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Abstract

Both the prevalence and incidence of heart failure (HF) are increasing, especially among African-

Americans, but no large-scale, genome-wide association study (GWAS) of HF-related metabolites

have been reported. We sought to identify novel genetic variants that are associated with

metabolites previously reported to relate to HF incidence. GWASs of three metabolites identified

previously as risk factors for incident HF (pyroglutamine, dihydroxy docosatrienoic acid and

X-11787, being either hydroxy-leucine or hydroxy-isoleucine) were performed in 1260 African-

Americans free of HF at the baseline examination of the Atherosclerosis Risk in Communities

(ARIC) study. A significant association on chromosome 5q33 (rs10463316, MAF = 0.358, p-value

= 1.92×10−10) was identified for pyroglutamine. One region on chromosome 2p13 contained a

nonsynonymous substitution in N-acetyltransferase 8 (NAT8) was associated with X-11787

(rs13538, MAF = 0.481, p-value = 1.71×10−23). The smallest p-value for dihydroxy

docosatrienoic acid was rs4006531 on chromosome 8q24 (MAF = 0.400, p-value = 6.98×10−7).

None of the above SNPs were individually associated with incident HF, but a genetic risk score

(GRS) created by summing the most significant risk alleles from each metabolite detected 11%

greater risk of HF per allele. In summary, we identified three loci associated with previously

reported HF-related metabolites. Further use of metabolomics technology will facilitate replication

of these findings in independent samples.
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Heart failure (HF) is a leading cause of hospitalization among the elderly, and its incidence

and prevalence continue to rise[Haldeman, Croft, Giles, & Rashidee, 1999; Kannel, 2000;

Rich, 1997; Roger et al., 2011]. The pathogenesis of HF includes genetic and environmental

factors, and understanding the role of genetic variations and their interactions with the

environment may improve our understanding of HF onset and progression. Genome-wide

association studies (GWAS) have proven to be a powerful tool for identifying genes and

genomic regions having common sequence variation affecting a trait of interest, such as

HF[Hirschhorn & Daly, 2005].

Metabolomics is the high-throughput study of the small molecule end products of a variety

of chemical processes in a biologic system[Nicholson, Lindon, & Holmes, 1999].

Metabolites are the ultimate downstream product of gene function and environmental

exposures[van der Greef, Stroobant, & van der Heijden, 2004], and thus, may enhance our

understanding of the role of both genes and the environment in the etiology of HF. A

number of studies have reported differences in the metabolome between cases and controls

for a number of common chronic diseases, including cardiovascular disease and HF[Dunn et

al., 2007; Griffin, Atherton, Shockcor, & Atzori, 2011; Tuunanen, Ukkonen, & Knuuti,

2008; T. J. Wang et al., 2011; Z. Wang et al., 2011]. Recent studies combining genetics and

metabolomics have provided novel functional insights related to several chronic diseases,

including cardiovascular disease and type 2 diabetes[Suhre et al., 2011]. To date, no GWAS

has been performed to interrogate the collective roles of genetics and the metabolome in the

onset of incident HF. Zheng et al.[Zheng et al., 2013] identified three metabolites that were

significantly associated with incident HF among African-Americans, including

pyroglutamine, dihydroxy docosatrienoic acid, and the unnamed compound ( X-11787),

which was revealed to be an isoform of either hydroxy-leucine or hydroxy-isoleucine.

Identifying genetic factors that influence the levels of these novel metabolites may provide

insights into their possible identity and function.

Methods

Study populations

The ARIC study is a prospective cohort study designed to ascertain the etiology and

predictors of cardiovascular disease (CVD), which enrolled 15,792 middle-aged adults from

four U.S. communities (Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, MN;

and Washington County, MD) between 1987–1989. A detailed description of the ARIC

study design and methods was published elsewhere[The ARIC investigators, 1989].

Metabolomic profiles were measured in African-Americans randomly selected from the

Jackson, MS field center, who were included in this genome-wide association study of HF-

related metabolites (N = 1,260). African Americans from both Jackson, MS and Forsyth

County, NC free of prevalent HF were analyzed for the associations between incident HF

and top ranking genome-wide significant variants (N = 2,225). Participants were excluded if
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they had prevalent HF, if they were first degree relatives of someone else in the study, if

there were sample handling errors or discrepancies in race or sex between reported data and

genotype data, or if they did not give consent for use of DNA information.

