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Using RNA sequencing technology and de novo transcriptome assembly, we compared representative sets of wild and
domesticated accessions of common bean (Phaseolus vulgaris) from Mesoamerica. RNA was extracted at the first true-leaf
stage, and de novo assembly was used to develop a reference transcriptome; the final data set consists of ;190,000 single
nucleotide polymorphisms from 27,243 contigs in expressed genomic regions. A drastic reduction in nucleotide diversity
(;60%) is evident for the domesticated form, compared with the wild form, and almost 50% of the contigs that are
polymorphic were brought to fixation by domestication. In parallel, the effects of domestication decreased the diversity of
gene expression (18%). While the coexpression networks for the wild and domesticated accessions demonstrate similar
seminal network properties, they show distinct community structures that are enriched for different molecular functions.
After simulating the demographic dynamics during domestication, we found that 9% of the genes were actively selected
during domestication. We also show that selection induced a further reduction in the diversity of gene expression (26%) and
was associated with 5-fold enrichment of differentially expressed genes. While there is substantial evidence of positive
selection associated with domestication, in a few cases, this selection has increased the nucleotide diversity in the
domesticated pool at target loci associated with abiotic stress responses, flowering time, and morphology.

INTRODUCTION

Plant domestication has long stimulated scientific interest. As
stated by Charles Darwin, domestication can be considered a gi-
ant evolutionary experiment (Darwin, 1875), while from a plant-
breeding perspective, understanding domestication is key to the

development of breeding strategies and the identification of
useful genetic variants.
Selection related to domestication has modified a number of

traits that now distinguish the modern crops from their wild
forms. These common features of many crop species contribute
collectively to the “domestication syndrome” (Gepts and Papa,
2002), and they include the size, shape, and color of the plant
organs used by humans (e.g., of seeds, fruit, and leaves) and
seed dispersal (e.g., shattering, dormancy). Indeed, while in-
creased seed and fruit size has been the most impressive
change from the wild to the domesticated forms, the loss of
seed dispersal mechanisms represents a major factor that has
reduced the fitness of domesticated plants in the wild environ-
ment and has thus prevented these plants from reproducing
outside the agro-ecosystem.
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The population genetics model of domestication predicts
a reduction in diversity and increased divergence between wild
and domesticated populations due to demographic factors af-
fecting the whole genome and selection at target loci (Glémin
and Bataillon, 2009). Allogamous species, such as maize (Zea
mays), are generally characterized by a lower genetic bottleneck
effect compared with autogamous species like the common
bean (Phaseolus vulgaris) (Bitocchi et al., 2013). In particular,
resequencing data have confirmed that in autogamous species,
such as soybean (Glycine max) and rice (Oryza sativa ssp ja-
ponica) (Lam et al., 2010; Xu et al., 2012), a reduction in diversity
has arisen as an effect of domestication, as also reported for the
silkworm (Bombyx) and for mammalian species (Xia et al., 2009;
Vonholdt et al., 2010; Lippold et al., 2011).

Signatures of selection during domestication have been
reported for 2 to 4% of genes expressed in maize (Wright et al.,
2005) and for 7.6% of the maize genome (Hufford et al., 2012).
This finding suggests a prominent role for the combined effects
of selection, drift, and reduction of effective recombination at
loci linked to the selection targets. A strong hitchhiking effect
(Smith and Haigh, 1974) has also been suggested for rice (Lu
et al., 2006) and common bean (Papa et al., 2007), which supports
the concept that domestication has had larger effects compared
with those that can be explained solely by effects of selection.

Techniques such as next-generation sequencing offer a unique
opportunity to scan the genome not only to obtain genotypic in-
formation, but also to analyze the molecular phenotype of the
whole genome through the analysis of the transcriptome, the
metabolome, and the proteome. Recent studies have reported
major changes in the maize transcriptome expression, but without
any reduction in the expression diversity of genes (Hufford et al.,
2012; Swanson-Wagner et al., 2012). There is a need to extend
these studies to other crop species to better establish the ge-
nome-wide consequences of domestication.

Here, we focused on the domestication process of the com-
mon bean in Mesoamerica, with the main aims of (1) describing
the genome-wide molecular changes due to domestication us-
ing RNA sequencing (RNA-seq) technology and (2) identifying
the molecular variants that are responsible for the phenotypic
variations that constitute the basis of the domestication process
within the common bean genome.

For P. vulgaris (2n=2x=22), at least two domestication events
have occurred, in Mesoamerica and in the Andes (reviewed in
Bitocchi et al., 2013). The two parallel domestications and the
domestication of an additional four closely related Phaseolus
species render the common bean a unique system in which to
study domestication and crop evolution.

