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Abstract

Randomization and blocking have the potential to prevent the negative impacts of non-biological

effects on molecular biomarker discovery. Their use in practice, however, has been scarce. To

demonstrate the logistic feasibility and scientific benefits of randomization and blocking, we

conducted a microRNA study of endometrial tumors (n=96) and ovarian tumors (n=96) using a

blocked randomization design to control for non-biological effects; we profiled the same set of

tumors for a second time using no blocking or randomization. We assessed empirical evidence of

differential expression in the two studies. We performed simulations through virtual re-

hybridizations to further evaluate the effects of blocking and randomization. There was moderate

and asymmetric differential expression (351/3523, 10%) between endometrial and ovarian tumors

in the randomized dataset. Non-biological effects were observed in the non-randomized dataset

and 1934 markers (55%) were called differentially expressed (DE). Among them, 185 were

deemed DE (185/351, 53%) and 1749 non-DE (1749/3172, 55%) in the randomized dataset. In

simulations, when randomization was applied to all samples at once or within batches of samples

balanced in tumor groups, blocking improved the true positive rate (TPR) from 0.95 to 0.97 and

the false positive rate (FPR) from 0.02 to 0.002; when sample batches were unbalanced,

randomization had a worse TPR (0.92) and FPR (0.10) regardless of blocking. Normalization

improved the detection of true positive markers but still retained sizeable false positive markers.

Randomization and blocking should be used in practice to more fully reap the benefits of

genomics technologies.

Introduction

Technological advances in genomics profiling provide a plethora of molecular data to

discover potential biomarkers for cancer diagnosis and treatment (1, 2). Discovering
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molecular biomarkers that are accurate and reproducible – the ‘needles in a haystack’ – still

remains challenging (3–5). A major source of the challenge comes from the non-biological

effects in the data that are resulted from the experimental process (6, 7). Non-biological

effects can be introduced into the data at numerous steps of the experiment such as sample

preparation, array hybridization, and image scanning (8). Previous efforts to remove non-

biological effects have been mainly focused on post-hoc data adjustments through a

‘normalization’ step (9, 10).

Careful study planning and sound experimental design offer a preventive opportunity to

reduce the level of non-biological effects and mitigate their negative impact on biomarker

discovery (11, 12). Two basic principles of experimental design are randomization and

blocking (13, 14). Random assignment of experimental units to comparison groups

eliminates bias due to known and unknown confounders. Randomization has been widely

used in many scientific fields including clinical studies to determine the efficacy of

experimental treatments (15). Arranging experimental units in blocks of similar units can

reduce the variance and hence increase the power to detect differences between comparison

groups (16). Many profiling platforms come with natural blocks. For example, the Agilent

human microRNA (miRNA) arrays have eight arrays on each glass slide; the Illumina

human gene expression BeadChips have twelve bead-chips on each slide; the Illumina

sequencer has eight lanes on each flow cell. Randomization and blocking have been

previously suggested for use in genomic studies (17–19). However, their applications in

practice are scarce possibly due to the lack of awareness and the conceived difficulties in

logistic planning.

We set out to demonstrate the logistic feasibility and scientific benefits of randomization and

blocking in molecular biomarker discovery so as to facilitate their adoption in cancer

genomic studies. Towards this end, we profiled the same set of tumor samples twice with

different experimental designs, once using the blocked randomization design and uniform

array handling and a second time using no blocking, randomization, or uniform handling.

Empirical evidence of differential expression was assessed in both the randomized study and

the non-randomized study. The overall design of our study is illustrated in Figure 1. This

design is general and can be applied to many genomics platform. In this study we profiled

miRNA expression for a set of 96 endometrial tumors and 96 ovarian tumors using Agilent

miRNA arrays (20, 21).

We present empirical evidence of confounding non-biological effects in the non-randomized

study. We compare the results of differential expression analysis for the randomized study

versus that for the non-randomized study. We consider the impact of a post-hoc

normalization step to remove non-biological effects. In addition to the empirical evaluations,

we perform simulation studies to separately examine the effect of randomization and

blocking when the true biomarker status is known and array handling is non-uniform. We

also use simulations to assess the effect of randomization when samples come in multiple

batches and each batch is randomized individually. Finally, we make recommendations on

study design for cancer molecular biomarker studies.
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Materials and Methods

Patient samples

Ninety-six high-grade serous ovarian cancer samples and 96 endometrioid endometrial

cancer samples were used in our study. These samples were all newly diagnosed, previously

untreated, and collected at Memorial Sloan Kettering Cancer Center (MSKCC) between

2000 and 2012. Their use in our study was approved by the MSKCC Institutional Review

Board.