Assessment of Metabolites

Metabolite profiling was completed in June 2010 using fasting serum samples which had

been stored at −80° since collection at the baseline examination in 1986–7. In total,

detection and quantification of 602 metabolites was completed by Metabolon Inc. (Durham,

USA) using an untargeted, gas chromatography-mass spectrometry and liquid

chromatography-mass spectrometry (GC-MS and LC-MS)-based quantification protocol, the

details of which were described elsewhere[Zheng et al., 2013].

Follow-up and HF Ascertainment

Incident HF was defined during follow-up by either (1) a first hospitalization which included

an International Classification of Diseases, 9th revision, discharge code of 428 (428.0 to

428.9) in any position for those without a prior HF hospitalization, or (2) a death certificate

with a 428 (HF) or International Classification of Diseases, 10th revision, code I50 (HF) in

any position[Loehr, Rosamond, Chang, Folsom, & Chambless, 2008; White et al., 1996].

Individuals were followed up for HF events from enrollment (baseline) until death or

December 31, 2008, and those who were lost to follow-up were censored at the date of last

contact.

Genotyping and Imputation

In the ARIC study, autosomal single-nucleotide polymorphisms (SNPs) were genotyped on

the Affymetrix 6.0 chip and were imputed to ≈ 2.5 million SNPs based on a panel of

cosmopolitan reference haplotypes from HapMap CEU and YRI. MACH v1.0 was used to

do imputation and allele dosage information was summarized in the imputation results.

SNPs were excluded if they had no chromosomal location, were monomorphic, had a call

rate < 95%, or had a Hardy-Weinberg equilibrium p-value <10−6. For each SNP, the ratio of

the observed versus expected variance of the dosage were served as the measure of

imputation quality.

Statistical Analyses

The three incident HF-related metabolites identified by Zheng et al.[Zheng et al., 2013] were

treated as continuous variables, and covariates in the model were measured at the time when

the serum samples were obtained in which metabolite levels were later measured. Linear

regression analyses were applied to each metabolite respectively, adjusting for age, sex and

the first 10 principal components derived from the principal components analysis to account

for population stratification[Price et al., 2006]. Individuals with metabolite levels that were

below the detectable limit of the assay were assigned the lowest detected value for that

metabolite in all samples, and all metabolite values were natural log-transformed prior to

analysis. SNP effects were estimated under an additive genetic model. SNPs with minor

allele frequency (MAF) < 5% were excluded. Quantile-quantile (QQ) plots were generated

for each analysis to illustrate the distribution of the observed and expected p-values for all
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eligible SNPs, and regional plots showing linkage disequilibrium (LD) and the location of

nearby genes (if any) were generated for the top ranking SNPs for each metabolite. Genome-

wide significance was defined as a p-value < 5×10−8, and a p-value < 1×10−5 was

considered suggestive evidence for association. If more than one significant or suggestive

SNP clustered at a locus, the SNP with the smallest p-value was reported as the sentinel

marker. The analyses were performed by ProbABEL[Aulchenko, Struchalin, & van Duijn,

2010] and R (www.r-project.org).

To evaluate the cumulative effect of the identified genetic variants, a genetic risk score

(GRS) was constructed by summing the number of risk raising alleles (0/1/2) for the top

ranking genome-wide significant SNP of each metabolite. The proportional hazards

assumption was examined and not rejected according to our assessment using the methods

developed by Grambsch and Therneau[Grambsch & Therneau, 1994] and these analyses

were performed using R (www.r-project.org).

Results

A total of 1,260 African-Americans were involved in the genome-wide association analyses,

and their baseline characteristics are shown in Table 1. In this study, pyroglutamine and

dihydroxy docosatrienoic acid had at least one locus that reached genome-wide significance

(p-value < 5×10−8). The Manhattan plots, QQ plots and detailed information about

statistically significant and suggestive loci are provided in the Supplement Table1–3 and

Figure 1–2.

For pyroglutamine, the most significant SNP that exceeded the genome-wide significant

threshold was rs10463316. (MAF = 0.358, p-value = 1.92 × 10−10) (Figure 1A). rs10463316

is an intergenic SNP located on chromosome 5q33, 18.93 kb from the SLC36A2 gene (solute

carrier family 36, member 2).