RESULTS

Transcriptome Sequencing and Assembly

To capture most of the allelic diversity observed for molecular
markers in a cohort made up of 10 Mesoamerican wild (MW)
genotypes and eight Mesoamerican domesticated (MD) geno-
types, with one wild and two domesticated Andean genotypes
as controls, we choose to use an approach based on de novo

assembly of transcriptome from RNA-seq data. To maximize the
information content provided by the data set, a reference tran-
scriptome was built from a hypercore collection of the four most
divergent wild genotypes in our cohort (three from Mesoamerica
and one from the Andes). This approach was preferred over
a reference-based/hybrid method as, given the well-established
genetic divergence of the Andean and Mesoamerican gene pool,
the use of the P. vulgaris reference genome derived from an
Andean genotype (G19833) might lead to a loss of informative
markers.
To minimize expression differences due to sampling errors,

RNAs were extracted from the first trifoliate leaf, fully expanded
and at stationary phase. On average, 38 3 106 paired-end reads
(100 bp 32) per sample were generated (Supplemental Table 1).
The transcriptome of each of the four members of the

hypercore collection was assembled de novo using Trinity
(Grabherr et al., 2011). Overall, each sample yielded from 55,069
to 70,826 clusters of contigs, as defined by the Chrysalis
module of Trinity, with each cluster ideally representing a single
gene. The longest contig out of each cluster was chosen as
representative sequence, and redundancies among the four
genotypes were collapsed with CD-HIT-EST (Li and Godzik,
2006; Supplemental Table 1). The set of resulting 124,166 se-
quences, comprising genes shared across all four members of
the hypercore collection and genotype-specific genes, was thus
used as the reference transcriptome for all subsequent analyses.
Comparing the sequences of each genotype with the refer-

ence transcriptome, we identified 284,812 high-quality homo-
zygous single nucleotide polymorphisms (SNPs) on 43,789
contigs (see Methods). Contigs with only heterozygous SNPs or
indels were not further considered. Excluding positions missing
in more than three Mesoamerican genotypes (see Methods) and
filtering for homozygous biallelic SNPs only, the final data set
was further reduced to 188,107 SNPs on 27,243 contigs.
When considering only the Mesoamerican accessions, the
polymorphic contigs decreased to 26,141. Twenty-five of these
contigs were fixed for alternative allelic states in the MW and MD
populations (Table 1).

Population Structure, and Diversity and Expression Analysis

Multidimensional scaling analysis (Figure 1) reproduced the
known genetic structure of the common bean populations: The

Table 1. Number of SNPs and Contigs Identified in This Study

Total number of biallelic SNPs 188,107
Total number of contigs 27,243
Total number of monomorphic contigs in Mesoamerican

sample
1,102

Total number of polymorphic contigs in Mesoamerican
sample

26,141

Number of contigs monomorphic in both MW and MD
populations, except for alternative alleles

25

Shared polymorphic contigs between MW and MD 13,411
Number of contigs monomorphic in MD, but polymorphic

in MW
12,014

Number of contigs monomorphic in MW, but polymorphic
in MD

691
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Mesoamerican and Andean pools were separated, as were the
MW and MD forms. The analysis also revealed that compared
with MD, MW is characterized by a higher diversity. This agrees
with all of the estimated statistics (e.g., S, nH, p, u, and He)
(Table 2; Supplemental Figure 1), with ;60% loss of diversity in
the MD population (Table 2). Moreover, almost half of the con-
tigs that were polymorphic in Mesoamerica (46%) were mono-
morphic in MD (Table 1; Supplemental Figure 1). The difference
between the genetic variation within MW and MD was highly
significant for all of the indices (Wilcoxon test, P # 2.2 310216;
Figure 2).

We tested the differential expression of MW versus MD con-
sidering the different individual genotypes within groups as repli-
cates. Out of 27,243 contigs, 198 (0.7%) were differentially
expressed when comparing MW and MD (Supplemental Data Set
1A), and 146 of them (74%) were downregulated in MD. Moreover,
the log2 fold change in the level of transcription shifted significantly
toward negative values (mean, 20.09; median, 20.02; skewness
of distribution, 23.49), which indicates an abundance of down-
regulation in MD, with the mean log2 fold change significantly
smaller than 0 (Wilcoxon two-sided test: P # 2e216). The co-
efficient of variation (CV) of gene expression was higher in MW
(0.57) than in MD (0.47), with an 18% loss of expression diversity
(Figure 3A, Table 3).

Gene Coexpression Networks

A total of 10,616 contigs were selected for the network-based
analysis (Supplemental Figure 2 and Supplemental Methods 1).
The selection avoided potentially noisy or invariant gene ex-
pression profiles, which would lead to the inclusion of spurious
edges in the extracted networks. The introduction of systematic
bias due to this selection strategy was examined, and no bias
associated with the contig variations in gene expression was
found (Supplemental Figure 3).

The correlations among gene expression profiles were based
on the Pearson correlation coefficients (PCCs), which were
similar for MW and MD, with both resembling normal dis-
tributions. In MD, the distribution was wider than in MW, with

variance of 0.16 and 0.12, respectively (one-sided F-test,
P < 2.2e216) (Figure 4). This implied that there was a higher
number of stronger correlations in MD than in MW.
Coexpression of the 10,616 contigs in MW and MD was also

considered using network analysis: extraction of proximity net-
works and generation of relevance networks. These two net-
works gave very similar results (Supplemental Methods 1); here,
we describe in detail only those from the proximity networks.
The seminal properties (Newman, 2003, 2012) of the proximity

networks appeared similar in MW and MD. Indeed, only slight
differences were observed for the density (0.0012 and 0.0013)
and transitivity (0.12 and 0.14) of the MW and MD networks
(respectively). The MW network contained seven communities
that correspond to groups of genes with mutually correlated
expression (Figure 5A), while the MD network contains five
communities (Figure 5B). Comparing the MW and MD networks
using an adjusted Rand index, it appeared that although they
had relatively similar properties, their community structures were
divergent. This was supported by the consideration of the Jac-
card similarity coefficient (Supplemental Table 2).
The enrichment gene function analysis (a = 0.01) indicated

that eight of the 12 communities in the MW and MD networks
were enriched for at least one gene function, with a mean of four
and a maximum of seven gene functions over the communities
(Supplemental Table 3 and Supplemental Data Sets 1B and 1C).
Aside from having pronounced structural differences, these
communities were also modular structures of largely different
functions. For example, while there were communities in the
MW and MD networks that were enriched for RNA regulation of
transcription, the first and second MD communities were

Figure 1. Multidimensional Scaling Analysis Representing the Genetic
Relationships among the 21 Common Bean Genotypes.

