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Abstract

Stroke is a leading cause of death and disability worldwide. Ischemic stroke is the dominant 

subtype of stroke and results from focal cerebral ischemia due to occlusion of major cerebral 

arteries. Thus, the restoration or improvement of reduced regional cerebral blood supply in a 

timely manner is very critical for improving stroke outcomes and post-stroke functional recovery. 

The recovery from ischemic stroke largely relies on appropriate restoration of blood flow via 

angiogenesis. Newly formed vessels would allow increased cerebral blood flow, thus increasing 

the amount of oxygen and nutrients delivered to affected brain tissue. Angiogenesis is strictly 

controlled by many key angiogenic factors in the central nervous system, and these molecules 

have been well-documented to play an important role in the development of angiogenesis in 

response to various pathological conditions. Promoting angiogenesis via various approaches that 

target angiogenic factors appears to be a useful treatment for experimental ischemic stroke. Most 

recently, microRNAs (miRs) have been identified as negative regulators of gene expression in a 

post-transcriptional manner. Accumulating studies have demonstrated that miRs are essential 

determinants of vascular endothelial cell biology/angiogenesis as well as contributors to stroke 

pathogenesis. In this review, we summarize the knowledge of stroke-associated angiogenic 

modulators, as well as the role and molecular mechanisms of stroke-associated miRs with a focus 

on angiogenesis-regulating miRs. Moreover, we further discuss their potential impact on miR-

based therapeutics in stroke through targeting and enhancing post-ischemic angiogenesis.
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Introduction

Ischemic stroke is a major cerebrovascular disease resulting from a transient or permanent 

local reduction of cerebral blood flow, characterized by a set of cellular disturbances. With a 

mortality rate of 30%, stroke is the fourth leading cause of death and also the leading cause 

of adult disability in the United States. Currently, thrombolytic therapy within a narrow time 

window is the only acute therapeutic intervention for ischemic stroke, and as a result, 

development of new, effective therapies is urgently required [1-3]. During the past two 

decades, the effectiveness of neuroprotectants has been demonstrated in rodent experimental 

stroke models. However, clinical trials have failed to show a beneficial effect of 

neuroprotectants against stroke, implying that solely focusing on neuroprotection is not 

sufficient. Thus, greater attention has been paid to the local environment of the surviving 

neuron, such as the cerebral microvasculature and neurovascular unit [4-9]. In particular, the 

concept of the neurovascular unit (NVU), a complicated cerebral network that includes 

cerebral vascular cells (endothelial cells, smooth muscle cells, and pericytes), neuroglial 

cells (astrocytes, microglial cells, and oligodendrocytes), neurons and the extracellular 

matrix, has been developed and emerged as a new paradigm for the mechanistic 

investigation and therapeutic intervention in stroke [5, 7, 8, 10, 11]. There is increasing 

evidence demonstrating that the pathophysiological responses following stroke are 

composed of acute neurovascular injury (BBB breakdown and neural cell death) as well as 

delayed neurovascular repair (angiogenesis, neurogenesis). Understanding the critical 

mediators in the regulation of post-ischemic NVU remodeling events may eventually lead us 

to discover novel targets for the treatment of stroke.

Angiogenesis refers to the generation of new blood vessels from existing vascular 

endothelial cells (ECs) in order to deliver nutrients and oxygen to various organs and tissue 

