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Abstract

For more than a decade, the high threshold dual process (HTDP) model has served as a guide for

studying the functional neuroanatomy of recognition memory. The HTDP model's utility has been

that it provides quantitative estimates of recollection and familiarity, two processes thought to

support recognition ability. Important support for the model has been the observation that it fits

experimental data well. The continuous dual process (CDP) model also fits experimental data

well. However, this model does not provide quantitative estimates of recollection and familiarity,

making it less immediately useful for illuminating the functional neuroanatomy of recognition

memory. These two models are incompatible and cannot both be correct, and an alternative

method of model comparison is needed. We tested for systematic errors in each model's ability to

fit recognition memory data from four independent data sets from three different laboratories.

Across participants and across data sets, the HTDP model (but not the CDP model) exhibited

systematic error. In addition, the pattern of errors exhibited by the HTDP model was predicted by

the CDP model. The findings were the same at both the group and individual levels of analysis.

We conclude that the CDP model provides a better account of recognition memory than the HTDP

model.

1. Introduction

Dual-process theorists hold that recognition memory depends on two components:

familiarity and recollection. Familiarity involves knowing only that an item is old or new,

and recollection involves accessing specific details about the episode in which the item was
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encountered. The relative contribution of these two processes to individual recognition

decisions is debated. On one hand, the recognition decision for a particular item may be

based on one process or the other, varying from one decision to the next. On the other, the

recognition decision for a particular item may be based on both familiarity and recollection.

These possibilities are formalized in two models that have been used to characterize

recognition memory function, the high-threshold dual-process model (HTDP; Yonelinas

1994; Yonelinas, 1999) and the continuous dual-process model (CDP; Wixted & Mickes,

2010). In many cases, the CDP model is mathematically equivalent to the single process

unequal variance signal detection (UVSD) model (Wixted & Mickes, 2010). However,

because of the large body of evidence indicating the existence of separate processes in

recognition memory (Diana, Reder, & Arndt, 2006), we focus on the dual process

interpretation of the UVSD model (namely, the CDP model).

The HTDP model provides quantitative estimates of familiarity and recollection from

confidence ratings made on a standard old/new recognition task, but the CDP model holds

that recollection and familiarity cannot be disentangled on the basis of old/new recognition

decisions alone. The HTDP model's ability to quantify recollection and familiarity may

explain the notable role it has played in guiding investigations of the neural basis of

recognition memory. However, it is important to consider that the HTDP model's ability to

make these estimates and the CDP model's corresponding inability are derived from the

assumptions made by the two models about recognition. If the assumptions that a model

makes about recognition memory are accurate, then, when it is fit to recognition data, the

only source of error in the fit should be randomly distributed noise. However, if the

assumptions that a model makes about recognition memory are inaccurate, then errors in the

model's ability to fit data are likely to be systematic (even if the model provides a good fit to

the data). Here, we investigate whether the HTDP model or the CDP model produces

systematic errors, that is, deviations from what is observed in recognition memory data.

The assumptions of the HTDP model differ from the CDP model in two important respects.

First, the HTDP model assumes that recollection is a high-threshold process (Yonelinas,

1994; Yonelinas, 1999; Macmillan & Creelman, 2005), such that recollection is either

successful (yielding recognition decisions made with high confidence and high accuracy) or

unsuccessful. The CDP model (Wixted & Stretch, 2004; Wixted, 2007; Wixted & Mickes,

2010), by contrast, assumes that recollection can vary continuously (yielding recognition

decisions made with a wide range of confidence and accuracy).

A second difference between the two models follows from the HTDP model's assumption

that recollection is a high-threshold process. The HTDP model predicts that if recollection is

successful, then familiarity does not contribute to the recognition decision because

recollection provides unambiguous evidence of a previous encounter. If recollection is

unsuccessful, then the recognition decision is based wholly on the strength of the familiarity

signal. By contrast, the CDP model posits that familiarity and recollection are combined

during recognition memory decision-making. This feature of the model arises from the

proposition that both recollection and familiarity are assumed to be imperfect continuous

processes, and combining them can yield a more diagnostic memory signal than relying on

either one alone.
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A number of studies have compared the CDP model to the HTDP model using receiver

operating characteristic (ROC) analysis, a technique based on confidence ratings that allows

model-based inferences about the nature of the underlying memory-strength distributions

across items (Macmillan & Creelman, 2005). The validity of model-based inferences is

typically assessed in ROC analysis by comparing a model's fit to the observed data in order

to calculate a goodness-of-fit statistic. Although there have been many studies (e.g.