Table 2. Diversity Estimates in the MW and MD Accessions Computed
Considering the Polymorphic Contigs in the Entire Mesoamerican
Sample (26,141 Contigs) and Loss of Nucleotide Diversity Estimates

Diversity Estimate MW MD

N 10 8
S 153,971 56,053
S1 5.9 2.1
He 0.57 0.25
nH 3.5 1.8
p 2.11 0.85
u 2.08 0.83
DH 0.56
DH1 0.56
Lp 0.60
Lp

1 0.58
Lu 0.60
Lu

1 0.58
fST 0.15

N, sample size; S, total number of segregating sites; S1, mean number of
segregating sites per contig; He, average expected heterozygosity (Nei,
1978); nH, mean number of haplotypes per contig; p, u, averaged
estimates of nucleotide diversity (Tajima, 1983; Watterson, 1975; re-
spectively); DH, Lp, and Lu, loss of nucleotide diversity, from averaged
He, p, and u, for (MW – MD) comparison; DH1, Lp

1, and Lu1, loss of
nucleotide diversity, from averaged DH, Lp, and Lu of each contig, for
(MW – MD) comparison; averaged fST.
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enriched in specific transcription factor families that are involved
in floral development (e.g., MADS box), abiotic stress responses
(e.g., b-ZIP), and several biological functions related to domesti-
cation (Supplemental Methods 2).

We next determined the intersection network, with the ex-
pectation that the two networks would share only a few edges
(otherwise, their community structures would have shown

greater similarities); indeed, these edges were incident on
only 857 nodes.

Selection

A total of 2364 contigs (9% of those polymorphic) were identified
as putatively under selection (PS) during domestication. This was

Figure 2. Within-Population Genetic Diversity Comparison between MW and MD Populations.

Box plots of the number of segregating sites (per base pair), the expected heterozygosity, the number of haplotypes, and the nucleotide diversity in the
MW versus the MD population, evaluated over all of the contigs. The statistical significance was computed with the Wilcoxon signed rank test for paired
data (P value: above each box plot).

Figure 3. Estimated Density Functions for the Coefficients of Variation in MD and MW as a Reference.

Comparison of the density functions of the CVs considering: all contigs (n = 27,217 CVs of finite value in MW; 27,114 CVs of finite value in MD) (A),
subdivision in PN contigs (n = 24,854 CVs of finite value in MW; 24,759 CVs of finite value in MD) (B), and PS contigs (n = 2363 CVs of finite value in MW;
2355 CVs of finite value in MD) (C), where N denotes the number of contigs with CVs of finite values in MW as a reference.
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revealed by simulation of the evolutionary dynamics of Meso-
american and Andean wild beans with the assumption of absence
of selection during domestication, considering the demographic
details available from previous studies (Mamidi et al., 2011, 2013).
These simulations reconstructed the distribution across the ge-
nome of summary statistics that describe processes of differential
selection. The comparison between these distributions with those
of real contigs (controlling for false positives) identified those
contigs that were most likely affected by selection during do-
mestication (directly, or due to hitchhiking). Most of the PS con-
tigs (82%) were fixed in MD and polymorphic in MW, with 14.2%
showing shared polymorphism between MD and MW. A small
fraction (2.8%) was fixed in MW and polymorphic in MD. Finally,
;1% was fixed both in MD and MW for alternative allelic states.

Contigs differentially expressed in MW compared with MD
were highly enriched (about 5-fold) in PS compared with the
putatively neutral (PN) contigs (2.75% versus 0.53%; Table 4),
suggesting that selection was active for the expression pattern
at already the first true leaf stage. In parallel, the loss of ex-
pression diversity due to domestication appeared significantly
higher (P < 0.0001; x2 test) for PS (26%; Table 3, Figure 3C) than
PN (17%; Table 3, Figure 3B); this effect may be the outcome of
direct selection or hitchhiking in regulatory regions (within or
outside the exome).

The gene set enrichment analysis (GSEA) is presented in
Supplemental Data Set 1D. Single enriched MapMan bins are
not common to PS and PN sets, which further indicates that the
two sets have the tendency to participate in different metabolic
pathways or have different functions. Briefly, when ordered ac-
cording to 5% statistical significance of the GSEA, the genes
that have been annotated in Arabidopsis thaliana as involved in
regulation of RNA transcription, synthesis of ribosomal proteins,
RNA processing and regulation, and DNA repair are over-
represented in the PS contigs. By contrast, PN had a lower
number of significantly overrepresented MapMan bins, which
encoded proteins involved in, among other things, cofactor and
vitamin metabolism and nucleotide metabolism.

