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Abstract

Background—Prediction of functional modules is indispensable for detecting protein

deregulation in human complex diseases such as cancer. Bayesian network (BN) is one of the

most commonly used models to integrate heterogeneous data from multiple sources such as

protein domain, interactome, functional annotation, genome-wide gene expression, and the

literature.

Methods and Results—In this paper, we present a BN classifier that is customized to: 1)

increase the ability to integrate diverse information from different sources, 2) effectively predict

protein-protein interactions, 3) infer aberrant networks with scale-free and small world properties,

and 4) group molecules into functional modules or pathways based on the primary function and

biological features. Application of this model on discovering protein biomarkers of hepatocelluar

carcinoma (HCC) leads to the identification of functional modules that provide insights into the

mechanism of the development and progression of HCC. These functional modules include cell

cycle deregulation, increased angiogenesis (e.g., vascular endothelial growth factor, blood vessel

morphogenesis), oxidative metabolic alterations, and aberrant activation of signaling pathways

involved in cellular proliferation, survival, and differentiation.

Conclusion—The discoveries and conclusions derived from our customized BN classifier are

consistent with previously published results. The proposed approach for determining BN structure

facilitates the integration of heterogeneous data from multiple sources to elucidate the mechanisms

of complex diseases.
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Introduction

Complex biological networks underlying cell and organ functions cannot be explained by

considering merely individual genes, proteins or pathways.1 The increased collection and

accumulation of high-throughput omic data from a large number of studies in genomics,

transcriptomics, proteomics, metabolomics, and interactomics provide an opportunity to

model useful biological networks for biomarker discovery.2 The integration of omic data

from multiple sources can help understand normal cellular responses and potential

dysfunctions in cancers.3 This may subsequently lead to a better understanding of the

mechanisms of the genesis, development, and metastasis of various cancers. However,

modeling biological networks and extracting useful information from a wealth of data

sources are challenging. The main difficulties include: 1) selecting a reliable and efficient

framework to build a computational model, 2) reducing the intrinsic high noise and bias in

the data, 3) integrating heterogeneous and incomplete data, and 4) dealing with the

inconsistency of results from various omic studies reported by different groups.

A variety of approaches have been applied to model biological networks by integrating data

from multiple sources. These methods include graph theory,4 fuzzy logic model,5 text

mining,6 decision tree,7 support vector machine (SVM),8 relevance vector machine (RVM),9

and Bayesian network (BN) classifier.10 SVM is a theoretically well motivated algorithm

that searches for a decision boundary maximizing the margin of separation between pre-

specified classes. It enjoys important properties such as convexity and nonlinearity using

kernels and has been applied successfully in classification problems. Compared with SVM,

the BN classifier offers an attractive alternative for inferring biological networks by

integrating multiple data sets. BN is a probabilistic model based on directed acyclic graphs

(DAGs) that allow efficient and effective representation of the joint probability distribution

over a set of random variables.11 It learns from the training data the conditional independent

relationships among features (f1, f2, …, fn) given the class label y. Then classification is done

by computing the probability of each state of y given a particular instance of f1, f2, …, fn by

Bayes rule and selecting the class with the highest posterior probability. The core task is to

determine the network structure.12 If all the features are conditionally dependent given the

class, the BN classifier reduces to a full Bayesian network (FBN) classifier, which

substantially increases the computational complexity and potentially leads to an overfitting

problem. On the other hand, if all features are conditionally independent given y, the BN

classifier reduces to a Naïve Bayes (NB) classifier, which may bias the likelihood function

estimation because that it fails to account for the conditional dependence among the features

given y. This paper proposes a method that integrates data from multiple sources to construct

a BN classifier that reflects the conditional dependence among features given the class and

applies the model to predict aberrant functional modules in hepatocellular carcinoma

(HCC).13
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Methods

Framework

The proposed framework is shown in Figure 1. It starts with the collection of biological

features from different databases. We selected five features relevant for predicting protein-

protein interactions based on domain-domain interactions, biological process, gene

expression, homology, and from the literature as shown in Table 1. We then built a BN

classifier integrating different features to predict the class (i.e., whether a protein pair is

interacting or not). There are two essential steps in constructing a BN classifier: 1) infer the

structure of the BN which encodes the conditional independence relationship among the

features given the class, and 2) predict the class by calculating and comparing the posterior

probability of each class given all the features. Once the BN classifier is learned from the

training data, we collected potential HCC protein biomarkers using text mining strategy and

constructed an HCC PPI network. Finally, the Girvan and Newman (GN) algorithm14 was

applied to detect functional modules. Below is a detailed description of each step.