One region encompassing two genes on chromosome 2p13 was significantly associated with

X-11787 levels. The top ranking SNP is intergenic (rs6546857, MAF = 0.477, p-value =

9.58 × 10−24) 0.91 kb from ALMS1 (Alstrom syndrome 1). The other gene in this same

region is NAT8 (N-acetyltransferase 8). The sentinel SNP in NAT8 is a missense variant

rs13538 (MAF = 0.481, p-value = 1.71 × 10−23), which causes a serine to phenylalanine

substitution (F143S) within the acetyltransferase domain of N-acetyltransferase 8. These two

SNPs (rs6546857 and rs13538) are in strong linkage disequilibrium (LD) with r2 ≥ 0.8

(Figure 1B). After conditioning on the missense variant, no other SNP in this region was

showed a statistically significant relation to dihydroxy docosatrienoic acid levels (data not

shown).

The SNP with smallest p-value for dihydroxy docosatrienoic acid was rs4006531 on

chromosome 8q24 (MAF = 0.400, p-value = 6.98 × 10−7), 90.48 kb from a hypothetical

gene LOC10013023. No SNP reached the genome-wide significant threshold for this

unnamed metabolite.

The top ranking SNP for each metabolite was chosen to construct a GRS in 2,225 African-

Americans free of HF at the baseline examination who had been monitored for the onset of
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HF for up to 22 years (396 HF events). Baseline characteristics of these individuals are

shown in Table 1. Even though none of these SNPs was significantly related to incident HF

individually, the association between the cumulative GRS and incident HF was statistically

significant in a Cox proportional hazards model after adjusting for traditional risk factors.

(HR = 1.11, 95% CI: 1.02–1.22, p-value = 0.019, Table 2). When a model is fit, that

includes the traditional risk factors, the three metabolites and the GRS, then the GRS is no

longer statistically significant (data not shown), reinforcing that the metabolites are likely a

mediator of these genetic effects.

Discussion

This study utilized an untargeted metabolomics approach combined with genome-wide

association screening in a large, well-defined sample of African-Americans to identify two

genetic loci that influence two HF-related metabolic traits. The gene most likely influencing

pyroglutamine levels is SLC36A2, which is an electrogenic amino acid symporter for amino

acids with small side chains, especially glutamine[Bode, 2001; Boll, Foltz, Rubio-Aliaga,

Kottra, & Daniel, 2002]. Pyroglutamine is a cyclic derivative of glutamine and it is

plausible, but not proven, that variants in SLC36A2 may affect pyroglutamine transport. A

recent family-based study reported interaction between SLC36A2 and SLC6A20, a proline

imino transporter, on the onset of iminoglycinuria[Broer et al., 2008]. Our results provide

new insights into SLC36A2 function at a population level.

We previously explored the identity of metabolite X-11787 which has a likely chemical

formula of C6H13NO3, consistent with the chemical structures of either hydroxy-leucine or

hydroxy-isoleucine[Zheng et al., 2013]. Hydroxy-leucines are oxidized from leucine or

hydroperoxyleucines and provide useful in vivo markers of protein oxidation [Fu & Dean,

1997]. Protein oxidation is implicated in aging and oxidative stress[Berlett & Stadtman,

1997], which is associated with a number of diseases, such as atherosclerosis, hypertension,

diabetes, and chronic kidney disease[de Champlain et al., 2004; Maritim, Sanders, &

Watkins, 2003; Singh & Jialal, 2006; Small, Coombes, Bennett, Johnson, & Gobe, 2012].

The genetic locus influencing X-11787 contains two genes on chromosome 2p13,

ALMS1and NAT8. Mutations in ALMS1 are reported to cause Alström syndrome, a rare

autosomal recessive disease sharing several features with the metabolic syndrome, namely

obesity, hyperinsulinemia, and hypertriglyceridemia [Joy et al., 2007], NAT8 participates in

the development and maintenance of normal kidney and liver function[Ozaki, Fujiwara,

Nakamura, & Takahashi, 1998]. Recent GWAS report that this locus is associated with

kidney function and chronic kidney disease[Chambers et al., 2010; Kottgen et al., 2010].

Given NAT8’s function and the fact that X-11787 has an independent association with

incident HF after adjusting for BMI, glucose levels, lipid levels and kidney function, we

hypothesize that NAT8 influences an underlying, but as yet unknown, process that affects

both HF and kidney disease.