[12, 13]. It is a normal physiological process in tissue growth and development that may also 

occur as a natural defense response against neurological diseases, such as stroke. Extensive 

studies have shown that post-ischemic angiogenesis plays a crucial role in the recovery of 

blood flow in affected brain regions [14-17]. Thus, angiogenic vessels in the ischemic 

boundary zone may contribute to recovery of tissue-at-risk by restoring cellular metabolism 

in surviving neurons as well as provide the essential neurotrophic support to newly 

generated neurons. Indeed, it has been well-established that stimulation of angiogenesis can 

be therapeutic in ischemic heart or cerebrovascular disease, peripheral arterial disease, and 

wound healing. In the healthy condition, angiogenesis is strictly controlled by a dynamic 

balance between pro-angiogenic and anti-angiogenic factors. When this balance of 

angiogenic factors is disturbed, it usually causes increased or decreased blood-vessel 

formation in diseases. Accumulating endogenous pro-angiogenic molecules have been 

identified, including matrix metalloproteinases, cytokines, integrins, and growth factors such 

as vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF), transforming 

growth factors (TGF), and epidermal growth factor (EGF).

MicroRNAs (miRs) have been recently discovered as a novel family of noncoding small 

RNAs that negatively modulate protein expression in various organisms [18-21]. MiRs 

hybridize to partially complementary binding sequences that are typically localized in the 3′-

untranslated regions (3′-UTR) of target mRNAs, resulting in either cleavage or translational 
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repression in a sequence-specific manner. It is now evident that miRs are able to regulate 

expression of at least one-third of the human genome and play a critical role in various 

biological processes, including cell differentiation, apoptosis, development, angiogenesis 

and metabolism [18, 22-27]. MiRs are abundantly expressed in the nervous system and have 

been implicated in a variety of human neurological diseases [28-40]. We and others have 

recently shown the involvement of miRs in the pathogenesis of ischemic brain injury by 

using rodent stroke models, suggesting miRs as potential therapeutic targets in stroke 

[37-41].

Recently, accumulating studies have revealed important roles for miR in regulating 

angiogenesis [25-27]. For example, mice with EC-specific deletion of Dicer display 

defective postnatal angiogenesis [42, 43]. In this review article, we summarize the research 

progress describing the role and mechanisms of miRs in ischemic stroke and post-ischemic 

angiogenic processes. We also discuss the potential clinical applications of these small non-

coding RNA molecules as new biomarkers and/or therapeutic targets for ischemic stroke.

1. Angiogenesis-based vascular remodeling and stroke recovery

1.1 Vascular angiogenic remodeling after stroke

Ischemic stroke results in severe reduction of cerebral blood flow and lack of oxygen and 

nutrients in affected brain tissue, which ultimately leads to neuronal cell death and brain 

infarction. Thus, re-establishment of the functional cerebral microvasculature network will 

improve regional blood supply and promote stroke recovery. Angiogenesis is a biological 

process involving the growth of new blood vessels from pre-existing vessels. Although 

angiogenesis is completely suppressed under normal physiological conditions in adult 

brains, studies from human and experimental stroke indicate that neovascularization is 

present in the adult brains after cerebral ischemia [44-46]. Of importance, the extent of 

angiogenesis is often closely associated with reduced cerebral infarction and improved 

neurological recovery. Thus, promoting post-ischemic angiogenesis may become a useful 

therapeutic strategy for treatment of acute ischemic stroke in the clinical settings.

By using rodent transient or permanent focal cerebral ischemia models, intensive studies 

have demonstrated that cerebral vascular endothelial cells start to proliferate in the peri-

infarcted region as early as 12-24h after the onset of stroke [44-46]. This ischemia/hypoxia-

induced vascular remodeling leads to increased microvessel density surrounding the 

infarcted brain area three days following ischemic injury. Neovascularization can occur 

actively for a longer time in the ischemic region, as evidenced by the findings of Hayashi et 

al. showing that vessel proliferation continued for more than 21 days following experimental 

cerebral ischemia [45].

In human stroke patients, pioneering studies demonstrated that active angiogenesis takes 

place at 3-4 days following ischemic insults [47]. Furthermore, analysis of post mortem 

brain tissues obtained from patients with varying survival times following stroke revealed 

increased cerebral microvessel density in the penumbral areas in comparison with the 

contralateral normal hemisphere. Of note, stroke patients with greater cerebral blood vessel 

density appear to make better progress and survive longer than patients with lower vascular 
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density [47, 48], suggesting that active post-ischemic angiogenesis may be beneficial for 

neurological functional recovery.

