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Objective: During the past decades, increasing efforts have been invested in studies to 
unravel the influence of genetic factors on antipsychotic (AP) dosage, treatment response, 
and occurrence of adverse effects. These studies aimed to improve clinical care by 
predicting outcome of treatment with APs and thus allowing for individualized treatment 
strategies. We highlight most important findings obtained through both candidate gene 
and genome-wide association studies, including pharmacokinetic and pharmacodynamic 
factors. 

Methods: We reviewed studies on pharmacogenetics of AP response and adverse effects 
published on PubMed until early 2012. Owing to the high number of published studies, we 
focused our review on findings that have been replicated in independent studies or are 
supported by meta-analyses. 

Results: Most robust findings were reported for associations between polymorphisms of 
the cytochrome P450 system, the dopamine and the serotonin transmitter systems, and 
dosage, treatment response, and adverse effects, such as AP-induced weight gain or 
tardive dyskinesia. These associations were either detected for specific medications or for 
classes of APs.

Conclusion: First promising and robust results show that pharmacogenetics bear promise 
for a widespread use in future clinical practice. This will likely be achieved by developing 
algorithms that will include many genetic variants. However, further investigation is 
warranted to replicate and validate previous findings, as well as to identify new genetic 
variants involved in AP response and for replication of existing findings.
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La pharmacogénétique des antipsychotiques
Objectif : Au cours des dernières décennies, des efforts croissants ont été déployés 
dans des études visant à percer l’influence des facteurs génétiques sur le dosage des 
antipsychotiques (AP), la réponse au traitement, et la survenue d’effets indésirables. 
Ces études voulaient améliorer les soins cliniques en prédisant le résultat du traitement 
par AP, et en donnant lieu ainsi à des stratégies de traitement individualisées. Nous 
présentons les résultats les plus importants obtenus par des études tant de gènes 
candidats que d’association pangénomique, notamment les facteurs pharmacocinétiques et 
pharmacodynamiques.

Méthodes : Nous avons passé en revue les études sur la pharmacogénétique de la 
réponse aux AP et des effets indésirables publiées dans PubMed jusqu’au début de 
2012. Vu le nombre élevé d’études publiées, notre revue a mis l’accent sur les résultats 
qui ont été reproduits dans des études indépendantes ou qui sont soutenus par des 
méta-analyses.
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Clinical Implications
• Accurate prediction of individual response to AP 

treatment or individual risk for the occurrence of 
adverse effects has not yet been achieved. Large efforts 
have been made to find genetic factors in the hope of 
improving future patient care.

• Some genetic factors have been identified. However, 
valid tests with substantial specificity and sensitivity 
measures have not yet been developed to predict drug 
metabolism, response to treatment, or most adverse 
effects.

• Nonetheless, some results are starting to impact patient 
care through the development of genetic tests.

Limitations
• Lack of independent replication in well-characterized 

samples limits the clinical applicability of most of these 
genetic findings.

• Approaches integrating genome-wide, DNA sequencing, 
epigenetic and environmental factors, methods for 
prediction of treatment response, and occurrence 
of adverse effects are required to allow for a more 
widespread clinical use of pharmacogenetic-based 
algorithms.

Since the first observations in the 1950s suggested 
genetic influences on drug response,1 pharmacogenetic 

studies have rapidly evolved over the past decades. Modern 
laboratory techniques have given insights toward the 
identification of genetic variants influencing drug efficacy, 
metabolism, and occurrence of adverse effects. This is 
giving pharmacogenetics an important role in contemporary 
psychiatric research, strengthening the notion that the 
widespread use of genetic tests will become available in 
future clinical practice.

Besides studies investigating the genetics of outcome 
to antidepressants and mood stabilizers2 (see also the 
In Review paper by Dr Serretti and colleagues3 in this 
issue), large efforts have been undertaken in the area of 
pharmacogenetics of APs. The importance of these efforts is 
increasing because APs are routinely used in the treatment 
not only of schizophrenia and related spectrum disorders 
but also for mood disorders and various other conditions, 
such as obsessive–compulsive disorder, eating disorders, or 
behavioural disturbances, associated with dementia. Specific 
APs may differ regarding alleviating various symptoms; for 
instance, SGAs may be more effective for the treatment of 
negative symptoms. APs also differ in their propensity to 
induce specific adverse effects; for example, SGAs may 
be associated with a higher risk of significant metabolic 
disturbances but a lower risk of TD, compared with FGAs.4 
More importantly, large interindividual differences exist 
among patients. These differences cannot be predicted 
clinically but they can have serious consequences leading 
to repeated medication switches owing to intolerability 
or lack of efficacy. This issue is of particular relevance in 
patients with schizophrenia who need to be treated over a 
long period of time and whose adherence is hampered by 
adverse effects.5 Also, treatment resistance (that is, a lack 
of adequate response to medication) occurs in up to 40% 
of these patients.6 The possibility of meaningful prediction 
of individual responses and risks of adverse effects would, 
therefore, represent a milestone in AP pharmacotherapy.
To date, only a limited number of factors have been 
identified that are described to be either positively or 
negatively correlated with outcome of AP treatment. 
Among those are demographic factors (for example, family 
history, ethnicity, and gender), clinical factors (for example, 