Data sources

The data sources for the features considered in this study are summarized in Table 1. They

are:

• Domain-Domain interactions (DDIs, f1). Proteins consist of one or multiple

domains, which are structural or functional units of protein. In many cases, DDIs

are crucial clues of protein interactions. Therefore, DDIs can be key supporting

evidence for protein interaction mechanisms.15,16 Protein domain and protein

family assignments were downloaded from the UniDomInt database. It contains

15,625 DDIs of 4,470 distinct protein family (Pfam) domains and combines nine

different domain interaction prediction methods to provide a score that captures the

reliability of the DDI.17 This reliability score was used as the DDI feature, f1.

• Gene Ontology (GO, f2). GO characterizes biological annotation of gene products

using terms from hierarchical ontologies.18 It aims to provide consistent

descriptions of gene products in different databases. Various methods have sought

to infer PPIs using their associated GO terms.19 There are about 2,000 biological

processes and about 2 million protein pairs in the database. We denoted f2 the

number of co-occurrence of protein pairs in the same biological process or

functional class, which was used as a measure of their interactions.

• Gene co-expression (CO, f3). Gene expression level is a good complement to

investigate protein-protein interactions. It has been shown that interacting proteins

have similar expression patterns (i.e., are co-expressed).20 Therefore, gene co-

expression is one of the key supporting evidence for protein-protein interactions.

For example, Qi et al.21 used 16 gene expression data from GEO to predict protein-

protein interactions. We downloaded from Coxpressdb14 (http://coxpressdb.jp/) the

expression patterns of 19,777 human genes in 123 experiments deposited in

ArrayExpress. The Pearson correlation coefficients calculated for each of the
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195,554,976 gene pairs by Coxpressdb were used as the gene co-expression

feature, f3.

• Homology (HOM, f4). Various protein-protein interactions are conserved across

species.22 It is well established that many of the protein-protein interactions are

confirmed via homology.23 Homology information was obtained from Hitdb

(Homologous Interactions Database), which provides high confidence homologous

interactions that are experimentally determined from IntAct, BioGRID, and HPRD

by PSI-Blast18 (http://hintdb.hgc.jp/hint/). We considered 92,734 human

homologous protein pairs. The Hintdb homology pair scores were used as the

homology feature, f4.

• Literature (LIT, f5). Protein-protein interaction database resources capture only a

portion of the experimental interactions. Information on other experimentally

detected interactions can be extracted from the literature by searching PubMed and

other online resources using text mining tools. The higher the co-citation frequency

of two proteins, the more likely they are functionally related. Using a Java package

developed in-house, 60,888 protein pairs that had been cited together at least once

were selected and the co-citation for each pair was used as a measure of the

strength of their interaction. As a result, 60,888 protein pairs were selected and the

co-citation frequencies were used as f5.

Training data

To train the BN classifier, we need gold standard positive (GSP) and gold standard negative

(GSN) sets. Two proteins can be considered to constitute a positive pair if they are known to

interact in the same pathway. The selection of an appropriate GSP set is essential to build an

accurate BN classifier and to obtain reliable PPI prediction. We queried the Reactome

database,24 which consists of structured information on 1,371 biological pathways involving

6,571proteins and 5,763 complexes. We used the resulting 68,285 distinct PPIs to construct

a GSP set. The selection of a GSN set is based on identifying protein pairs that are not

involved in the same pathway. There are three different ways to generate a GSN set:10 (i)

two non-interacting genes can be obtained by considering pairs that have no interaction in

any biological pathway; (ii) pairs from different cellular localizations are considered

unlikely to interact; and (iii) a random set of protein pairs can be selected after filtering the

positive pairs. We used the last method to select 98,589 protein pairs from the Reactome

database to construct the GSN set.

