds the deterministic theories as
extreme points in a probability space. To paraphrase: “f is strictly preferred to g in theory 7
if and only if f is chosen over g with probability one in 7.” The purpose of probabilistic
specifications is to extend the range of choice probabilities to values between zero and one.
Our various probabilistic specifications achieve this goal by expanding the vertex
representations into different types of geometric regions within the probability space.

Probabilistic Specification by Majority and Supermajority Rules

1
LetA € [57 1] be a supermajority level. Supermajority specification of a deterministic
theory 7 states a system of inequality constraints on the binary choice probabilities Gg( 7),
according to which, Vf# g,

fis strictly preferred togaccording to.J <= 0;,(F)>A. (9)

When )\:%, this is just a formal representation of the requirement that the modal pairwise
choices in the population must match the binary preferences of theory 7. The modal choice
specification was illustrated in 3D-Figure 3, and the supermajority specification was
illustrated in 3D-Figure 4 with 1 =.75.

Distance-Based Specification

Let A be a distance measure (in the appropriate space). Let U > 0 be an upper bound on the
permissible distance between choice probabilities and vertex representation. A distance-
based probabilistic specification of a deterministic theory 7, with distance A and upper
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bound U, states that the vector & 7) of binary choice probabilities that are allowable under 7
must satisfy

AO(T), V,)<U. (10)

Three examples of A are as follows (using nonredundant choice probabilities):

Supremum Distance:A, (6(7), ¥.,) :I}lfx|9fg(<7) —07,(7)], (11)
9

City—block Distance:A; (6(7), ¥.,) :Z|0fg(9) —0%,(7)],

f#g (12

Euclidean Distance:Ay (0(7), ¥,) = $ Z(Gfg(ﬂ) - 0;29(7))2. (13)
I#9

The supremum-distance specification can be reformulated as a supermajority specification
with 1 =1 - U. Figures 2 and 3 hence gave an illustration of distance-based specification
with an upper bound U = 0.5 on the supremum distance. Figure 4 gave an illustration of
distance-based specification with an upper bound U = 0.25 on the supremum distance. The
city-block specification was illustrated in Figure 5 with U = 0.50.
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Figure 1.
Example of a “power” utility function for money, with a = .79 (left) and a “Kahneman-

Tversky” probability weighting function, with y= 0.83 (red solid curve on the right) that
generate KT-V4. (The blue dashed diagonal line in the right hand side is given for visual
reference.)
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Figure 2.
Two different views of the same geometric representation of eight algebraic and one

probabilistic model(s) for Gambles A, B, C. Each of the eight possible preference patterns
forms a vertex of the unit cube. Modal choice consistent with preference ranking ABC
(choose A over B at least 50%, A over C at least 50%, and B over C at least 50% of the
time) forms the smaller shaded cube.
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Figure 3.
Three different angles of view of the same three-dimensional geometric visualization for

Gamble Pairs 2 (A,C), 3 (A,D) and 8 (C,D). KT-V4 predicts the preference ranking DAC,
i.e., the point with coordinates (1, 0, 0) in the space spanned by (A, C), (A, D), and (C, D).
The shaded cube shows the binary choice probabilities consistent with the modal choice
predictions for KT-V4 (choose A over C at least 50%, A over D at most 50%, and C over D
at most 50% of the time). The three stars are the data sets for HDM, DM1, and DM13.
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Figure 4.
Two different angles of view of the same geometric visualization of HDM, DM1, DM13 and

a supermajority model of KT-V4 (the shaded cube), where the choice probability of A over
C is at least .75, the choice probability of A over D is at most .25, and the choice probability
of C over D is at most .25.
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Figure 5.
Two different angles of view of the same geometric visualization of HDM, DM1, DM13 and

the city-block model of KT-V4 (the shaded pyramid), where the sum of error probabilities
can be at most 0.5.
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Figure 6.

Tv%/o different angles of view of the same geometric visualization of HDM, DM1, DM13, the
modal choice models of KT-V4 (orange) and % (blue). In this 3D figure, HDM is inside
the orange cube for KT-V4, and DML1 is inside the blue cube attached to % (the latter does
not hold in 10D space).
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Figure 7.
Majority model (left) and 0.90-supermajority model (right) of the collection of all six

rankings of lotteries A, C, and D. The left-hand side is also known as “weak stochastic
transitivity.”

Decisions. Author manuscript; available in PMC 2015 January 01.

Page 34




1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuey Joyiny vd-HIN

Regenwetter et al. Page 35

(AL o

Figure 8.
Null Hypothesis that a person “satisfies 7 - &7 or Z#.” Majority/modal choice

specification (left) and 0.90-supermajority specification (right) of % (in blue) and the four
rankings ACD, ADC, DAC, and DCA of ¢r7 - k7 for A, C, D of Cash Il (in orange).
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Figure 9.
Two different views of Random ¢»7 - £7 on gambles A, C, D. The four vertices ACD, ADC,

DAC, DCA that are allowable preference patterns under c»7 - x7. Every point in the shaded
region has coordinates representing binary choice probabilities consistent with Random
¢rT - KT where a and y have some unknown joint distribution (within the stated range).
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Fixed preference/utility perturbed by error ] j

Distance-based specification:

QTEST automates this for

+ majority/modal choice specification
* supermajority specification

= other distance-based approaches

Examples:

1) Weak stochastic transitivity (Fig. 7, left)
2) Majority/modal & supermajority
specification (Fig. 8, orange)

4) Majority/modal & supermajority
specification (Fig. 8, blue)

Determine all permissible
preference patierns

\

Examples:

1) linear order preferences
2) CPT-KT

3) CPT-GE
4) Lexicographic semiorder(s)
such as LH

-

Page 37

|

Variable/uncertain preferences/utilities ]

o

Random preference/utility model:
Scholar needs to provide a mathematical
description of the convex polytope

Examples:

1) Linear ordering polytope (RDDS 11)
2) Random CPT-KT (Fig. 9)

3) Random CPT-GE
4) Lexicogrephic semiorder
polytope (RDDSG 11)

Rejection of any models above => Rejection of all their nested submodels below:

Tremble models are nested in supermajority
specification

Most standard econometric models

(if they exist for a given theory)

are nested in (only) majority/modal choice
{but not in other distance-based specifications)

Figure 10.
Summary graph.

Tremble models are generally not nested
in any of these models

Most standard econometric models

(if they exist for a given theory)

are nested in the linear ordering polytope
{but not in the other polytopes)

Note: “RDDS 11” is Regenwetter et al. (2011a) who tested the linear ordering polytope on
these data. “RDDSG 11” is Regenwetter et al. (2011b), who tested some lexicographic
semiorder polytopes on these data. Regenwetter et al. (2010) tested weak stochastic

transitivity on these data.
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