duration of untreated psychosis and early response to APs), 
and environmental factors (for example, smoking habits, 
concomitant treatment, and diet).7 The potential influence 
of genetic factors is underpinned by different studies 
demonstrating similar treatment response and occurrence 
of adverse effects in monozygotic twins or first-degree 
relatives.8–12

Most studies conducted to date have used a candidate 
gene approach, investigating SNPs or changes in larger 
DNA segments of a gene considered to be involved in 
the mechanisms of medication response or in a given 
adverse effect. With further development of laboratory 
techniques, GWASs and next-generation sequencing are 
being applied to pharmacogenetic research. Although there 
are some inconsistencies in the results of some studies, 
efforts are being made to transfer some promising findings 
into clinical practice. Our article reviews the most robust 
pharmacogenetic results, including pharmacokinetic and 
pharmacodynamic factors, relevant to APs.

Résultats : Les résultats les plus fiables ont été rapportés pour des associations entre 
les polymorphismes du système du cytochrome P-450, les systèmes des transmetteurs 
de la dopamine et la sérotonine, et le dosage, la réponse au traitement, et les effets 
indésirables, comme la prise de poids ou la dyskinésie tardive induites par les AP. Ces 
associations ont été détectées pour des médicaments spécifiques ou pour des classes 
d’AP.

Conclusion : Les premiers résultats prometteurs et solides montrent que la 
pharmacogénétique porte la promesse d’une large utilisation dans une future 
pratique clinique. Ceci se réalisera probablement en développant des algorithmes 
qui comporteront de nombreuses variantes génétiques. Cependant, il faut d’autres 
recherches pour reproduire et valider les résultats précédents, et pour identifier des 
nouvelles variantes génétiques impliquées dans la réponse aux AP, et pour reproduire les 
résultats existants.
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Abbreviations
5-HT 5-hydroxytryptamine (serotonin)

AIWG AP-induced weight gain

AP antipsychotic

ATP adenosine triphosphate

bp base pair

CATIE Clinical Antipsychotic Trials of Intervention Effectiveness

CIA clozapine-induced agranulocytosis

COMT catechol-O-methyltransferase

CYP cytochrome P450

CYP1A2 CYP, family 1, subfamily A, polypeptide 2

CYP2C19 CYP, family 2, subfamily C, polypeptide 19

CYP2D6 CYP, family 2, subfamily D, polypeptide 6

CYP3A4 CYP, family 3, subfamily A, polypeptide 4

Cys cysteine

DA dopamine

del deletion

DNA deoxyribonucleic acid

DRB5 MHC, class II, DR beta 5

DRD DA receptor D

EPS extra pyramidal symptom

FGA first-generation AP

GFRA glial cell derived neurotrophic factor family  
 receptor alpha

Gly glycine

GNB3 guanine nucleotide binding protein (G protein),  
 beta polypeptide 3

GWAS genome-wide association study

HLA human leukocyte antigen

HTR2A 5-HT receptor 2A, G protein-coupled

HTR2C 5-HT receptor 2C, G protein-coupled

IM intermediate metabolizer

ins insertion

MC4R melanocortin 4 receptor

MDR1 multi-drug resistance gene 1

Met methionine

MHC major histocompatibility complex

P-gp permeability glycoprotein 

PM poor metabolizer

rs reference SNP

SLC solute carrier

Ser serine

SGA second-generation AP

SNP single-nucleotide polymorphism

TD tardive dyskinesia

TNF tumour necrosis factor

Tyr tyrosine

UM ultra-rapid metabolizer

Val valine

Methods
We reviewed studies on pharmacogenetics of AP response 
and adverse effects published on PubMed until January 
2012. Owing to the large amount of available literature, a 
detailed summary of all studies would go beyond the scope 
of our review. Also, several recent reviews have focused 
on AP response and adverse events.7,13–15  Thus we focused 
our review on pharmacogenetics findings that have been 
replicated in independent studies or are supported by meta-
analyses. We also included selected studies that highlight 
new and promising candidate genes in relevant pathways.