We observed that there was no shift of the CV toward higher/
lower values for the PS contigs retained and those not included
in the network analysis (Supplemental Figure 4). With respect to
the position in the proximity networks, the PS contigs were
underrepresented in the intersection network. We next tested if
there was difference in the average centrality measures of PS
and PN contigs, assessing their global position in the networks.
We did not identify any statistically significant differences with
respect to the average centrality measures of PS and PN contigs

in both the MW and MD networks; however, a small, but sta-
tistically significant, difference was seen for the closeness
centrality (Supplemental Table 4). At a local level, i.e., by fo-
cusing only on the immediate coexpressing partners of the PS
contigs, we also found that the PS contigs showed significant,
although small, assortativity in the MD network, which was not
the case in the MW network (Supplemental Table 5). Qualita-
tively similar findings were obtained when the selection index
was used instead of the partition of the contigs into the PS and
PN classes. These data indicate that while the global position of
the PS contigs in the coexpression network on average did not
show differences with respect to the PN contigs, there were
small local changes of coexpression patterns, as quantified by
the assortativity, that might lead to tighter coexpression of the
PS contigs in MD compared with MW. Associations between PS
contigs and features of the expression network, like centrality
indices and assortativity, were largely not significant. This might
be due to our experimental system that is based on a specific
developmental stage of the plant, which supports the view that
only a fraction of the genes under selection had phenotypic
effects associated to a differential fitness at this stage. More-
over, PS genes might be indirectly affected by selection due to
hitchhiking. In addition, if domestication is considered a multi-
trait selection process, we have no reason to assume specific
and common roles for all of the selected genes in the de-
termination of the structure of the expression network.
Furthermore, function information allowed the investigation of

whether a subset of contigs identified as PS is associated to the
domestication process in other species. We focused on the 380
contigs with the highest selection index, including also the 23
PS contigs with an alternative allelic state between MW and MD
as well as the 67 PS contigs monomorphic in MW and poly-
morphic in MD. Functional evaluation of these PS contigs is
comprehensively discussed in Supplemental Methods 2.
The analysis revealed that several PS contigs are homologous

to genes implicated in the process of domestication in other
species or have functions associated with domestication, like
light responses, signaling, plant development, and biotic and
abiotic stress. For instance, the annotated PS contigs that

Table 3. Coefficients of Variation of P. vulgaris Expression for the MW
and MD Forms

Loci CVMW CVMD LCV L’CV

PN 0.58 0.48 0.17 0.16
PS 0.54 0.40 0.26 0.21
Total 0.57 0.47 0.18 0.16

LCV, loss of expression diversity, calculated as LCV = 1 2 (CVMD/CVMW);
L’CV, loss of expression diversity, calculated as the mean of the single
contig LCV.

Figure 4. Distributions of the Pearson Correlation Coefficients Obtained
from the Expression Profiles in the MW and MD Populations.

Distributions of the MW (A) and MD (B) populations resemble normal dis-
tributions, with the PCCs in MD showing greater values than those in MW.
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showed greater genetic diversity in MW compared with MD in-
cluded a sequence homolog to GIGANTEA (GI), which has
a pivotal role in the photoperiodic response, as it regulates
flowering in a circadian clock–controlled manner. In Arabidopsis,
under long days, GI acts earlier in the pathway than CONSTANS
(CO) and FLOWERING TIME (FT), by increasing the CO and FT
mRNA abundance. CO and FT were targets of selection during
domestication of crops such as rice (Takahashi and Shimamoto,
2011; Wu et al., 2013) and sunflower (Helianthus annuus;
Blackman et al., 2011). In pea (Pisum sativum), Hecht et al.
(2007) identified LATE BLOOMER1 (LATE1) as the pea ortholog of
Arabidopsis GI and showed that LATE1 is necessary for the
promotion of flowering, the production of a mobile flowering
stimulus, and the induction of an FT homolog under long-day
conditions. Another interesting example among the PS contigs
with two alternative allelic states is the homolog of YABBY5
(YAB5), a transcription factor that is implicated in the regulation of
seed shattering in cereal species, including sorghum (Sorghum
bicolor), rice, and maize (Lin et al., 2012). A YAB-like transcription

factor (FASCIATED) has also been shown to influence carpel
number during flower and/or fruit development in tomato (Sola-
num lycopersicum; Cong et al., 2008).
Among the 67 PS contigs that show an increase in variability

in MD is a homolog of K+ uptake transporter6 (KUP6). Osakabe
et al. (2013) demonstrated that the KUP potassium transporter
family has important roles in water stress responses and growth;
moreover, KUP-type K+ transporters are induced by various
stresses that have an osmotic component, and they specifically
inhibit cell expansion, while enhancing drought tolerance.

DISCUSSION

This report describes the profound effect that domestication has
imposed on the genome variation and gene expression patterns
of common bean. About one out of 10 contigs was likely to have
been affected by selection during domestication: Directional
selection was the rule, but diversifying selection was also
probably active, with contigs of the domesticated gene pool
frequently having different levels of expression and different
patterns of coexpression compared with the wild relatives. The
practical implication for future crop improvement is that lot of
variation at DNA sequences and regulatory regions is still avail-
able in the wild bean for crop breeding, but that to fully exploit the
diversity of wild germplasm a substantial effort is needed to un-
derstand the complex relationship between the genotypic and
phenotypic diversity in plant populations.
As highlighted in this study, in common bean, expressed

genomic regions lost half of the wild bean nucleotide diversity
during domestication in Mesoamerica. Compared with common
bean, in maize, there was a smaller reduction in diversity at the
nucleotide level (Hufford et al., 2012), which suggests that there
was a smaller effect of domestication on the maize genetic di-
versity. The different mating systems between these two crops
might help to explain these results. In autogamous species like
common bean, self-fertilization is expected to reduce the ef-
fective population size, which will enhance the effects of genetic
drift and increase the extent of linkage disequilibrium, leading to
large genomic windows affected by genetic sweep (Glémin and
Bataillon, 2009; Bitocchi et al., 2013) as also confirmed by the
resequencing results in the autogamous soybean and rice
(O. sativa, variety japonica) (Lam et al., 2010; Xu et al., 2012).
Our study also demonstrated that there was a drastic change

because of domestication in the pattern and structure of gene

Figure 5. Proximity Networks of MW and MD and Their Community
Structure.