Yonelinas, 1994; Glanzer, Hilford, Kim, & Adams, 1999; Healy, Light, & Chung, 2005;

Heathcote, 2003; Glanzer, Hilford, & Kim, 2004; Kelley & Wixted, 2001; Slotnick &

Dodson, 2005), the evidence based on goodness-of-fit statistics alone has been mixed, with

some studies favoring the HTDP model and some favoring the CDP model. The CDP model

often provides the better fit to typical recognition memory data (e.g. Slotnick & Dodson,

2005; for review see Wixted, 2007), but some results are better accounted for by the HTDP

model (e.g. Yonelinas, 1999; Howard, Bessette-Symons, Zhang, & Hoyer, 2006).

One reason for these inconclusive results may be that both models are able to fit recognition

memory data quite well. Indeed, an earlier analysis of a typical data set found that the HTDP

model accounted for 99.91% of the variance, and the CDP model accounted for 99.97% of

the variance (Glanzer et al., 1999; Yonelinas, 1999b). Similarly, across four data sets

analyzed below, which involved 65 participants, the average percent of variance accounted

for was above 90% for both models (HTDP = 91%, CDP = 96%). The fact that both models

fit the data well may explain why both are given credence despite their fundamental

differences.

The assumption is often made that models that fit data well are good models. However, this

assumption is not necessarily valid (Roberts & Pashler, 2000). Accordingly, model

comparisons based on goodness-of-fit may have difficulty deciding which model is best. An

alternative, more promising, way to distinguish between the merits of the two models is to

first ask whether the models generate systematic errors in their ability to account for

recognition memory data. Second, if a model generates systematic errors, then one can ask

whether the other model, in fact, predicts these errors.

Figure 1 illustrates the essential differences between the two models. The models make the

same assumptions about the distractor distribution (i.e., the distribution of memory strength

signals generated by the foils), but they differ in their assumptions about the target

distribution (i.e., the distribution of memory strength signals generated by the targets). The

HTDP model has two target distributions, a high-threshold distribution for items that are

recollected (these targets have essentially infinite memory strength) and a separate

continuous distribution for items judged on the basis of familiarity. The familiarity and

distractor distributions are assumed to have equal variance. In contrast, the CDP model has a

single target distribution, and that distribution has greater variance than the distractor

distribution.

Moving from low memory strength (Figure 1; left) to high memory strength (Figure 1;

right), visual inspection of the models' target distributions reveals areas where the models do

not overlap and where the predicted data differ systematically. At low levels of memory

strength (area a), the HTDP model predicts a lower frequency of target items than does the
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CDP model. At medium levels of memory strength (b), the HTDP model predicts a higher

frequency of target items than does the CDP model. At moderately high levels of memory

strength (c), the HTDP model predicts a lower frequency of target items than does the CDP

model. Lastly, at the highest levels of memory strength (represented in the HTDP model by

the distribution of recollection responses and in the CDP model by the rightmost tail of the

target distribution), the HTDP model predicts a higher frequency of target items than does

the CDP model. Thus, if the assumptions of the HTDP model are correct, then one might

expect to find that the best-fitting CDP model predicts too many low-confidence responses

to targets, too few medium confidence responses to targets, and too many moderately high

confidence ratings to targets. If, instead, the assumptions of the CDP model are correct, then

the best-fitting HTDP model should exhibit the opposite pattern of systematic error.

Note that Figure 1 is simply an example illustrating systematic errors that might be observed

for a particular set of model parameter values. We chose these parameter values because

they correspond to values typically observed in recognition memory experiments. Still, the

actual systematic errors could differ across individuals depending on the model parameters

that characterize the performance of each individual.

To differentiate between the HTDP and CDP models, we first examined the ability of each

model to fit recognition memory data in four data sets from three different laboratories and

then investigated whether any systematic errors were evident in their fits to target items.

Lure items were also examined but yielded no systematic errors for either model. We then

tested whether the systematic errors generated by one model (if any) could be predicted by

the other model. We performed this analysis at the individual level (i.e., fitting the two

models to each individual's data separately, and generating predictions of systematic error

based on each participant's performance individually). We found that only the HTDP model

generated systematic errors in its fit to target items. Moreover these errors were predicted by

the CDP model. By contrast, the CDP model did not yield systematic errors, and the HTDP

model predicted errors for the CDP model that were not observed. In other words, the

predictions of the CDP model were confirmed (validating its assumptions about recognition

memory), whereas the predictions of the HTDP model were disconfirmed (invalidating its

assumptions about recognition memory). This pattern was observed even though both

models fit the data well (as is usually true), underscoring the fact that a good fit does not

necessarily imply a valid model (Roberts & Pashler, 2000).