Genetics and Pharmacokinetic Factors

Cytochrome Enzymes
Most psychotropics, including APs, are metabolized 
by cytochrome enzymes, mainly members of the CYP 
family, which includes CYP1A2, CYP2D6, CYP3A4, 
and CYP2C19. Besides environmental factors, such as 
induction of the CYP1A2 enzyme by smoking, genetic 
variation contributes to the variability in enzyme activity 
and drug metabolism. The genes encoding CYP enzymes 
can be highly polymorphic,16 with more than 80 genetic 
variations known in CYP2D6. For this gene, a distinction 
is made among extensive metabolizers, with normal 
enzyme activity having 2 functional alleles; PMs, with 
low enzyme activity caused by 2 nonfunctional alleles; 
IMs, with intermediate activity carrying 2 partly defective 
alleles or 1 nonfunctional allele; and UMs, with more than 
2 functional alleles. Similarly, an activity score system was 
recently proposed.17 The main polymorphisms causing 
defective alleles in the population of European descent are 
CYP2D6*3, CYP2D6*4, CYP2D6*5, and CYP2D6*6.18 
Genotype distribution differs considerably between 
ethnicities: 1% to 2% of Europeans are UMs and 5% to 
10% are PMs, whereas only 1% to 2% of Asians are PMs, 
while 30% to 40% of the population in North Africa are 
UMs but only 1% are PMs.19 Metabolizer status highly 
influences the required dosage of substances; for example, 
it has been demonstrated that carriers of CYP2D6 defective 
allele (that is, *3, *4, *5, and *6) can have up to 80% 
higher serum concentrations of risperidone, compared with 
homozygous carriers of the wildtype CYP2D6*1.20 The *1F 
polymorphism in CYP1A2 seems to be related to higher 
inducibility of the enzyme by smoking, leading to reduced 
clozapine plasma levels.21 Polymorphisms in CYP2C19 and 
CYP3A4 have also been reported to affect clozapine plasma 
levels.22,23

These data suggest that CYP polymorphisms may affect 
treatment response. However, there are only a few studies 
with positive findings, most likely because plasma levels 
of APs often do not correlate with treatment response. For 
CYP1A2, the *1F polymorphism has been associated with 
poorer treatment response to clozapine and olanzapine.24–26 
One other study27 indicated a weak effect of CYP3A4 
polymorphisms on risperidone response. A recent study by 
Bigos et al28 reported a highly significant influence of the 
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marker rs472660 in CYP3A43, a member of the CYP3A4 
enzyme family encoding the CYP family 3, subfamily A, 
polypeptide 43, on olanzapine clearance and response. 
By contrast, several studies investigating the influence 
of CYP2D6 polymorphisms on olanzapine response have 
reported no associations.29–32

There are more data available indicating an impact of CYP 
polymorphisms on side effects: CYP2D6*3, CYP2D6*4, 
and CYP2D6*10, but not CYP1A2*1F, have been associated 
with increased AIWG.24,33,34

Today, most evidence exists for an influence of CYP 
polymorphisms on motor adverse effects of APs, such as TD. 
Although some studies reported negative findings,35–38 there 
is growing evidence that CYP2D6 PMs are at higher risk 
of developing acute EPSs39,40 or TD41–43 (see reviews13,44,45). 
Some studies have also associated CYP1A2*1F with TD,42,46 
but other studies and a meta-analysis have yielded negative 
findings.47,48

In summary, genetic variation in CYP genes seems to exert 
a stronger influence on plasma levels and the occurrence 
of adverse effects than on medication response. As 
sample sizes of many studies are small and these studies 
have been performed using different medications and 
protocols, further investigation is warranted to fully assess 
clinical implications of these findings. Further, there is 
still a paucity of studies assessing the cost-effectiveness 
of CYP genotyping in daily practice,19,45,49 and further 
pharmacoeconomic investigations are needed. Despite these 
limitations, first steps to bring pharmacogenetics advances 
into clinical practice have been undertaken by offering 
tests for CYP2D6 and CYP2D19 usable for medication 
monitoring.50 For information regarding ongoing related 

investigations in Canada, please see the Pharmacogenetics 
Research Clinic website.51,52

Blood–Brain Barrier Transporters
P-gp is a member of the ATP-binding cassette transporters 
and is involved in the transmembrane efflux of different 
substrates, including toxins, peptides, and medications. 
P-gps are located in different organs, including the blood–
brain barrier, where they pump medications back into 
the plasma.53 An altered transporter activity influences 
intracerebral drug concentration and may thereby impact 
on treatment response as well. Polymorphisms in the 
encoding gene MDR1 (synonymous with ABCB1, ATP-
binding cassette, subfamily B [MDR/transporter associated 
with antigen processing], member 1 gene) have been 
investigated in several studies. Although there are negative 
findings,54,55 some positive findings exist for the G2677T/A 
and C3435T polymorphisms. Contradictory results have 
been reported, with studies showing better treatment 
response of T allele carriers of both polymorphisms,56 while 
others reported worse response in the T allele carriers of 
C3435T.57,58 Other studies found no association in the 
above-mentioned polymorphisms but had positive results 
for C1236T.59 Overall, despite ambiguous evidence for 
the role of MDR1 polymorphisms in treatment response, 
probably owing to yet undetected confounding variables 
(for example, ethnicity), a role of this gene is likely and 
awaits further clarification.
Regarding AP-induced adverse effects, there has been one 
study showing no association of MDR1 polymorphisms 
with TD,60 one study demonstrating an association with a 
specific haplotype and TD,61 and one study indicating an 
influence of MDR1 genotypes on the occurrence of EPSs,30 