Bayesian network classifier

Bayesian network is a type of graphical model that consists of a directed acyclic graph G
and a set of probability distributions P, where nodes represent random variables, edges

represent direct dependence between two nodes, and P is the set of local probability

distributions for each node. More precisely, the network encodes the following conditional

independence statements: each variable is independent of its non-descendants in the graph

given the state of its parents. Given a set of features f1, f2, …, fn, BN classifiers can return

the state of the outcome y that maximizes the posterior probability p(y| f1, f2, …, fn) based on
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the BN structure. They have been widely used in the integration of data from multiple

sources and the prediction of biological networks and pathways.10, 25

Following Bayes rule, the posterior odds (Opost) for a protein pair is defined as the ratio of

the probability that the class is one, y=1 (i.e., this pair of proteins is interacting) given all

features f1, f2, …, fn to the probability that the class is zero, y=0 (i.e., this pair of proteins is

not interacting) given all features. It equals to the product of the likelihood ratio (LR) and the

prior odds (Oprior) as shown in Eq. (1).

(1)

where p(y=1) and p(y=0) are the prior probabilities specified as the proportion of interacting

and non-interacting protein pairs in the gold standard sets, which are calculated empirically.

In the special case of some features (fM+1, … fn) being conditionally independent given y,

the LR for the combined features (f1, f2, …, fn) is:

(2)

According to Eq. (1), we compute Opost for a pair of proteins and classify the two proteins as

interacting pair if Opost > 1, i.e.,

(3)

The larger the Opost, the more likely that this interaction is true.

BN structure determination

The BN structure should capture the predominant dependencies and be as parsimonious as

possible. Among the five features we used, Rhodes et al. showed the dependence between

DDI and GO and suggested proteins should be assigned to biological process based on their

domains.3 Browne et al. used correlation to measure the dependence between DDI and

GO.26 To measure quantitatively the conditional dependence among features f1, f2, …, fn
given the state of y, we computed the Pearson correlation coefficient between each pair of f1,

f2, …, fn under different states of y. We tested whether the correlation between each pair is

significantly different from zero and corrected for multiple testing using the Benjamini-

Hochberg (BH) false discovery rate (FDR) procedure. We found statistically significant

correlation between f1 and f2 (cor (f1,f2|y=1)=0.26; cor(f1,f2|y=0)=0.21; both with adjusted p-

values < 0.001). This suggests conditional dependence between f1 and f2 while f3, f4 and f5
were deemed to be conditional independent features given the state of y. In addition, we

discretized the feature value into four bins based on their respective quartiles and adjusted

the size to make sure that sufficient protein pairs are contained in each bin. Spearman’s

correlation coefficients were calculated for each pair of f1, f2, …, fn given the state of y. All

the correlations had BH-FDR adjusted p-values greater than 0.001, except for the correlation

between f1 and f2 (cor(f1,f2| y=1)=0.418, cor(f1,f2| y=0)=0.3978 both with adjusted p-
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values<0.001). This indicates that the conditional dependence between f1 and f2 given y is

maintained after discretizing the features into bins. In view of this, we proposed the BN

structure shown in Figure 2; the arrow from DDI to GO depicts the conditional dependence

between f1 and f2 given y and agrees with the suggestions of previously published paper.3 In

this case, for the likelihood ratio in Eq. (2), it can be rewritten as follows:

(4)

Predicting PPIs

Prediction of protein-protein interactions starts from training the classifier with the GSP and

GSN sets. We put all protein pairs which are known to interact or not into associated bins.

The range of each bin for each feature is presented in Figure 3. For example, a protein pair

in the GSP set with f1=2, f2=5, f3=0.5, f4=2 and f5=8 is assigned into the following bins:

f1=2, f2 ∈ (4,9), f3 ∈ (0.437, 0.962), f4=2, and f5 ∈ (7, 764) with each bin indicating a value

or a range for the corresponding feature. Then we calculated in each bin the conditional

probability of observing fi given y:

(5-1)

(5-2)

where # represents the number of protein pairs satisfying the specified condition; xi denotes

the bin in which fi falls, i = {1,3,4,5}, k={1,0}.

Consider for example the bin f5 ∈ (7,764).The likelihood ratio is calculated as follows:

(6-1)

(6-2)

(6-3)

where x5 represents the interval (7,764); p(f5 ∈ x5|y = 1) denotes the ratio of the number of

GSP protein pairs falling into this bin over the number of total GSP protein pairs; p(f5 ∈ x5|y

= 0) is the ratio of the number of GSN protein pairs falling into this bin over the number of

the total GSN protein pairs.
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For f3, f4 and f5, we can calculate the likelihood ratio according to Eq. (6). However, since f1
and f2 are correlated given the state of y, we need to make a slight modification to Eq. (6) to

calculateas outlined below:

(7-1)

(7-2)

(7-3)

(7-4)

(7-5)

where p(f2 ∈ x2|f1 ∈ x1, y = 1)represents the ratio of the number of GSP protein pairs falling

into both x1 bin and x2 bin to that of GSP protein pairs falling into x1 bin; p(f2 ∈ x2|f1 ∈ x1, y

= 0) denotes the ratio of the number of GSN protein pairs falling into both x1 bin and x2 bin

to that of GSN protein pairs falling into x1 bin.