2. Methods

2.1 Data

Four data sets were used involving 65 participants, 32 of whom were tested under two

different conditions. All data sets were collected using similar word recognition memory

tests. Participants were asked in each case to rate their confidence that a word had been

previously presented from 1 (sure new) to 6 (sure old). These data sets were selected

because they are based on sufficient data to allow for individual model fitting and because

the methods were comparable. The data represent results from a laboratory that has

generally supported the CDP model (Dede, Wixted, Hopkins & Squire, 2013), a laboratory
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that has generally supported the HTDP model (Koen & Yonelinas, 2010), and a neutral

laboratory (Van Zandt, 2000).

Dede, Wixted, Hopkins and Squire (2013)—Participants were five memory-impaired

patients with bilateral lesions limited to the hippocampus. Eleven age and education-

matched controls were also tested. Participants were given three tests of recognition

memory. In each test, participants were presented with 50 study words and asked to make

pleasantness ratings. After a 3-5 minute delay, participants were presented with 100 test

words (50 new words and 50 old words). An additional group of seven age and education-

matched controls were tested using an identical procedure but with the delay interval

between study and test extended to one week.

Koen and Yonelinas(2010)—Thirty-two undergraduate participants were presented with

a mixed list of 80 words presented for four seconds and 80 words presented for one second.

Immediately afterwards, participants were presented with 320 test words (160 old words and

160 new words). The data were analyzed as two separate sets, one based on the 80 study

words presented for four seconds (plus 160 new words), and the other based on the 80 study

words presented for one second (plus 160 new words).

Van Zandt(2000)—Ten undergraduate participants were presented with 32 study words.

Immediately afterwards, participants were presented with 20 of the study words and 20 new

words. This procedure was repeated a total of 20 times, using different lists.

2.2 Analysis of Systematic Error

First, we fit the HTDP and CDP models to the data sets from the three laboratories to

determine whether either model yielded a pattern of systematic error. All data were fit with

both the HTDP and CDP models at the individual subject level using maximum likelihood

estimation. These fits yielded predictions of the frequency with which a participant used

each confidence-level response (1-6) for the study items. The observed frequencies of

different confidence ratings to target items were then subtracted from the corresponding

predicted frequencies derived from the model fits to calculate errors in each model's

predictions. If errors for a particular confidence rating are random and non-systematic, then

they should have a mean of zero across participants. If errors are systematic, then they

should deviate systematically from zero. To test for such systematic error, a series of one-

sample t-tests determined whether there was significant non-zero error at each confidence

level within each of the four data sets. Errors were deemed systematic if they were identified

as significant in all four data sets (Dede et al., 2013; Koen & Yonelinas, 2010, 4-sec

condition; Koen & Yonelinas, 2010, 1-sec condition; Van Zandt, 2000).

2.3 Individual Prediction Analysis

In this analysis, we created predictions of model error that were based on each participant's

performance. This analysis was computationally similar to the parametric bootstrap analysis

used by Wagenmakers et al. (2004) to assess model mimicry. To understand this analysis

conceptually, consider the systematic errors that are produced when the HTDP model is fit

to real data. If the same systematic errors are generated when the HTDP model is fit to data
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generated by the CDP model in simulation, then the inference can be made that the CDP

model, having accurately predicted the HTDP model's error, is likely to accurately reflect

the phenomenon that produced the real data. Six steps were applied to each participant

individually. Step 1. 500 non-parametric bootstrap samples were taken. Step 2. These

samples were fit with both the HTDP and CDP models using maximum likelihood

estimation. The average error generated in these fits across the 500 bootstrap samples was

used to measure systematic error. Step 3. Using the parameters obtained in Step 2, simulated

data were created by both the HTDP and CDP model simulators described in Section A.1.