Nodes are color-coded according to their participation in one of the
seven and five communities in the MW (A) and MD (B) proximity net-
works, respectively, containing a single connected component. Nodes of
bigger size correspond to contigs under selective pressure.

Table 4. Enrichment of Differentially Expressed Contigs in the PS
Contig Group

PN PS Total

DE 133(0.53%) 65(2.75%) 198
NDE 24,730 2,298 27,028
Total 24,879a 2,364a 27,243a

DE, loci differentially expressed between MW and MD; NDE, not differen-
tially expressed loci. In parentheses: percentages of DE contigs based on
total number of PN and PS contigs.
aData not available for 17 contigs (1 PS; 16 PNs).
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expression over the entire set of genes. This was also found in
maize, albeit with reduced intensity (Swanson-Wagner et al.,
2012). Moreover, in common bean, we found that the reduction
in sequence diversity also affects DNA regions implicated in the
regulation of transcription, where ;20% reduction in gene expres-
sion levels has been associated with domestication. In other words,
here, we demonstrate that the loss of genetic variation has direct
genome-wide phenotypic consequences on transcriptome diversity.
These findings differ from the case of maize and its wild progenitor
teosinte, where no reduction in the variation of gene expression was
observed (Swanson-Wagner et al., 2012). It is particularly relevant
that such different expression levels and patterns are observed at
a developmental stage that is considered relatively important for
domestication, even if the presence of larger leaves and seedlings is
a hallmark trait of domestication (Gepts, 2002).

The occurrence in domesticated bean of mostly down-
regulated transcripts among those differentially expressed
(74%) points to loss-of-function mutations, which are relatively
frequent compared with gain-of-function changes, as a largely
available source of variation that supports selection during rapid
environmental changes (Olson, 1999). Such was the case of the
transition from the wild to cultivated agro-ecosystems. In sup-
port of this, as first noted by Darwin (1859), in domesticated
plants, the domestication traits have a recessive genetic nature
(Lester, 1989). Moreover, a lower genome-wide gene expression
level was found for domesticated compared with wild transcripts
as if slightly deleterious mutations due to hitchhiking (mostly
loss-of-function or with reduced expression) have been accu-
mulated in the domesticated pool. This can be considered as the
“cost of domestication.” The accumulation of loss-of-function
(or reduced expression) mutations might also have been due to
reduced effective recombination, which would have increased the
frequency of deleterious mutations in the domesticated pool, with
a negative influence on fitness, as suggested in rice (Lu et al.,
2006).

About 10% of the contigs were affected by selection during
domestication or were physically linked to the selected genes.
This supports again the view that domestication had a relevant
influence on the common bean genome. In the allogamous spe-
cies maize, ;2 to 4% of genes and ;7.6% of the whole genome
(Wright et al., 2005; Hufford et al., 2012, respectively) were
detected as affected by selection during domestication. Simi-
larly, in sunflower, which is also predominantly allogamous,
;7.3% of genes show signatures of selection due to domes-
tication (Chapman et al., 2008). These differences may be
determined by a more relevant role of genetic hitchhiking in
producing the observed results in P. vulgaris due to its au-
togamous mating system.

Most of the contigs affected by selection during domestica-
tion show reduced diversity in MD compared with MW, as would
be expected following positive selection due to domestication.
However, in a few cases, the opposite was observed: For in-
stance, for 2.8% of the PS contigs, there was no diversity in
MW, while there was diversity in MD. This can be taken as being
due to diversifying selection in MD, with domestication in-
creasing the level of functional diversity. The functional analysis
of the drought-related KUP6 gene shows that it is significantly
overexpressed in MD compared with MW, as if domestication

has also increased the functional diversity of selected genes and
not just increased the nucleotide diversity. Our data therefore
indicate that in parallel with an overall reduction in diversity,
domestication increased the functional diversity at target loci.
This can be imputed to novel mutations (or those that exist at
low frequencies) that were selected because of the crop ex-
pansion into new environments with unexpected biotic and
abiotic stress or because of selection for traits that improved the
use of the plant organs by humans (de Alencar Figueiredo et al.,
2008). As such, the data contribute to resolving the Darwin
paradox (Darwin, 1878; Glémin and Bataillon, 2009): Domesti-
cation is associated with an increased phenotypic diversity at
target traits and a reduction of nucleotide variation.
Our work presents relevant implications for the development of

prebreeding strategies. Similarly to other studies, our findings
support the need for wild germplasm for further crop improve-
ments and calls for careful conservation of the wild populations.
However, we also showed that the effect of domestication is
pervasive throughout the genome in terms of expression patterns
and diversity, probably because of the combination of linkage and
pleiotropy. However, complex interactions within and among
genes and their expression levels played an important role during
the domestication of this species, suggesting that further genetic
amelioration strongly requires new tools for genomics, molecular
phenotyping, and phenomics. Moreover, our results suggest that
the diversity in the domesticated pool (e.g., traditional landraces)
that was originated by the fixation of useful mutations after do-
mestication needs increased consideration as source of novel
genetic variation for crop improvement.