The trained BN model was applied to predict interacting protein pairs by computing

individual likelihood for each feature, and the LR for the five combined features is as

follows:

(8)

We then computed Opost according to Eq. (1). If Opost > 1, we considered the protein pair to

be interacting.

Results

Calculating predictive strength of each feature

To evaluate the predictive strength of each individual feature in identifying protein pairs, we

computed Opost of y=1 using the five features (f1,f2, …, f5) listed in Table 1. This was done

for each protein pair in the GSP and GSN sets. Figure 4 shows Opost for the four levels of
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each feature. Except for homology, nearly all four other features have a weak positive

association between the posterior odds and the feature values. For gene co-expression and

co-citation, we observe their posterior odds monotonically increasing as the corresponding

feature values increase, indicating the potential power of these two features in predicting

reliable PPIs.

Performance evaluation

We trained BN, NB, FBN and SVM classifiers using the above five features and the GSP

and GSN sets described in Section II. For BN classifier, all features (f1, f2, …, f5) are

assumed conditionally independent given the class label (y). Eq. (4) can be rewritten as

follows:

(9)

All the other configurations are the same as our proposed BN classifier. In contrast, FBN

classifier assumes all features are conditionally dependent given class label. As a result, the

likelihood ratio can be rewritten as:

(10)

We applied the strategy introduced by Su and Zhang to build the FBN classifier.41 For the

SVM classifier, we used Weka, an open source machine learning software (http://

www.cs.waikato.ac.nz/ml/weka/), with a Gaussian kernel while other configurations were

set as default. We then compared the predictive performance of the proposed BN classifier

to that of NB, FBN and SVM classifiers based on a 10-fold cross-validation. Briefly

speaking, we split the positive and negative training sets into ten approximately equal sets.

Nine of these were used for training and the remaining one was used for testing. True

positives (TP) and false positives (FP) were calculated. This process was repeated 10 times

(choosing a different test set each time). We then calculated the area under the receiver

operating characteristic (AUC) for each model with the proposed BN classifier showing the

largest AUC as displayed in Figure 5.

In addition to cross-validation, we also used an independent test set to evaluate the

predictive performance of our proposed BN classifier. The independent set was derived from

the MINT database, a public PPI database built from results published in peer-reviewed

journals. We downloaded 187,456 binary interactions for 8,707 human proteins from (http://

mint.bio.uniroma2.it/mint/)27 to evaluate the BN, NB, FBN and SVM classifiers previously

built using the training set. After removing the known 187,456 binary interactions from the

8,707 proteins, a random set of 187,456 protein pairs was selected. Figure 6 depicts the

receiver operating characteristic (ROC) curves for each classifier. As shown in Figures 5

and 6, the proposed BN classifier provides the best performance. For naïve Bayes classifier,

our proposed BN classifier outperforms it since ours can capture the conditional dependence

structure among features given the class. For SVM, our proposed classifier can handle
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missing values without imputation, whereas SVM requires missing values be estimated

before using it as an input. For FBN classifier, our proposed classifier significantly reduces

the computational complexity and avoids the risk of overfitting caused by the assumption of

FBN classifier that all features are conditionally dependent given the class.

HCC PPI network

We applied the trained BN classifier to construct an HCC PPI network using 256 candidate

protein biomarkers for HCC that have been reported as differentially expressed between

HCC cases and healthy controls or patients with liver cirrhosis (adjusted p-value<0.0001)

using high-throughput technologies including microarray and mass spectrometry.

Before we applied the BN classifier to construct the HCC PPI network, we used a Java-

based tool developed in-house to collect the interaction information of the 256 biomarkers

from protein-protein interaction databases such as BioGrid, HPRD, STRING and KEGG.

We obtained 11,513 distinct protein pairs and their corresponding five feature values. Using

the trained BN classifier 1,291 protein-protein interactions were predicted as true positives

(Opost >1). They were used to construct the HCC PPI network shown in Figure 7A. The

nodes represent proteins and the edges correspond to the interactions between two proteins.