Tumor microdissection and RNA extraction

Sample preparation used strict quality control on the specimens. Freshly harvested tissue

was snap frozen for eventual cryomold embedding and RNA extraction for microarray

analysis. Prior to RNA extraction a 5 μm H&E histologic section was cut from the top of the

cryomold to assess for tumor content and percent necrosis. For any specimens with less than

60% tumor cell nuclei we used macrodissection to obtain enriched areas so as to make the

specimen usable for RNA extraction and as uniform as possible. All specimens had less than

20% necrosis. All pathology specimens used for molecular study were diagnosed by

dedicated gynecologic pathologists to establish histologic cell type, grade of malignancy,

and site of origin. RNA was extracted from 30–100mg of macrodissected cryomold tissue

using the Ambion mirVana miRNA Isolation kit (Ambion) according to the manufacturer’s

protocol. Total RNA yield and quality were assessed using a nanodrop spectrophotometer

and an Agilent Bioanalyzer.

MiRNA microarray hybridization

Human miRNA microarrays (Agilent Technologies), containing 3523 markers that represent

1,205 human and 142 human viral miRNAs, were used for miRNA expression profiling

according to the manufacturer protocol. For samples meeting the quality control standards,

200 ng of total RNA was labeled using the miRNA Complete Labeling and Hybridization

Kit (Agilent). Labeled RNA was hybridized in Agilent Human miRNA Microarray Release

16.0. Slides were washed and scanned according to the manufacturer’s instructions. Images

were quantified using Feature Extraction 10.7.3.1 (Agilent).

Study design for the randomized study

Agilent miRNA arrays have an 8-plex design, where each array slide contains eight

individual arrays arranged as two rows and four columns. Therefore each array slide

represents an experimental block. We used the blocked randomization design when

assigning arrays to sample groups in order to remove confounding non-biological effects. To

achieve the best balance, we further required the blocks to be row and column balanced.

That is, there were equal numbers of cases and controls on any row and any column of a

slide. There is a total of six possible configurations that achieve row and column balance for

a 2 by 4 block such as the Agilent 8-plex array (Figure 1). The 192 tumor samples used 192

arrays corresponding to 24 array slides. When implementing the blocked randomization

design, we assigned the 24 slides to one of the six configurations with equal probabilities

and consequently dedicated the arrays to one of the two sample groups. We then assigned
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each group of arrays to a random permutation of the samples in the corresponding group.

We carefully planned our randomized study. All 24 slides were ordered from the same

manufacture batch. Their hybridization and production were processed in one run by a

single experienced technician.

Study design for the non-randomized study

RNAs for the same 192 tumors used for the randomized study were re-arrayed for a second

study that used no blocking or randomization. Care was taken to ensure consistent sample

handling for the two studies, and RNAs used for two arrays of the same tumor sample were

taken from the same master stock. The 192 arrays for the non-randomized study were

ordered from multiple manufacturer batches. In order to mimic what would be done in the

clinical setting, the arrays in the non-randomized study were assigned to samples in the

order of sample collection (Supplementary Table S3), and were processed in multiple runs

by two technicians.

Statistical analysis of miRNA array data

Each marker on the Agilent array has multiple replicates (ranging from 10 to 40) on the

array. Our data show minimum variation among replicates for the same marker

(Supplementary Fig. S1). Hence we summarized data from replicates for the same marker

using the median. Evidence against the null hypothesis of equivalent expression was

assessed using the t statistic comparing the endometrial and ovarian sample groups (22). A

separate t-test was performed for each of the 3,523 markers on the Agilent array and a two-

sided p-value was calculated. The p-values were used to derive a marker set at a given

significance level: markers with p-values smaller than the significance level were declared

differentially expressed (DE), and those having larger p-values were declared non-

differentially-expressed (non-DE). The resulting differential expression status of markers

was compared between the randomized study and the non-randomized study using a venn

diagram. Statistical analyses were conducted using R and Bioconductor.

Simulation study

Our goal for the simulation study was three-fold: (1) to examine the effect of randomization

and blocking when non-uniform handling is used and when the true biomarker status is

known; (2) to assess the effect of randomization and blocking separately; and (3) to evaluate

the effect of randomization when samples come in batches and randomization can only be

done within each batch.

Toward this goal, we simulated data for the below scenarios of experimental designs for

array-to- sample assignment, each combined with non-uniform array handling.

a. blocking, randomization of all samples together;

b. blocking, randomization within balanced batches of samples;

c. blocking, randomization within unbalanced batches of samples;

d. no blocking, randomization of all samples together;

e. no blocking, randomization within balanced batches of samples;
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f. no blocking, randomization within unbalanced batches of samples;

g. blocking, no randomization;

h. no blocking, no randomization;

i. complete confounding of sample groups and array slides.

In order to mimic the characteristics of miRNA array data, we estimated the biological

effects of each sample and the non-biological effects of each array using the empirical data

from the paired array studies and then simulated data through virtual re-hybridizations of

samples to arrays. Specific steps of the simulation study are as follows.