Table 1  Polymorphisms associated with AP treatment response supported by a meta-analysis or by 3 or more 
studies reporting the same allele association
Gene Polymorphism Main association finding Study

CYP1A2 *1F *1F/*1F genotype associated with lower plasma 
concentrations and lower response

Laika et al,24 Ozdemir et al,25 Eap et al26

DRD2 –141C ins/del Del allele is associated with poorer response Lencz et al,66 Wu et al,67 Zhang et al68

TaqIA A1 allele associated with better response in some 
studies; but a meta-analysis showed negative results

Suzuki et al,70 Schafer et al,71 
Yamanouchi et al,72 Zhang et al68

DRD3 Ser9Gly Meta-analysis with trend for lower response in Ser-allele 
carriers

Hwang et al76

HTR2A –1438G/A G allele was associated with poorer response Arranz et al,84 Ellingrod et al,85 Chen 
et al177

102T/C T allele was associated with better response in a meta-
analysis

Arranz et al88

His452Tyr Tyr allele was reported to be associated with poor 
response

Arranz et al,88 Arranz et al,178 Masellis 
et al179

5-HTT 5-HTTLPR Short-allele was demonstrated to be associated with 
poorer treatment response

Dolzan et al,95 Arranz et al,96 
Vazquez-Bourgon et al97

COMT Val(108/158)Met Better improvement of cognitive function was associated 
with Met allele

Bertolino et al,104 Woodward et al,105 
Bertolino et al180
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while another study could not find an association with 
EPSs.55 There are also hints of an influence of MDR1 on 
weight gain62 and metabolic disturbances caused by APs.63 
Overall, more studies are needed to assess the role of MDR1 
polymorphisms in the occurrence of adverse effects.

Genetics and Pharmacodynamic Factors of 
Treatment Response
The DA System
The antidopaminergic effect of FGA and SGA is thought 
to be their main mechanism of action.64 Therefore, genetic 
variation in DA receptors influencing receptor density, 
expression, and activity of the receptor may be an essential 
factor in regulation of individual treatment response.
As all APs block D2 receptors,65 polymorphisms in the 
DRD2 gene have been investigated most intensively. 
The del allele of the –141C ins/del polymorphism in the 
promoter region is assumed to reduce D2 density and 
activity. In several studies, the del allele was associated 
with poorer response to AP treatment, for example, see 
Lencz et al66 and Wu et al.67 This finding has been confirmed 
by a recent meta-analysis,68 despite some studies that failed 
to find an association with treatment response (for example, 
see Xing et al69). The A1 allele of TaqIA polymorphism, 
which is located 10 kilobases downstream DRD2, leads 
to reduced gene expression and was therefore also 
hypothesized to influence treatment response. However, 
previous studies have reported inconsistent findings: while 
some studies indicated that A170–72 or A273 are associated 
with better treatment response, the above-mentioned meta-
analysis68 did not detect any association. Also for other 
DRD2 polymorphisms, for example, TaqIB,74 Ser311Cys,75 
or A-241G,66 a few studies have reported associations, but 
contradictory results and lack of replication make further 
investigations necessary.
In DRD3, the Gly9 variant of the Ser9Gly polymorphism, 
changes D3 receptor density. Thus this impact of this variant 
on AP treatment response has been studied extensively, 
with at least 18 published studies.13 While some studies 
have indicated better response of the Ser allele, a meta-
analysis has reported a nonsignificant trend toward lower 
response in carriers of Ser allele.76 Because clozapine also 
binds to D4 receptors, a 48-bp variable number tandem 
repeat in the DRD4 gene has been investigated in several 
studies. However, findings have been contradictory,77,78 and 
many studies have yielded negative results (for example, 
see Rietschel et al79 and Ikeda et al80); the role of the 
polymorphism in treatment response is not fully resolved, 
to date. Polymorphisms of the DRD181 and DRD580 genes 
have not yet been investigated intensively and their clinical 
relevance needs to be demonstrated in future studies.