To date, only two studies have used a genome-wide association study approach to localize

genes (or gene regions) associated with incident HF, one including both European

Americans and African Americans and the other in European Americans only[Larson et al.,

2007; Smith et al., 2010]. In this sample of African-Americans from the ARIC study, none
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of the top genetic loci associated with HF were associated with any of the three metabolites

reported previously to be related to incident HF[Zheng et al., 2013]. Therefore, the loci

identified in earlier GWAS most likely have effects outside of biologic pathways

represented in the serum metabolome measured here. The general concept for the occurrence

of common diseases is considered as a result of complex interactions between multiple

genetic and environmental predisposing factors[Hirschhorn & Daly, 2005]. Several recently

studies have shown common genetic variants have joint effects on cardiovascular diseases,

such as CHD[Anderson et al., 2010; Morrison et al., 2007], however such studies on HF is

rare. Our study underscores the potential multifactorial nature of HF.

Strengths and Limitations

This study, to our knowledge, is the first GWAS to reveal genetic risk variants for human

metabolomic profile in African-Americans. In addition, it is the first study to estimate

genetic effects on HF risk via disease related metabolites. Our study also has several

limitations. First, there are no appropriate African-American sample sets with metabolomic

profiles or enough incident HF events that can be used for replication. Second, although

strong signals were detected at several genetic loci, the generalizability of these results has

not been established. Through our internal quality control process, we limited our analyses

to those metabolites with few missing values, and the remaining missing values were

imputed with the lowest observed value. If the very low values were due to genetic

variation, sensitivity of a metabolomic technology may impact the statistical power of these

analyses.

Conclusions

From a panel of three HF-related metabolites, we identified two loci that reached genome-

wide significance for two of the metabolites. These findings contribute to the knowledge-

base of HF physiology and to our understanding of the human metabolic profile. Further use

of metabolomics technology should enable replication of these findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Regional association plots of the top ranking genome-wide significant markers for two

metabolites. (A) Pyroglutamine, (B) X-11787
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Table 1

Characteristics of ARIC African Americans Participants in the Analyses

AAs for 3 HF-related Metabolites GWAS
AAs for Genetic Risk Score Analysis

HF Free Incident HF

Participants, n 1260 1829 396

Incident HF, n (per 1000 person-years) 166 (7.9) - 396 (10.2)

Age, y 52.6 ± 5.6 52.8 ± 5.8 55.2 ± 5.6

Male, n (%) 439 (34.8) 693 (37.9) 161 (40.1)

Prevalent CHD, n (%) 37 (2.9) 38 (2.1) 31 (7.9)

Current smoker, n (%) 326 (25.8) 509 (27.8) 141 (35.6)

Physical activity 6.6 ± 1.4 6.7 ± 1.4 6.2 ± 1.4

Education levels, n (%)

 Grade school or 0 years education 215 (17.1) 287 (15.7) 102 (25.8)

 High school, but no degree 250 (19.8) 361 (19.7) 102 (25.8)

 High school graduate 240 (19.0) 405 (22.1) 76 (19.2)

 Vocational school 65 (5.2) 125 (6.8) 15 (3.8)

 College 219 (17.4) 349 (19.1) 67 (16.9)

 Graduate or Professional school 182 (14.4) 302 (16.5) 34 (8.6)

BMI, kg/m2 29.5 ± 5.9 29.1 ± 5.6 31.6 ± 7.3

SBP, mmHg 127.7 ± 20.8 127.0 ± 19.8 135.3 ± 22.7

Anti-hypertensive medication use, n (%) 475 (37.7) 620 (33.9) 215 (54.3)

Fasting glucose, mmol/L 6.1 ± 2.3 6.1 ± 2.3 8.3 ± 5.0

Prevalent diabetes, n (%) 172 (13.7) 235 (12.8) 157 (39.6)

TC : HDL ratio 4.2 ± 1.5 4.2 ± 1.5 4.8 ± 1.7

Lipid-lowering medication use, n (%) 12 (0.8) 20 (1.1) 6 (1.5)

LVH in electrocardiogram, n (%) 49 (3.9) 63 (3.4) 43 (10.9)

eGFR, mL/min/1.73 m2 104.9 ± 17.1 104.8 ± 17.1 97.6 ± 23.8

AA indicates African Americans; HF, heart failure, CHD, coronary heart disease; BMI, body mass index; SBP, systolic blood pressure; TC:HDL
ratio, serum total cholesterol to high-density-cholesterol lipoprotein ratio; LVH, left ventricular hypertrophy; and eGFR, estimated glomerular
filtration rate.

For continuous variables, mean values ± standard errors are shown.
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