METHODS

Sampling

On the basis of the molecular characterization of a wide and represen-
tative collection of Phaseolus vulgaris genotypes (Rossi et al., 2009; Nanni
et al., 2011; Bitocchi et al., 2012, 2013; Desiderio et al., 2013) and with
a focus on theMesoamerican gene pool, 21 inbred genotypes (two cycles
of single seed descent) were selected as the core collection to maximize
the genetic diversity. The core included 10 MW genotypes, eight MD
genotypes, and as controls, two domesticated and one wild Andean
genotypes. With the aim also being to capture most of the allelic diversity
observed for molecular markers, a further hypercore collection of four wild
genotypes was built (three from Mesoamerica and one from the Andes).
A complete list of the accessions used is reported in Supplemental Table 6.

The 21 individual genotypes were grown under greenhouse-controlled
conditions (relative humidity, ;70%; average night/day temperature,
25°C). To minimize expression differences that might be attributed to
developmental disparity between individuals, the fully expanded first tri-
foliate leaf at stationary phase was collected and frozen for all genotypes.

RNA Extraction

Frozen plant tissues were ground in liquid nitrogen, and 100 mg ground
tissue was used for RNA isolation using Spectrum Total RNA kits (Sigma-
Aldrich). The RNA was then treated with RNase-Free DNase using the
On-Column DNase I Digestion Set (Sigma-Aldrich). Qualitative and
quantitative control was performed with a Nanodrop 2000 spectropho-
tometer (Thermo Scientific) and an RNA 7500 series II chip bioanalyzer
(Agilent). Only RNA samples with an RNA integrity number >8.0 were used.
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Library Preparation and Sequencing

For each of the 21 RNA samples, 3 µg was used for the construction of
a nondirectional Illumina RNA-seq library, using TruSeq RNA sample
preparation kits, v2 (Illumina), following the manufacturer’s instructions.
Libraries were quantified using quantitative PCR, and quality control was
performed with the DNA 1000 series II chip bioanalyzer (Agilent).

RNA-seqwas performedwith an Illumina HiSequation 1000 Sequencer
using TruSeq SBS v3-HS kits (200 cycles) and TruSeq PE Cluster
v3-cBot-HS kits (Illumina) generating 100-bp paired-end reads.

De Novo Transcriptome Assembly

Reads obtained from the sequencing of the four hypercore collection
genotypes (Supplemental Table 1) were assembled de novo to obtain
a common reference transcriptome. Each sample was assembled sep-
arately using Trinity version R2011-11-2 (Grabherr et al., 2011) using
default parameters. To minimize the redundancy due to different tran-
script isoforms belonging to the same gene, a custom script was used to
retain only the longest contig out of each trinity cluster as a representative
of the cluster. The filtered contigs from the four assemblies were pooled
together and redundancy among data sets was removed using CD-HIT-
EST (Li and Godzik, 2006), with a 90% threshold on the contig identity.
The contigs were compared with the sequences in the TAIR 10 protein
database of Arabidopsis thaliana using BLASTX (Altschul et al., 1997),
with an E-value <10E22.

Variant Identification

RNA-seq reads of each of the 21 genotypes were mapped on the ref-
erence transcriptome using BWA version 0.6.2-r126 (Li and Durbin, 2009)
using default parameters and with a minimum mapping quality threshold
of q = 30 to minimize false variant calls due to misalignments or reads
mapping to multiple positions in the transcriptome. The variants in the
transcriptome sequence were identified using Samtools 0.1.18 (Li et al.,
2009) and Varscan v2.2.8 (Koboldt et al., 2012), with amaximumP value of
0.01 and a minimum read depth of three reads in order not to penalize
transcripts that are present in low abundance in the samples. Only po-
sitions of the transcriptome covered by at least three reads in all the
18 Mesoamerican genotypes analyzed were considered for variant
calling. For all of the positions for which a homozygous SNP (percentage
of reads supporting the alternate allele $75%) was called in at least one
sample, we analyzed the samples with no SNP call in the same position
using the following criteria: (1) if read depth $3 and percentage of reads
supporting the reference base >75%, the reference base was called; (2) if
read depth $3 and percentage of reads supporting an alternate allele
already called in other samples (P value <0.01) for that position >75%, the
alternate base was called; (3) if read depth $3 and percentage of reads
supporting an alternate allele already called in the other samples (P
value < 0.01) was between 25 and 75%, a heterozygous call was re-
corded. The positions for which a genotype was not detected in at least 15
of the Mesoamerican genotypes were removed, allowing a maximum of
three missing data for each called SNP. Only biallelic homozygous SNPs
were retained for the analyses.

RNA-seq Expression Analysis

Gene expression levels were based on TopHat2 (Kim et al., 2013) and
HTSeq (Anders, 2010), with the default parameters. Differentially ex-
pressed contigs between thewild anddomesticated genotypes (|logFC| >1;
FDR <5%) were identified using DESeq version 1.6.1 (Anders and Huber,
2010). The experimental design contrasted two groups of accessions, as
MW versus MD, using individual genotypes as replicates. The CV was
calculated as the ratio between the SD and the mean number of fragments

mapping on each contig, for each genotype, in both the MW and MD
populations.