The 5-HT System
Because of the higher affinity of SGAs to 5-HT receptors, 
compared with FGAs, genes in the serotonergic transmitter 
system are interesting candidates for investigation of 
AP treatment response. Several studies have focused on 

polymorphisms in HTR2A, the gene encoding 5-HT2A 
receptors. The functional –1438A/G SNP in the promoter 
region of the gene and the SNP 102T/C are in high linkage 
disequlibrium with each other82 and –1438A/G has been 
demonstrated to influence promoter activity.83 Association 
studies have repeatedly indicated poorer treatment response 
in G allele carriers of the –1438A/G SNP,84,85 although there 
are negative findings71 and a study showing better response 
in G allele carriers.86 Regarding the 102T/C marker, results 
are less consistent with some studies (see Anttila et al87) and 
an early meta-analysis focusing on clozapine demonstrating 
better response in T allele carriers,88 while later studies 
investigating other APs found no association80 or association 
of the C allele with better symptom improvement.89 
Another polymorphism repeatedly investigated in HTR2A 
is His452Tyr (histidine and Tyr at the 452nd amino acid): 
the Tyr allele seems to be associated with poorer treatment 
response,88 but this has not been observed in all studies.90

In HTR2C, encoding 5-HT2C receptors, the C/C genotype 
of the –759C/T SNP, which has been shown to lead to 
reduced transcription,91 was described to be associated 
with improvement of negative symptoms in one study.92 
Also, association of the Ser allele of Cys23Ser has been 
reported once,93 but all other studies90,94 have failed to 
replicate this finding, indicating no major role of the 
SNP in treatment response. In the gene encoding solute 
carrier family 6 (neurotransmitter transporter), member 4 
(SLC6A4, synonymous with 5-HTT) 5-HT transporters, 
which terminate 5-HT action by transporting it back into 
the presynaptic neuron, an association of the short allele 
of the 44-bp ins/del polymorphism serotonin-transporter-
linked polymorphic region (commonly referred to as 
5-HTTLPR) with poorer AP response has consistently been 
demonstrated.95–97

Further association with AP treatment response has been 
described for the G allele of –1019C/G SNP in 5-HT 
receptor 1A, G protein-coupled (HTR1A), encoding 5-HT1A 
receptors,98,99 for polymorphisms in the genes encoding 
subtypes 3A, B, and E of 5-HT3 receptors100,101 and for the 
267C/T SNP in the gene encoding 5-HT6 receptors.102,103 
However, this last finding has not been confirmed in all 
studies.80

Other Systems
Other candidate genes that may be involved in regulation of 
individual treatment response to APs have not been studied 
as extensively as the above-mentioned genes. However, 
several studies have suggested an association between 
response and several genetic variants. For example, the 
COMT gene encodes catechol-O-methyltransferase, 
which is involved in the degradation of monoamines. The 
Val(108/158)Met polymorphism of this gene influences 
activity of the enzyme, which is less active in Met/Met 
carriers. The Met allele has been repeatedly associated with 
better improvement of cognitive function104,105 during AP 
treatment, compared with the Val allele. Other studies106 
have found no association or reported an association of 
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the Val allele with better response.107 Therefore, the role 
of the Val(108/158)Met SNP in the regulation of treatment 
response is not yet fully understood and deserves further 
study.
Further, studies reported associations in GNB3, encoding 
the β-subunit of G-protein, with the T allele of the –825C/T 
polymorphism leading to worse treatment response,108,109 
and in the genes encoding brain-derived neurotrophic 
factor,110,111 GFRA,112 oxytocin,113 and TNF114; however, 
those genes need to be studies more extensively.
In summary, candidate gene studies have delivered some 
promising results, consisting mainly of associations between 
genes involved in the DA system and overall treatment 
response or between genes involved in the serotonergic 
system and improvement of negative symptoms (Table 1). 
Therefore, findings suggest a clinical impact of those genetic 
variants. However, given the relatively small sample sizes 
and inconsistent results, further studies with larger sample 
sizes and more homogenous studies are needed before these 
findings can be incorporated in clinical algorithms.