This step yielded 500 simulated data sets for each model. Step 4. The HTDP model was fit

to the CDP model simulation data, and the CDP model was fit to the HTDP model

simulation data. Step 5. The fits from Step 4 were used to derive an error prediction at each

confidence level for each model. The error prediction was the mean error value for each

confidence rating, as predicted by each model individually across the 500 simulated data

sets. Step 6. The predicted error values for each model's fit were correlated with the

observed error values in each individual's data. This was done in two ways. The predicted

error values were correlated with the observed error values found when each model was

directly fit to the original data and with the mean error values found when each model was

fit to the non-parametric bootstrapped data (Step 2). The bootstrapping procedure was used

to obtain a pattern of observed systematic error that was more robust to noise. The

histograms of the correlation values across participants were plotted for visual inspection,

and the correlation distribution produced by each model was compared to 0 using one-

sample t-tests (see Section A.2 for a detailed example based on an individual participant and

Section A.3 for further analyses of model flexibility).

3. Results

The first objective was to identify systematic errors in the fits of each model to recognition

memory data. Accordingly, we fit both models to four sets of data from three studies of

recognition memory (Dede et al., 2013; Koen & Yonelinas, 2010; Van Zandt, 2000). Fits

were performed using maximum likelihood estimation on an individual participant basis (see

Methods). For the data from Dede et al. (2013), there were no significant differences in the

error patterns across groups, so data from the different groups were combined (patients,

controls tested with no delay, controls tested with a one-week delay).

3.1 The HTDP model but not the CDP model generated systematic error

Figure 2A shows the pattern of error when the recognition memory data were fit with the

HTDP model. Figure 2B shows the pattern of error when the same data were fit with the

CDP model. The four sets of data indicate that the HTDP model consistently underestimated

the frequency of low memory strength responses to target items (i.e., confidence ratings of 1

on the 6-point scale), consistently overestimated the frequency of medium-strength

responses to target items (confidence ratings of 3), and consistently underestimated the

frequency of high-strength responses to target items (confidence ratings of 5)(Figure 2A).

There was no trend towards systematic error in the fit of the CDP model, and no instance

where all four data sets identified a significant error (Figure 2B).
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The systematic errors generated by the HTDP model suggest that the HTDP model did not

accurately describe how responses of different memory strength would be distributed in tests

of recognition memory. Note that the errors generated by the HTDP model were the same

errors predicted from Figure 1, as outlined in Section 1. That is, the HTDP model generated

the errors indicated by areas a, b, and c in Figure 1.

3.2 The CDP model predicted the errors that were generated by the HTDP model at an
individual level

Before presenting the results of this analysis, it is useful to explain the logic of our

technique. Consider models A and B. When model A generates simulated data and model B

is fit to that simulated data, there will be a certain pattern of systematic errors in the fit of

model B. This pattern will reflect the differences between models A and B and can be

thought of as the pattern of predicted errors in the fit of model B. Most importantly, the

predicted error pattern in the fit of model B is conditional on model A producing the data.

Turning to the fitting of real data, it is unknown which model best approximates the

phenomenon under study, but if the predicted pattern of error in the fit of model B is similar

for real data and for data simulated by model A then model A likely reflects the

phenomenon that produced the real data. This entire process and logic can be reversed to

provide predictions of the errors in the fit of model A when model B produces the data.

For each participant, we correlated the pattern of error that was generated when each model

was fit to the data with the pattern of error that was generated when each model was fit to

data simulated by the other model. We also correlated the average pattern of error that was

generated when each model was fit to a set of 500 non-parametric bootstrapped samples

with the pattern of error that was generated when each model was fit to data simulated by

the other model. This analysis resulted in two sets (one based on fits to raw data and one

based on fits to bootstrapped data) of 97 correlations for each model (65 participants, 32 of

whom were tested in two different conditions), based on the frequency of ratings at each

confidence level (1-6). Figure 3A shows the distribution of correlations (one correlation for

each participant) between the errors generated by fitting the HTDP model to the data and the

CDP model's prediction of errors. The average correlation was .44, a value greater than zero

(t(96) = 9.5, p<.001). When this analysis was based on bootstrapped error patterns, which

should be less susceptible to noise, the average correlation value increased to .54 (t(96) =

12.9, p<.001). Thus, the CDP model predicted the (systematic) errors made by the HTDP

model when the HTDP model was fit to individual data. Figure 3B shows the corresponding

distribution of correlations between the errors generated by fitting the CDP model to the

data and the HTDP model's prediction of errors. The average correlation was .02, which was

not different from zero (t(96)=.3, p=.75). When this analysis was based on bootstrapped

error patterns, the average correlation increased to .08 (t(96)=1.2, p=.22), a smaller increase

than was seen for the CDP model. Thus, the HTDP model did not predict the

(nonsystematic) errors made by the CDP model when the CDP model was fit to individual

data.
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4. Discussion

Taking a novel approach to an old problem, we have found support for the CDP model and

evidence against the HTDP model. In our first analysis (Figure 2), the HTDP model

exhibited systematic errors in its ability to predict the frequency of different confidence

responses to target items (despite providing a good fit to the data, which is often taken as

evidence of its validity). If the HTDP model accurately accounted for recognition memory,

then errors in the predictions made by the best-fitting version of the model for each level of

confidence should have been randomly distributed. Instead, the errors were systematic.