To identify previously unknown interactions, we mapped to IntAct (http://www.ebi.ac.uk/

intact/) 18 predicted interacting pairs between 23 unique proteins with high confidence

(Opost >200). In addition to known pathways involved in HCC or liver disease, such as Wnt

and Hepatitis C pathways, we found some novel predicted interactions that are not included

in the IntAct database (see edges marked in red in Figure 7B). For example, the SOS1

interactors are involved in T-cell receptor signaling pathway and regulate protein complex

assembly (GO0043254). PLAK1 and its interactors are related to mitotic spindle checkpoint

and cell cycle (GO00278) pathways which are important for HCC progression. Also, we

observed interactions between TP53, AR1H2 and PPP2R1A correlated with cell growth

(GO0016049). The largest posterior odds (Opost =7329.19) was for CDC20 and PLK1 (red

nodes in Figure 7B).

To understand better the inferred HCC PPI network, we analyzed its topological properties

such as degree of distribution and the length of the shortest paths. The degree of distribution

is the number of connections per node. In the HCC PPI network, the degree of distribution

exhibits approximately a power law property (Figure 8A). The length of the shortest paths

between pairs of nodes in the HCC network is around 4 (Figure 8B). Both of these indicate

that the HCC PPI network satisfies the property of scale-free and small world networks. The

topological analysis reveals that the predicted HCC network is in concordance with

previously reported cancer biological network characteristics.28

Functional modules

We performed a network module analysis using the GN14 algorithm on the HCC PPI

network shown in Figure 7A. To explore the biological function that these modules may

imply, we annotated these modules with GO terms using BiNGO.29 The significance of

these modules was evaluated using the hypergeometric test and Bonferroni family-wise error
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rate correction (adjusted p-value<0.005) provided by BiNGO. The GO biological process

and cellular component enrichment analysis found 24 functional modules; seven of the top

rankings are listed in Tables 2 and 3 along with their enrichment p-values and the number of

nodes and edges for each module. Modules 1 and 2 are mainly related to the chemical

reactions and pathways resulting in the breakdown of a protein or peptide by hydrolysis, and

mediated by APC (anaphase-promoting complex)-dependent proteasomal ubiquitin-

dependent protein degradation, and cell cycle (adjusted p-value=1.26E-24). The gene

products present in Module 3 are in the mitochondrial inner membrane (adjusted p-

value=3.18E-23). Pathways in this module are significantly related to energy metabolism

pathways (adjusted p-value=2.3E-06). We queried the OMIM database and found that genes

in this module are associated with: 1) abnormality of carbohydrate metabolism/homeostasis

(OMIM: 107741, 117550), 2) reduced ability of liver functions and 3) hepatic failure and

abnormality of body fluids regulation. Pathways assigned to Modules 4 and 5 are mainly

related to angiogenesis and Wnt signaling. HCC is a hypervascular tumor; angiogenic

factors such as VEGF can stimulate proliferation and migration of endothelial cells leading

to elevated vascular density. Aberrant activation of Wnt signaling plays an important role in

hepatocarcinogenesis.30 Cumulating evidence suggests that Wnt signaling is required for

angiogenesis.3132, 33 Module 6 shows that proteins are mainly involved in cholesterol

metabolism and sterol homeostasis. Enriched pathways of chylomicron-mediated lipid

transport (adjusted p-value=5.29 E -30) and fat digestion and absorption (adjusted p-

value=4.89 E -05) in this module could be correlated with the mechanism of cellular control

of lipid and lipoprotein metabolism. Thus, associated proteins suggest the role of lipid

metabolism in the pathogenesis of HCC. Bile acids are the end products of cholesterol

catabolism, they are produced in the liver34 to facilitate hepatobiliary secretion of

endogenous metabolites and xenobiotics and intestine absorption of lipophilic nutrients, and

to control the metabolism of glucose and lipids in the enterohepatic system.35 Proteins in

Module 7 are significantly related to glucagon stimulus, energy derivation by oxidation of

organic compounds and bile acid transport, suggesting bile acid signaling regulation of

glucose and lipid metabolism. Also, Module 7 indicates that bile acid signaling pathway

could be the master of metabolic disorders in liver disease and HCC. Table 3 lists the sub-

cellular locations of the functional modules. For example, the top ranked proteins in Module

1 are primarily located at the cytoplasmic and intracellular parts, suggesting changes in

proteins expressed in cytoplasmic tumor progression.36 In Model 7, all proteins appear to be

associated with protein synthesis-related organelles or complexes. Aberrant protein

synthesis has been consistently linked to liver cancer development and progression.37, 38 In

summary, functional module analysis yields biologically relevant contexts for identifying

the ‘driver’ and ‘passenger’ proteins in cancer development, generating hypothesis for

subsequent experimental validation, indicating systematic integration of multiple level -omic

data provides insights into the mechanism of cancer.