Genome-Wide Association Studies
During the past few years, the development of technolo-
gies has facilitated the investigation of polymorphisms in 
the whole genome through GWASs. Studies investigating 
the CATIE sample5 have reported the association of an  
intergenetic SNP on chromosome 4p15 with response to 
APs. Also, borderline significant results have been report-
ed for SNPs in the ankyrin repeat and sterile alpha motif  
domain containing 1B (ANKS1B) and contactin associated 
protein-like 5 (CNTNAP5) genes115 as well as association of  
6 SNPs in or near to the ets homologous factor (EHF), solute 
carrier family 26 (anion exchanger), member 9 (SLC26A9), 
DRD2, G protein-coupled receptor 137B (GPR137B),  
carbohydrate (N-acetylgalactosamine 4-0) sulfotransfer-
ase 8 (CHST8), and interleukin 1, alpha (IL1A) genes.116 In  
other samples, ATPase, Ca++ transporting, plasma mem-
brane 2 (ATP2B2), heparan sulfate (glucosamine) 3-O-
sulfotransferase 2 (HS3ST2), unc-5 homolog C (C elegans) 
(UNC5C), BCL2-associated athanogene 3 (BAG3), phos-
phodiesterase 7B (PDE7B), phosphoribosylaminoimid-
azole carboxylase, phosphoribosylaminoimidazole suc-
cinocarboxamide synthetase (PAICS), prostaglandin F2 
receptor inhibitor (PTGFRN), nuclear receptor subfamily 3, 
group C, member 2 (NR3C2), zinc finger and BTB domain  
containing 20 (ZBTB20), ST6 beta-galactosamide alpha-2,6-
sialyltranferase 2 (ST6GAL2), phosphatidylinositol-4- 
phosphate 5-kinase, type I, beta (PIP5K1B), ephrin receptor 
type A6 (EPHA6), potassium voltage-gated channel, sub-
family H (eag-related), member 5 (KCNH5), and adherens 
junctions associated protein 1 (AJAP1) have been reported 
to be associated with response to risperidone.117 Similarly, 
SNPs within neuronal PAS domain protein 3 (NPAS3), XK, 
Kell blood group complex subunit-related family, member  
4 (XKR4), tenascin R (TNR), glutamate receptor, iono-
tropic, AMPA 4 (GRIA4), GFRA2, and the nudix (nucleo-
side diphosphate linked moiety X)-type motif 9 pseudogene 

1 (NUDT9P1) located in the 5-HT receptor 7, adenylate 
cyclase-coupled (HTR7) gene have been reported to be  
associated with response to iloperidone.118 In summary, 
hypothesis-free GWASs have yielded numerous interesting 
findings that warrant further investigation.

Genetics and Pharmacodynamic Factors of 
Adverse Effects
Antipsychotic-Induced Weight Gain
AIWG is observed in up to 30% of patients treated with 
SGAs. Owing to the higher morbidity and mortality 
associated with obesity and metabolic syndrome, as well 
as the social stigmatization and noncompliance that arises 
from weight gain (extensively reviewed elsewhere14,119), 
this serious adverse effect needs special consideration in 
clinical practice. However, there is a large variation in the 
propensity of various APs to cause AIWG,120 with olanzapine 
and clozapine causing the most extensive amount of weight 
gain. Interindividual variability is also influenced by clinical 
factors, such as sex, baseline weight, and age. However, 
there are no reliable clinical predictors available in clinical 
practice. As results of twin studies indicate a genetic 
influence on AIWG,11,12,121 numerous candidate studies have 
been performed during the past few years. Most consistent 
findings exist for an association between polymorphisms of 
the HTR2C gene and AIWG. The functional polymorphism 
–759C/T122 has repeatedly been shown to influence AIWG, 
with the C allele being overrepresented in patients with 
higher AIWG (for example, see Reynolds et al,123 Miller 
et al,124 and Opgen-Rhein et al,125 including 2 meta-
analyses, see De Luca et al126 and Sicard et al127). Although 
negative findings have been reported,128,129 with one study 
indicating the opposite allele as a risk variant,130 to date, the 
role of this polymorphism is supported by the most robust 
studies. Other HTR2C polymorphisms have been shown to 
be associated with AIWG as well, including the –995G/A, 
–1165A/G,125 and Cys23Ser polymorphisms as part of a 
high risk haplotype.127

Leptin plays a major role in energy homoeostasis. The 
–2548A/G polymorphism in the encoding gene leptin 
(LEP) has been shown to impact on AIWG, with the G 
allele being the risk allele in some but not in all studies.131,132 
Nonetheless, negative findings (for example, see Opgen-
Rhein et al125; for review, see Lett et al14 and Lee and 
Bishop133) hamper the assessment of the clinical impact of 
this polymorphism. Other replicated associations include 
Ddell, Mnll, and Tail polymorphisms in synaptosomal-
associated protein, 25kDa (SNAP25),134,135 and in the gene 
encoding alpha-2-adrenergic receptor, adrenoceptor alpha 
2A (ADRA2A), with the G/G genotype of –1291C/G being 
at higher risk for AIWG.136,137 Similarly, the T allele carriers 
of the –825C/T polymorphism in the gene encoding β3-
subunit of G-protein receptors, that is, GNB3, are at higher 
risk for AIWG.129,138 Other reported associations, such as 
polymorphisms in insulin-induced gene 2 (INSIG2),139 
have failed to be replicated in other samples.125,140 Recent 
studies indicate an influence of DRD2 polymorphisms,141,142 
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cholecystokinin B receptors,143 and adiponectin.144 A 
systematic analysis of the DA D1–D5 receptors and the 
association with weight gain reported a significant finding 
for the 957C/T polymorphism and 2 weak signals for DRD3 
polymorphisms.142 Most recent data indicate a strong effect 
in the region of MC4R, the gene encoding the melanocortin 4 
receptor, on development of obesity.145 A GWAS in a cohort 
of drug-naive adolescents showed significant association of 
an SNP near this gene with weight gain induced by several 
APs, which was replicated independently by our group.146 
In a different study, our group has also shown a significant 
association of another SNP in the promoter region of MC4R 
with AIWG.147