These systematic errors imply that the HTDP model's assumptions about recognition

memory are inaccurate.

By contrast, the CDP model did not exhibit systematic errors. Yet the absence of systematic

error alone does not confirm the accuracy of the assumptions about recognition memory that

underlie the CDP model. Accordingly, we next asked whether the CDP model could predict

the errors generated by the HTDP model. This analysis was performed at the individual level

and demonstrated that the CDP model not only fits the data without systematic error but also

predicts the systematic errors evident in the fits provided by the HTDP model (Figure 3A).

A second analysis (Figure 3B) demonstrated that the HTDP model did not predict the

(nonsystematic) errors evident in the fits provided by the CDP model. Taken together, these

results suggest that the CDP model accurately accounts for recognition memory decision

making and that the HTDP model does not.

There were two potential concerns about our analyses that are worth drawing attention to.

First, in order to generate error predictions, the CDP model was always fit to data simulated

by the HTDP model, and the HTDP model was always fit to data simulated by the CDP

model. Our assumption was that neither model would predict errors in its own fit to the data

(because those errors would be random). We tested this assumption by fitting the CDP

model to data simulated by the CDP model and by fitting HTDP model to data simulated by

the HTDP model. This analysis yielded no systematic errors, confirming our assumption.

Second, the CDP model is known to be slightly more flexible than the HTDP model, and it

was unknown what effect this would have on our analyses of systematic error. We addressed

this issue in an analysis presented in Section A.3 and found that model flexibility did not

play a role in our results.

Within the discipline of cognitive psychology, reservations about the validity of the HTDP

model have been expressed by many different researchers (e.g. Slotnick & Dodson, 2005;

Qin, Raye, Johnson, & Mitchell, 2001; Glanzer, et al., 1999; Rotello, et al., 2005; Heathcote,

2003; Qin, et al., 2001; Healy, Light, & Chung, 2005; Starns, Rotello, & Ratcliff, 2012;

Starns, Ratcliff, & McKoon, 2012). Thus, it is of interest to ask why the HTDP model has

nevertheless held favor in guiding research into the neural substrates of recognition memory.

An important consideration is that both the HTDP and CDP models virtually always fit

experimental data well. Further, investigators often interpret a good fit to imply that a model

is valid even though that is not a safe assumption (Roberts & Paschler, 2000). But if one

does assume that both models are valid because they fit the data well, there is a choice to be
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made. On the one hand, the CDP model does not provide a simple way to differentiate

between familiarity and recollection on the basis of old/new decisions alone. On the other

hand, the HTDP model does. Assuming that a good fit implies a good model, and if the goal

is to identify neural substrates of recollection and familiarity, the choice is straightforward:

the HTDP model is the one to use.

Yet, considering the fundamentally different ideas about recollection inherent in the HTDP

and CDP models, it should be clear that both models cannot be correct. The analyses

presented here demonstrate that the CDP model is viable, but that the HTDP model is not

(despite the fact that the HTDP model fits the data well). In light of the evidence presented

here against the HTDP model, it would make sense to use the CDP model to guide studies of

recognition memory (at least when words are used as stimuli, as they often are). It would

also make sense to reconsider conclusions about the neuroanatomy of recognition memory

that depend on the validity of the HTDP model.

Studies of recognition memory have commonly used fMRI and lesion studies to identify

structures important for recollection and familiarity. Many of these studies have relied upon

the assumptions of the HTDP model for interpreting the data (e.g. Yonelinas et al., 2002;

Aggleton et al., 2005; Ranganath et al., 2004; Yonelinas, et al., 2005; for review see

Eichenbaum, Yonelinas, & Ranganath, 2007). These studies have led to the idea that the

hippocampus is important for recollection and that the surrounding medial temporal lobe

(MTL) cortices are important for familiarity. To reach this conclusion, researchers have had

to separate test trials based on recollection from test trials based on familiarity (e.g., in order

to compare hippocampal activity for recollection-based vs. familiarity-based decisions), and

the assumptions of the HTDP model have been relied upon for this purpose. Studies using

the Remember-Know procedure, source memory procedures, and/or confidence rating

procedures have all been implicitly or explicitly guided by the HTDP view of recollection.