1. Biological effects estimation. We approximated the biological effects of each

sample as its measurements in the randomized data, except that for non-DE

markers in the ovarian samples mean differences between the two tumor groups

were subtracted from the observed data.

2. Non-biological effects estimation. We estimated the non-biological effects for

each array in the non-randomized data as the difference between this array and its

paired array in the randomized data.

3. Array-to-sample assignment. For each simulation, samples are randomly

shuffled, and arrays are re-assigned to samples according to an experimental

design:

a. Blocking, randomization of all samples together: 4 arrays from each slide

are randomly selected and assigned to one tumor group, and the rest to

another group.

b. Blocking, randomization within balanced batches: 24 slides are randomly

allocated to 5 batches each with equal number of samples from the two

tumor groups; 4 arrays of each slide are randomly selected and assigned to

one group, and the rest to another.

c. Blocking, randomization within unbalanced batches: 24 slides are

randomly allocated to 5 batches each with unequal number of samples

from the two tumor groups (with the ratio of the two tumor types 1:3 or

3:1); 4 arrays of each slide are randomly selected and assigned to one

group, and the rest to another.

d. No blocking, randomization of all samples together: 96 arrays across all

array slides are randomly selected and assigned to one tumor group, and

the rest to another.

e. No blocking, randomization within balanced batches: 24 slides are

randomly allocated to 5 batches each with equal number of samples from

the two tumor groups; half arrays across slides in each batch are randomly

selected and assigned to one group, and the rest to another.

f. No blocking, randomization within unbalanced batches: 24 slides are

randomly allocated to 5 batches each with unequal number of samples
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from the two tumor groups; half arrays across slides in each batch are

randomly selected and assigned to one group, and the rest to another.

g. Blocking, no randomization: 4 arrays on the first row of each slide are

assigned to one tumor group, and the rest to another group.

h. No blocking, no randomization: the allocation of arrays to the tumor

groups is kept the same as the non-randomized study.

i. Complete confounding of sample groups and array slides: 12 array slides

are randomly assigned to one tumor group, and the rest slides to another

group.

4. Virtual hybridization. Simulated data were generated by summing the biological

effects of each sample and the non-biological effects of its re-assigned array.

5. Analysis of each simulated dataset. Simulated data were analyzed for differential

expression similar to the analysis of the non-randomized empirical study.

6. Summary of simulated datasets. Steps 3–5 were repeated to generate 100 datasets

for each experimental design. True positive rate (TPR) and false negative rate

(FNR) are calculated and averaged across the 100 simulated datasets.

Results and Discussion

Empirical evaluation of molecular biomarkers in the randomized study

We compared miRNA expression levels between endometrial and ovarian tumors for each

of the 3,523 markers on the Agilent array using the randomized data. Among them, 351

markers (10%) were differentially expressed at a p-value cutoff of 0.01 (Figure 2a,

Supplementary Table S1). Among the 351 markers, 210 are over-expressed in ovarian

tumors, 6 of which have a log2-fold-change (L2FC) greater than 1 with a maximum of 1.5;

141 are under-expressed, 13 of which have a L2FC greater than 1 with a maximum of 3.3.

By chance, 35 markers are expected to have a p-value less than 0.01. The level of

differential expression is moderately abundant in our data and the pattern of differential

expression is not symmetric around 0 (Figure 2b).

The 6 markers that are up-regulated in ovarian tumors and have a L2FC greater than 1

represent 4 unique miRNAs, and the 13 down-regulated markers represent 8 unique

miRNAs (Supplementary Table S2). MiR-224, a gene located on the X-chromosome and

thought to be active in mammalian ovaries, is the most up-regulated in ovarian tumors with

a L2FC of 1.5 (23). The other three up-regulated miRNAs in ovarian tumors are miR-130a,

miR-221, and its paralogue miR-222, which all have been previously reported to be

oncogenic (24–26). MiR-449a, which has been shown to be involved in vertebrate

multiciliogenesis, is the most up-regulated in endometrial tumors with a L2FC of 3.3 (27,

28). The other seven down-regulated miRNAs are miR-9, miR-34a/b/c, miR-196b, miR-375,

and miR-449b, which have been implicated in a number of cancer types (28–34).
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We experimentally validated 2 non-DE miRNAs and 8 DE miRNAs (2 up-regulated in

ovarian tumors and 6 down-regulated) using qRT-PCR. The differential expression status

was confirmed for all 10 miRNAs (Figure 2c).