A recent GWAS found significant associations of AIWG 
with SNPs in the Meis homeobox 2  (MEIS2), protein kinase, 
cyclic adenosine monophosphate-dependent, regulatory, 
type II, beta (PRKAR2B), G protein-coupled receptor 
98 (GPR98), formin homology 2 domain containing 3 
(FHOD3), ring finger protein 144A (RNF144A), astrotactin 
2 (ASTN2), sex determining region Y-box 5 (SOX5), 
and activating transcription factor 7 interacting protein 2  
(ATF7IP2) genes148 but these findings have not yet been 
replicated in other studies. Thus further investigation 
remains necessary. Table 2 presents a summary of the 
most important genetic findings regarding AIWG. Overall, 
except for the polymorphism –759C/T of HTR2C, with 
most robust findings obtained in a large number of studies, 
genetic findings regarding AIWG are not yet applicable in 
clinical practice.

Agranulocytosis
Agranulocytosis is a serious adverse effect occurring with 
a wide range of psychotropic medications. While clozapine 
is the most effective medication for treatment-resistant 
schizophrenia,15 it is associated with an incidence of up to 
2% of agranulocytosis. Hypothesized mechanisms of CIA 
include immune-mediated response against neutrophils, 
enhanced release or destruction of neutrophils, and direct 
toxicity against bone marrow stromal cells.149 Association 
studies investigating genetic factors of CIA have mainly 
focused on genes building the HLA system. Positive findings 
exist for the HLA-B38 marker, which is overrepresented in 
patients affected by CIA as well as a haplotype consisting 
of HLA-B38, DR4, and DQw3.150 Other HLA-antigens 
associated with CIA include HLA-DRB5*0201 and HLA-
Cw-7 and haplotypes with HLA-Cw-B and HLA-DRB5-
DRB4.151 In addition, other genes for non-HLA components 
of the MHC have been investigated. For both TNF and 
heat shock protein replicated positive findings have been 
reported.15 There are also associations for genes that are not 
part of the MHC, for example, myeloperoxidase (MPO) 
and nicotinamide adenine dinucleotide phosphate-oxidase 
gene polymorphisms.152,153 First steps toward a clinical use 
have been made by the temporary release of a commercial 
test-kit in 2007, that is, PGxPredict:CLOZAPINE (Clinical 
Data, Inc, New Haven, CT), which included the 6672G/C 
polymorphism in MHC, class II, DQ beta 1 (HLA-DQB1) 
for detection of high-risk patients carrying the C allele, with 
high specificity of 98.4% but a low of sensitivity of 21.5%.

Table 2  Polymorphisms associated with AIWS or EPSs supported by a meta-analysis or by 3 or more studies 
reporting the same allele association
Gene Polymorphism Main association finding Study

CYP2D6 metabolizer status PMs were at higher risk for EPSs in several 
studies

Kobylecki et al,41 Fu et al,42 Patsopoulos 
et al43

HTR2C –759C/T Two meta-analyzes reported C allele to be 
associated with larger AIWG

Sicard et al,127 De Luca et al181

LEP –2548A/G G allele was associated with higher AIWG in most 
studies; others showed A allele to be associated

Ellingrod et al,131 Zhang et al,132 Templeman 
et al182; Zhang et al183

GNB3 –825C/T T allele was associated with higher AIWG in 
several studies, and with a nonsignificant trend in a 
meta-analysis

Ujike et al,129 Wang et al,138 Souza et al184

DRD2 TaqIA A2 allele was associated with higher risk for TD in 
2 meta-analyzes

Bakker et al,48 Zai et al154

DRD3 Ser9Gly Gly allele was associated with higher risk for TD in 
several studies

de Leon et al,60 Steen et al,155 Al Hadithy 
et al,156 Lerer et al,157 Bakker et al158

HTR2A T102C C allele was associated with TD in a meta-analysis Bakker et al,48 Lerer et al164