Discussion

Integration of protein-protein interaction information from multiple data sets contributes to a

better understanding of aberrant pathways and network activities within the cell. However, it

is difficult to manually and comprehensively integrate all available information for the
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following reasons: 1) too many data sources, 2) too many levels of interactions, 3) too many

different fields, 4) too many contradictory reports, and 5) too rapidly increasing scientific

terms, definitions, experimental methods and methodologies. In this paper, we propose a

customized BN classifier to infer protein-protein interactions by integrating heterogeneous

data from multiple sources. The proposed BN classifer can capture the relationships between

diverse biological features. A simulation result shows that our BN classifier outperforms

other classifiers including NB, FBN and SVM. We applied the BN classifier to construct

HCC networks by integrating information from biological databases and literature. We then

discovered functional modules, ‘hub’ proteins, and relevant interactions between candidate

protein biomarkers for HCC. Enrichment analysis was applied to infer the mechanism of

HCC based on these functional modules.

Our future work will focus on 1) seeking better approaches to determine the structure of the

BN classifier, and 2) extending the proposed BN classifier to predict metabolic pathways

and networks by incorporating data from metabolite profiling studies into current

framework.
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Figure 1.
Proposed data integration framework to predict protein-protein interactions, construct HCC

PPI network and detect functional modules.
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Figure 2.
The network structure of the customized BN classifier. f1, f2, f3 f4 and f5 correspond to the

five features listed in Table 1. Y represents the class (i.e., whether two proteins are

interacting or not).
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Figure 3.
Illustration of the calculation of the posterior odds and the range of values proposed for each

bin in each feature.
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Figure 4.
Multiple data sources contribute to the BN classifier. Bar plots of posterior odds for domain-

domain interactions (A), Gene Ontology (B), gene co-expression (C), homology (D), and

literature (E).
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Figure 5.
Comparisons of prediction performance of the BN, NB, FBN and SVM classifiers by 10-

fold cross-validation on the training set. The Y-axis represents the area under ROC curve

score. AUC for BN=0.9001, NB=0.8723, FBN=0.8010, SVM=0.67
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Figure 6.
ROC curves of the proposed BN, NB, FB and SVM classifiers based on independent testing

set. AUC for the BN=0.9072, NB=0.82025, FBN=0.77001, and SVM=0.687
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Figure 7.
Global and focused views of the predicted HCC PPI network. A: Global view of the HCC

PPI network. B: Zoomed view of the predicted interactions generated by the 18 true positive

interactions among 23 unique proteins (Opost >200). Known interactions in IntAct are shown

in green edge and predicted ones are shown in red. Known interactors in IntAct are shown in

light purple and predicted ones are shown in yellow. The network is drawn by Cytoscape.
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Figure 8.
The topology properties of the identified HCC PPI network. (A), node degree distribution

(B), path length
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Table 1

The data sources integrated for the prediction of human protein-protein interactions

Name Feature Source Number of
element

Domain-Domain interaction DDIs (f1) UnidomInt17 15,625

Gene Ontology GO (f2) GO18 1,923,623

Gene Co-expression CO (f3) coxpressiondb39 195,554,976

Homology HOM (f4) Hintdb40 92,734

Literature LIT (f5) PubMed 60,888
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Table 2

Top seven highly significant modules with corresponding top five GO biological processes

Module Nodes/Edges GO ID Biological process Adjusted P-value

1 34/33 GO:0031145 anaphase-promoting complex-pendent proteasomal 1.51E-35

GO:0007088 any process that modulates the frequency, rate or extent of mitosis. 7.69E-28

GO:0010498 proteasome-mediated protein catabolic process 3.84E-29

GO:0051444 anaphase promoting complex inhibition 5.46E-31

GO:0005680 blood vessel morphogenesis 5.46E-27

2 140/226 GO:0000216 progression from M phase to G1 phase of the mitotic cell cycle. 7.08E-21