Empirical evaluation of molecular biomarkers in the non-randomized study

Figures 3a and 3b shows the distribution of the non-randomized data without normalization

in comparison with the distribution of the randomized data. It indicates clear non-biological

effects in the non-randomized data. When comparing miRNA expression between

endometrial and ovarian tumors in the non-randomized data, 1934 markers (55%) were

called DE at a p-value cutoff of 0.01. Among these markers, 181 were called DE in the

randomized data (185/351, 53%); 1749 were called non-DE in the randomized data

(1749/3172, 55%) (Figure 3c). With quantile normalization, the number of DE markers

identified in the non-randomized data was reduced to 708. Among them, 328 were DE

(328/351, 93%) and 380 were non-DE (380/3172, 12%) in the randomized data (Figure 3d).

Simulation study

The results of the simulation study are summarized in Table 1 and graphically displayed in

Supplementary Fig. S2.

Not surprisingly, blocking and randomization applied to all samples at once led to a best

accuracy of biomarker detection with the highest TPR (0.97, 340/351) and lowest FPR

(0.002, 6/3172). This level of accuracy was equally, if not slightly better, achieved by

blocking and randomization applied to sample batches that were balanced in sample groups

(TPR=0.97, FPR=0.001=3/3172). The next best level of biomarker detection accuracy was

achieved when the array-to-sample assignment used randomization across all samples

(TPR=0.95=333/351, FPR=0.02=63/3172) or randomization within balanced batches of

samples (TPR=0.95, FPR=0.01) but with no blocking. When randomization was used for

samples that came in batches unbalanced in sample groups, the accuracy of biomarker

detection had a slightly worse TPR (0.92, 323/351) and a much worse FPR (0.10–0.17, 312–

539/3172) regardless of whether blocking was used within each batch. As expected,

complete confounding of sample group and array slide resulted in a low TPR

(0.89=312/351) and a high FPR (0.20=634/3172).

When no randomization was used, our simulation showed a high accuracy of biomarker

detection (TPR=0.97, FPR=0.001) with blocking, and a low detection accuracy without

blocking (TPR=0.84=295/351, FPR=0.07=222/3172). We note that this result depends on

the actual level of confounding between sample group and array slide in the data. In this

simulation, we used the array-to-sample assignment in the empirical non-randomized study,

where the sample group was partly confounded with array slides with the number of

endometrial tumors being 0, 1, 2, 3, 5, 6, and 7 for 4, 2, 1, 4, 2, 7, and 4 array slides,

respectively.

Regardless of the experimental design, the post-hoc normalization step, using quantile

normalization in our study, improved the detection of true positive markers to an almost

perfect level and at the same time still had false positive markers with a FPR often around

0.20, corresponding to a false discovery rate of about 64%.
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We used p-values at a cutoff of 0.01 to call significance in our study. We tested other p-

value cutoffs and observed similar results (results not shown). We also repeated our analysis

using the false discovery rate to adjust for multiple comparisons when calling significant

markers, and observed similar results on the relative ranking of the experimental designs

(results not shown).

Taken together, our simulation study further underlines the importance of blocking and

randomization for accurate detection of disease relevant markers. Even blocking alone, or

randomization alone, or randomization within balanced batches alone offers significant

benefits in accurate biomarker detection. Post-hoc data adjustments through normalization

improve the identification of true positive markers, but still possess a large number of false

positive markers.

Conclusions

We have demonstrated that blocking and randomization are valuable for miRNA array

studies of tumor samples. We also showed, through both empirical and simulated studies,

that blocking, randomization across all samples, or randomization within balanced sample

batches can effectively remove confounding non-biological effects and ensure the accuracy

of detecting disease relevant markers with both a high TPR and a low FPR. We observed

that post-hoc normalization to the data improves the detection of true positive markers and

at the same time retains a large number of false positive markers in our study.

In practice, we recommend use of the block-type design of profiling platforms, placing equal

numbers of samples from each comparison group in each block to the extent possible. If

blocking cannot be done, one should randomize the samples altogether if they are available

(for example, in a small scale study or a retrospective study using banked tissues), or batch

samples so that each batch is balanced in comparison groups and then randomize within

each batch.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of the overall design for a randomized miRNA array study paired with a non-

randomized study using the same set of tumor samples.

Qin et al. Page 11

Clin Cancer Res. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Figure 2a. Volcano plot for comparing miRNA expression between ovarian tumors versus

endometrial tumors using the randomized data.

Figure 2b. Histogram of mean expression differences between ovarian tumors versus

endometrial tumors among markers that are differentially expressed in the randomized data.

Figure 2c. Boxplot of the qPCR data for ten selected miRNAs. The data were derived by the

delta-delta-Ct method and displayed on the log2 scale.
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Figure 3.
Figure 3a. Boxplot of the randomized data.

Figure 3b. Boxplot of the non-randomized data before normalization.

Figure 3c. Venn diagram comparing differentially expressed markers identified by the non-

randomized data before normalization and those by the randomized data.

Figure 3d. Venn diagram comparing differentially expressed markers identified by the non-

randomized data after quantile normalization and those by the randomized data.
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