COMT Val(108/158)Met Met allele was protective against TD in a 
meta-analysis

Bakker et al48

MnSOD Ala-9Val Val allele was protective against TD in a 
meta-analysis

Bakker et al48

Ala = alanine
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TD and EPSs
TD is a serious adverse effect that occurs in roughly 25% of 
all AP-treated patients. FGAs bear a much higher risk for the 
development of TD than SGAs. Clinical risk factors include 
advanced age, dose and duration of medication, and sex.45 
Familial occurrence points to a genetic influence on TD.10 
Candidate genes for TD have been extensively investigated 
during the past 2 decades, and there are numerous studies 
supporting the hypothesis of a genetic implication. Besides 
positive findings for pharmacokinetic factors (see above), 
there is growing evidence for pharmacodynamic factors 
having an impact on TD.
In DRD2, an increased risk for the development of TD has 
been described for carriers of the A2 allele of the TaqIA 
polymorphism in 2 meta-analyzes,48,154 although more 
studies have delivered negative findings than positive ones.13 
Most robust findings exist for the Ser9Gly polymorphism in 
DRD3, with the Gly allele being associated with higher risk 
of TD in different ethnicities (for examples, see de Leon 
et al,60 Steen et al,155 Al Hadithy,156 Lerer et al,157 and Bakker 
et al158). Nonetheless, results are not unambiguous as 
negative results also exist,38,159,160 and one study indicated the 
opposite allele as risk variant.161 DRD4 has not been studied 
as extensively as DRD2 and DRD3. Nonetheless, there 
have been positive findings for DRD4 polymorphisms,162,163 
which need further replication. Several studies have 
reported associations for polymorphisms in serotonergic 
genes. A meta-analysis found an association of the C 
allele in the 102T/C polymorphism of HTR2A with TD.164 
Nonetheless, there are numerous negative findings for this 
SNP as well (for example, see Wilffert et al165). Studies 
also reported positive results with the –1438G/A166 in 
HTR2A and the Cys23Ser polymorphism in HTR2C (for 
example, see Al Hadithy et al156). As there are many studies 
with negative findings,38,167 further studies of 5-HT genes 
remain necessary to evaluate their role in the development 
of TD. Other significant findings in meta-analyses exist for 
the Val(108/158)Met polymorphism in COMT48 (with the 
Met allele being protective against TD) and for manganese 
superoxide dismutase (MnSOD)44 (with the Val allele of 
alanine (Ala-9Val) polymorphism being protective against 
TD48). There are single reports of positive results for a few 
other genes, including different COMT polymorphisms,168 
glycogen synthase kinase 3 beta (GSK3B), linked to 
dopaminergic signalling,169 and nitric oxide synthase 3 
(endothelial cell) (NOS3).170

There has also been reports of an influence of regulator 
of G-protein signalling 2, 24kDa (RGS2) polymorphisms 
on EPSs.171,172 A GWAS analyzing the CATIE sample5,173 
reported associations in the gene encoding zinc finger 
protein 202, (ZNF202), in GLI family zinc finger 2 (GLI2), a 
gene encoding a transcription factor involved in embryonal 
development of the dopaminergic system,174 and statistical 
trends for other genes.175

In summary, several candidate genes have been found 
to be involved in TD, and the most robust findings were 
obtained in dopaminergic genes. Table 2 summarizes the 

most important genetic findings. As TD and EPSs are 
mainly mediated by the influence of APs on the DA system, 
those findings are hardly surprising. However, to date, there 
is no definite evidence on the genetics of TD, and further 
research is needed to develop predictive tests that can be 
used in clinical practice.

Summary and Outlook
During the past 20 years, pharmacogenetic studies have 
identified many genetic variants implicated in serum levels, 
response to APs, and occurrence of adverse effects. While 
some of these results have been replicated in independent 
samples, and therefore are likely to represent true 
associations, negative studies have also been published, 
albeit, often in smaller and likely underpowered studies. 
Currently, most promising findings involve associations 
between DA receptor polymorphisms and response, or 
HTR2C SNPs and AIWG. There are several possible 
explanations for these inconsistencies: differences in study 
design, small effect sizes of most SNPs, small sample 
sizes, incomplete coverage of most genes, lack of control 
of environmental and clinical confounders, or varying 
definition of outcome parameters. Conflicting results 
may also be due to an insufficient incorporation of gene–
gene and gene–environment interactions. Therefore, new 
approaches, beyond candidate gene studies and GWASs 
are needed: DNA-sequencing, gene expression studies, 
novel bioinformatic approaches, animal studies, epigenetic 
approaches, and large and prospectively assessed samples 
will illuminate underlying genetic mechanisms.
Although widespread clinical use of pharmacogenetics 
will likely take several more years of investigation, some 
findings are starting to be clinically applied. These include 
the assessment of drug metabolizer status and inclusion of 
other pharmacodynamics genes with promising findings 
showing superiority to treatment as usual.176

Those tests are still relatively expensive and need to be 
improved by adding more gene variants. They also need 
to be implemented in ways that allow their use in clinical 
routine (that is, rapid processing and convenient costs), and 
physicians need to learn how to use their results in their 
practice. However, the clinical availability of these few tests 
suggests that pharmacogenetics is becoming a reality in 
patient care and will help to individualize and substantially 
improve treatment in the near future.
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