GO:0000084 S-phase of mitotic cell cycle 1.26E-24

GO:004578 down regulation of progression through cell cycle 2.18E-02

GO:0006521 regulation of amino acid metabolism 1.99E-37

GO:0051437 activation of ubiquitin ligase activity during mitotic cell cycle 3.23E-34

3 103/103 GO:0015980 chemoorganotrophy 3.18E-23

GO:0006091 generation of precursor metabolites 9.32E-27

GO:0055114 oxidation-reduction process 1.02E-18

GO:0042773 ATP synthesis coupled electron transport 7.81E-10

4 39/39 GO:0016055 Wnt receptor signaling pathway 4.99E-20

GO:0007166 cell surface receptor signaling pathway 9.38E-16

GO:0032268 regulation of cellular protein metabolic process 4.4E-17

GO:0031399 regulation of protein modification process 3.24E-13

GO:0030111 regulation of Wnt receptor signaling pathway 1.35E-09

5 39/38 GO:0008284 positive regulation of cell proliferation 1.47E-20

GO:0048010 vascular endothelial growth factor receptor signaling pathway 3.4E-15

GO:0040012 regulation of locomotion 1.15E-12

GO:0070848 response to growth factor stimulus 9.58E-18

GO:0048514 blood vessel morphogenesis 2.34E-14

6 13/55 GO:0042157 Lipoprotein metabolic process 8.6E-25

GO:0055088 Lipid homeostasis 2.44E-16

GO:0034358 Plasma lipoprotein particle 1.69E-16

GO:0034368 Protein-lipid complex remodeling 7.48E-15

GO:0055092 Sterol homeostasis 7.02E-15

7 14/30 GO:0033762 Response to glucagon stimulus 4.91E-54

GO:0071377 Cellular response to peptide hormone stimulus 5.21E-53

GO:006112 Energy derivation by oxidation of organic compounds 3.12E-39

GO:006091 Generation of precursor metabolites and energy 4.04E-30

GO:0015721 bile acid and bile salt transport 4.79E-20
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Table 3

Top seven highly significant modules with corresponding top five GO cellular compartments

Module Nodes/Edges GO ID Cellular compartments Adjusted P-value

1 34/33 GO:0005829 cytosol 2.96E-38

GO:0044444 cytoplasmic part. 2.44E-24

GO:0071944 cell periphery 2.52E-16

GO:005886 plasma membrane 5.40E-16

GO:0005737 intracellular part 6.09E-15

2 140/226 GO:0005579 membrane attach complex 1.52E-18

GO:005576 extracellular region 1.10E-12

GO:0046930 pore complex 7.10E-09

GO:0044421 extracellular region part 3.53E-08

GO:0005615 extracellular space 4.02E-06

3 103/103 GO:0005834 heterotrimeric G-protein kinase complex 8.09E-23

GO:0031234 Extrinsic to internal side of plasma membrane 9.16E-21

GO:0019897 extrinsic to plasma membrane 1.99E-18

GO:0009898 internal side of plasma membrane 7.45E-17

GO:0019898 extrinsic to membrane 1.24E-16

4 39/39 GO:0005829 cytosol 1.31E-13

GO:0005945 6-phosphofructokinase complex 8.78E-07

GO:0044444 cytoplasmic part 3.01E-13

GO:0005737 cytoplasma 6.24E-03

5 39/38 GO:0005782 peroxisomal matrix 3.83E-06

GO:0031907 microbody lumen 2.83E-06

GO:0042579 microbody 8.81E-04

GO:0005777 Peroxisome 8.81E-04

GO:0044438 microbody part 1.46E-04

6 13/55 GO:0034358 plasma lipoprotein particles 1.69E-16

GO:0032994 Protein-lipid complex 2.06E-16

GO:0034361 very-low density lipoprotein particles 3.42E-15

GO:0034385 triglyceride-rich lipoprotein particles 7.48e-15

GO:0042627 chylomicron 2.23E-14

7 14/30 GO:0005789 endoplasmic reticulum membrane 2.15E-04

GO:0042175 nuclear outer membrane-endoplasmic reticulum membrane network 2.42E-04

GO:0044432 endoplasmic reticulum part 6.05E-04

GO:0005783 endoplasmic reticulum 4.82E-03

GO:0044444 cytoplasma part 2.64E-02
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