However, if the CDP model is correct (and the HTDP model is incorrect), then all of these

studies share a common flaw in that trials assumed to differ only in whether recollection is

present or absent also differ in memory strength (strong versus weak; Slotnick & Dodson,

2005; Wixted, 2007; Squire, Clark, & Wixted, 2007).

Unlike the HTDP model, the CDP model does not guide inquiry into the neural basis of

recognition memory by providing quantitative estimates of recollection and familiarity.

Instead, it suggests novel experimental designs that can be used to test whether (for

example) the hippocampus plays a role in recollection and familiarity. A key idea suggested

by this model is that it is important to control for memory strength because decisions

thought to be based on recollection (e.g., Remember judgments) are typically made with

higher confidence and higher accuracy than decisions thought to be based on familiarity

(e.g., Know judgments). A difference in memory is not the essence of the theoretical

difference between recollection and familiarity. Indeed, recollection can be weak and

familiarity can be strong (Ingram, Mickes, & Wixted, 2012). Thus, memory strength is an

experimental confound that should be controlled when comparing the two processes. For

example, in one study that controlled for memory strength, the hippocampus was active

when responses were based on recollection as well as when responses were based on

familiarity (Smith et al., 2011). This result does not mean that the hippocampus and
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surrounding MTL structures provide only an undifferentiated signal of strength. Despite not

being informed by the distinction between recollection and familiarity, the different

structures of the MTL likely play different roles (Wixted & Squire, 2011). Indeed, a recent

study used state-trace analysis, combined with intracranial depth electrode recording, to

demonstrate that the hippocampus and perirhinal cortex perform fundamentally different

computations (Staresina et al., 2013). For further discussion concerning this issue, see

Wixted & Squire, 2011a; Diana & Ranganath, 2011; Montaldi & Mayes, 2011; Wixted &

Squire, 2011b; Wixted & Squire, 2011c.

In summary, we have found that the HTDP model does not accurately characterize

recognition memory. Although the HTDP model can fit recognition memory data reasonably

well, the relatively small errors it makes are systematic in nature. By contrast, the CDP

model did not make systematic errors and also accurately predicted the systematic errors

generated by the HTDP model. These findings suggest that the assumptions about

recollection and familiarity that are underlie the CDP model (e.g., the assumption that

recollection is a continuous process) are more accurate than the assumptions that underlie

the HTDP model (i.e., e.g., the assumption that recollection is a threshold process). The key

implication of these results is that the search for the neuroanatomical basis of recollection

and familiarity should not be wedded to theoretical assumptions that are inconsistent with

the empirical evidence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Fundamentally different models cannot always be distinguished by their goodness of

fit

The high threshold (HTDP) model of recognition memory generates systematic error

The continuous dual process (CDP) model does not generate systematic error

The CDP model predicts the errors generated by the HTDP model

Studies of recognition memory would be better guided by the CDP model
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Figure 1.
Schematic representation of the theoretical distributions of items in memory according to

both the high threshold dual process model (HTDP; dotted lines) and the continuous dual

process model (CDP; dashed lines). The two models share a distribution for new items

(distractors; solid line). The HTDP model has separate distributions for study items

supported by recollection and familiarity. The CDP model has a single distribution for study

items. The X-axis represents the strength of memory, proceeding from low memory strength

at the left to high memory strength at the right. Areas a, b, and c show areas of non-overlap

between the two models where the predicted data differ systematically.
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Figure 2.
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Errors in the fits of the high threshold dual process model (HTDP) and the continuous dual

process (CDP) to study items from four sets of data. A. The HTDP model consistently

underestimated the frequency of 1 and 5 responses and consistently overestimated the

frequency of 3 responses. B. For the CDP model there was no instance where all four data

sets identified a systematic error. Error bars indicate SEM. * denotes p<.05 in single sample

t-tests compared to zero.
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Figure 3.
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Distribution of correlation values (one value for each of 97 participants) between the errors

generated by fitting one model to the data and the errors predicted by the other model. A.

The CDP model's predictions of error are well correlated with the errors generated by the

HTDP model. B. The HTDP model's predictions of error are not well correlated with the

errors generated by the CDP model.

Dede et al. Page 18

Neuropsychologia. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