Population Genetics Analysis

Exploratory analysis of the genetic relationships among individuals was
based on a metric multidimensional scaling, using the cmdscale com-
mand in the R statistical environment (http://www.r-project.org/; R
Development Core Team, 2013). Genetic distances were computed as
one minus the average fraction of nonshared alleles.

The following diversity statistics were computed using Arlequin 3.5
(Excoffier and Lischer, 2010): S, total and mean number of segregating
sites; expected heterozygosity (He; Nei, 1978); nH, number of haplotypes;
and p and⊝, two measures of nucleotide diversity from Tajima (1983) and
Watterson (1975), respectively, computed on SNPs within each contig.
The divergence between the MW and MD forms was measured using FST

(Excoffier et al., 1992).
To assess the reduction of diversity in MD versus MW, we used the

statistical loss of diversity, as proposed by Vigouroux et al. (2002), and
computed as [12 (xMD/xMW)], where xMD and xMW are the diversities in the
MD and MW populations, respectively, measured using three different
statistics: He, p, and ⊝; the loss of diversity parameter ranges from zero
to one, whereby zero indicates no loss of diversity and one indicates
a total loss of diversity. The differences between the distributions of each
genetic diversity statistic (S, He, nH, p, and ⊝) in MW and MD were
statistically evaluated by the Wilcoxon signed ranked test for paired
data.

Identification of Contigs Putatively under Selection

PS contigs in MD compared with MW were identified by computing two
selection indices and testing their significance with a simulation ap-
proach. The selection indices were based on two between-groups and
one within-groups genetic variation statistics, and their neutral distribu-
tion (assuming no selection) was based on coalescent simulations cali-
brated with previous demographic inferences on P. vulgaris divergence
and domestication. Missing data were statistically imputed in the real data
set before comparison to the simulated null distributions. All of these
steps are individually described below.

Missing Data Imputation

A small fraction of the 188,107 SNPs had missing data. In particular,
2.73% of the total number of nucleotides wasmissing in the data set, with
similar fractions in the different groups. We performed missing data
imputation using the clustering algorithm implemented in fastPhase1.4
(Scheet and Stephens, 2006). This method does not require pedigree
information and takes the population information into account. Individuals
were assigned to three groups, according to their sampling origin: MW,
MD, and Andean (due to the low number of Andean genotypes, all three of
the individuals belonging to this area were grouped). Haplotype re-
construction was switched off, and the missing genotypes were imputed
independently for each contig, setting the number of the cluster from one
to 15. The complete set of fastPhase parameters was -KL1 -KU15 -Ki2 -H-
4 -n -B -u.

Coalescent Simulations of Domestication Models

Coalescent simulations were used to generate neutral distributions of
summary statistics, assuming three likely domestication scenarios
reconstructed in previous studies (Supplemental Figure 5). In particular,
our models were based on the population histories and demographic
parameters estimated by Mamidi et al. (2011, 2013).
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In all of the models, the Mesoamerican and Andean gene pools
originated from an ancestral population, and domestication then occurred
independently in each group. Only in more recent times did the do-
mesticated groups expand exponentially, and some hybridization be-
tween domesticated and wild forms took place. Models B1 and B2
included a bottleneck event in the Andean or in both groups, respectively.

For each parameter, we defined prior distributions (Supplemental
Table 7) based on previous estimates of their uncertainty (Mamidi et al.,
2011, 2013). For each model, 100,000 simulations were performed by
sampling random parameter combinations from these distributions using
the ABCsampler program from the ABCtoolbox package (Wegmann et al.,
2010). In each simulation, we generated a sample for each population that
was equal to the observed one (10 haploid individuals for MW, eight for
MD, two for AD, and one for AW). The lengths of the DNA sequences were
extracted from a distribution calibrated for the distribution of contig
lengths in the real samples.

Selection Index

For each locus, we initially calculated three statistics that were likely to be
affected by differential selection in MD compared with MW. First, the
population differentiation statisticFST (Excoffier et al., 1992) between MW
and MD was calculated, following the classical view that loci differently
affected by natural selection in different populations can be detected as
outliers in population comparisons (Lewontin and Krakauer, 1973).
Second, we considered the locus-specific branch-length statistic (Shriver
et al., 2004). This is based on the genetic distance between two pop-
ulations, but it also includes a third reference group (Andean, in our case)
to identify which of the two populations experienced the positive selective
pressure.

Finally, we computed a third statistic as the ratio of (\SMW-SMD\)/(SMW+SMD),
where SMW is the number of segregating sites in MW, and SMD is the
number of segregating sites in MD. This statistic measures the absolute
value of the difference between the genetic variation in the MW and MD
forms, as standardized by their sum; it is intended to capture the relative
change in genetic diversity due to selection (Pritchard et al., 2010). All of
these statistics tend to increase with increasing evidence of selection.

FST and the number of segregating sites were computed using the
command-line version of Arlequin 3.5 (Excoffier and Lischer, 2010). The
statistics were normalized using the neutral distributions obtained by
simulation.

The three statistics above were combined into two different indices.
The first index was built as the sum of all of the above statistics, and it was
computed for 26,116 contigs. Due to the different alleles fixed in the two
groups, in 1127 contigs, the statistics based on the segregating sites were
undetermined. For these contigs, we created a second index that was
obtained by summing up only the standardizedFST and the locus-specific
branch length. The same procedure was followed in the simulated data to
generate the distribution of both of these indices assuming that only the
demographic processes, and not the selection processes, shaped the
pattern of the genetic variation. P values for each contig were then
computed as the fraction of the simulated indices larger that the real
value, and corrected to account for false positives, following the approach
of Benjamini and Hochberg (1995), implemented in the p.adjust function
available in the R statistical environment. This approach was repeated for
each of the three simulated models, and we obtained three different lists
of corrected p values. We then identified positively selected contigs when
the false discovery rate was <5%, in each of the three models.

Gene Annotation

A BLASTX (Altschul et al., 1997) analysis against protein databases of
Arabidopsis TAIR 10was performed for all of the transcripts. Moreover, for

functional characterization of PS contigs or PN contigs, a MapMan GSEA
was conducted. See Supplemental Methods 1 for further details.

Network Analysis of Gene Coexpression

We performed a network-based comparative analysis of the RNA-seq
data in the MW and MD populations. The analysis was based on ex-
pression level estimates for the 27,243 contigs. First, the contigs were
selected for subsequent network analyses to avoid inclusion of potentially
noisy or invariant gene expression profiles. Altogether, we did not con-
sider 581 contigs that showed zero expression levels in at least nine
genotypes. For each of the remaining 26,662 contigs, two statistical tests
were performed: the differences in the means and in the variance of
expression levels between the MW and MD populations, based on
ANOVA and on the F-test, respectively (Ho et al., 2008). A very loose level
of significance (a = 0.1) was considered for both of these tests. These
allowed the selection of a subset of contigs to be used for the network
analysis. The Wilcoxon rank sum test with continuity correction (Bauer,
1972) was applied to the CVs computed for MW and MD for each chosen
contig. To this end, we tested whether the strategy applied for contig
selection introduced any systematic bias with respect to favoring contigs
that vary strongly in both MW and MD populations, in comparison to the
entire set of contigs we considered. The possibility of introducing a shift in
CVs toward higher/lower values for the PS contigs retained and those
excluded from subsequent analysis was also tested.

Correlations of gene expression profiles were estimated using PCCs.
The MW and MD expression profiles for the selected contigs were
subjected to network-based analysis following two procedures: (1) ex-
traction of proximity networks and (2) generation of relevance networks;
both of these were based on PCCs (Klie et al., 2012; Kleessen et al., 2013).
For details of these procedures, see Supplemental Methods 1. In contrast
to relevance networks, the extraction of the proximity network took into
consideration the observation that genes are often activated as modules
of a program to fulfill a particular function (Quackenbush, 2003).

For the proximity networks, the following properties (reviewed in
Newman, 2003, 2012) were analyzed: number of edges (proportional to
the density), degree distribution (a degree of a node is the number of
nodes with which it shares edges; hence, the degree distribution is given
for the probability distribution of degrees in the network), distribution of
connected components (defined as maximal subnetworks in which any
two nodes are connected by a path), radius (the smallest of all of the node
eccentricities), transitivity, and community structure (where a network
community is a set of nodes that have more edges between each other
than with the rest of the network and can be regarded as modules with
particular functions). The adjusted R and index (Hubert and Arabie, 1985)
and Jaccard index (Jaccard, 1912) were used for comparisons of the
community structures (partitions of nodes) of the MW and MD networks.

To determine whether the network communities have a biological
signal, the enriched gene functions for each of the determined com-
munities were investigated (significance level, a = 0.01). MapMan on-
tology and a test based on the hypergeometric function (Rivals et al.,
2007) were used. Potential enrichment for PS contigs of each of the
network communities identified was also investigated.

The intersection network composed of the edges shared between the
MW and MD proximity networks was determined. Moreover, the potential
overrepresentation or underrepresentation of PS contigs in the in-
tersection network was investigated.

The position of PS contigs in the extracted proximity networks was
determined by considering two attributes of the contigs: (1) as under se-
lective pressure (both for binary attribution PS/PN, and for selection index);
and (2) CV of their expression profiles. To test whether similar contigs tend
to be neighborswith respect to these two attributes, we used the concept of
weighted assortativity, which is equivalent to PCCs between the attributes
of nodes and the attributes of all of their immediate neighbors (Newman,
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2003). A value of 1 denotes a high degree of assortativity (i.e., similar is
a neighbor of similar), 0 denotes no assortativity (i.e., complete dispersion),
and 21 denotes dissortativity (i.e., similar is a neighbor of dissimilar).

We investigated whether the PS contigs tend to be more central than
the rest of the contigs. To quantify the centrality of position in the network,
we used several measures of node centrality in a network (Newman,
2003), including betweenness, closeness, degree, eigenvalue, page rank,
eccentricity, Burt’s constraint, and transitivity. We also used the latent
centrality, which was obtained via principal component analysis and
integrated the information from the eight centrality measures used. The
correlation between the selection index and the node centrality measures
was also investigated through PCC.

Finally, to examine the functional characterization of the PS contigs,
GSEA (Rivals et al., 2007) based on MapMan ontology was conducted.

Accession Numbers

All data are available in the Sequence Reads Archive under accession
number SRP028116. The Transcriptome Shotgun Assembly project has
been deposited at DDBJ/EMBL/GenBank under accession number
GAMK00000000. The version described in this article is the first version,
GAMK01000000.
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