1.2 Stroke-associated angiogenic factors

During stroke, ischemic insults rapidly trigger transcription of a variety of genes and 

proteins that may be involved in the process of angiogenesis [14-17]. Here we summarize 

the major factors that have been identified and associated with the development of 

angiogenesis after stroke.

VEGF—In brain tissue, vascular endothelial growth factor (VEGF) is produced and 

secreted by many neurovascular cells including neurons, astrocytes, and vascular endothelial 

cells [14, 49-51]. VEGF from various cellular sources binds to its receptors on nearby 

vascular endothelial cells to directly initiate an angiogenic response. The binding of VEGF 

to its receptors (VEGFR-1 or -2) on the surface of vascular endothelial cells activates 

intracellular tyrosine kinases and triggers multiple downstream signals (PI3K/Akt and 

MEK/ERK protein kinase pathways) that promote angiogenesis [15, 52]. VEGF has been 

identified as a central mediator in post-ischemic angiogenesis. A significantly increased 

VEGF mRNA and protein expression was observed in the penumbra following experimental 

cerebral ischemia as early as three hours after an ischemic insult and continued three to 

seven days following stroke [46, 53, 54]. Infusion of VEGF into brain tissue or transgenic 

overexpression of the VEGF gene in mice has been documented to promote angiogenesis, 

decrease infarct volume, and reduce neurological deficits after focal cerebral ischemia 

[55-57]. VEGF has also been demonstrated to exist in microvessels at penumbra after stroke 

[49, 51, 53, 54, 58, 59]. Accordingly, increased levels of VEGF have been identified in 

human brains and serum after ischemic stroke [60, 61].

bFGF—Basic fibroblast growth factor (bFGF) is weakly expressed in the normal brain but 

its levels are significantly increased after cerebral ischemia. Lin et al. [62] reported that the 

majority of bFGF protein is localized in reactive astrocytes and that a significant increase in 

bFGF expression began at one hour and remained for up to 14 days after ischemia. 

Enhanced levels of bFGF were also observed in neurons adjacent to the infarct after one 

day. In addition, macrophages, endothelial cells, and reactive astrocytes express mild to 

moderate bFGF expression levels in the first two weeks following MCA occlusion [63]. In 

human brain, this growth factor is overexpressed following ischemic stroke [64].

PDGF—In addition to its neuroprotective roles in neurons [65-67], many studies have 

shown that platelet-derived growth factor (PDGF) and its receptor are involved in the 

development of angiogenesis. PDGF and PDGF receptors were induced in microvessels in a 

rat cerebral ischemia model [68]. In particular, it is believed that vascular pericytes are the 

main source of PDGF receptor expression in the brain. Similar to the embryonic brain, the 

PDGF system might be implicated in vascular maturation in the ischemic brain.

TGFβ—Transforming growth factor beta (TGFβ) regulates cellular apoptosis, proliferation, 

migration and differentiation in most cells [69], which is attributed to the induction of 

angiogenesis [70, 71]. After cerebral ischemia, TGF-β was significantly increased in 
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activated astrocytes, microglial cells [72, 73], and microvessels [74] in the ischemic areas. 

Upregulation of TGF-β mRNA has also been observed in the ischemic penumbral region in 

human brain following ischemic stroke [75].

MMPs—Matrix metalloproteinases (MMPs) are a family of 23 zinc-dependent 

endopeptidases capable of degrading virtually all proteins in the extracellular matrix. MMPs 

participate in a host of normal biological processes, including embryonic development, 

organ morphogenesis, nerve growth, wound healing, and angiogenesis [76-79]. 

Dysregulated MMPs can contribute to the pathogenesis of cerebral ischemia because of their 

critical role in proteolytic degradation of basal lamina components (collagen IV, laminin, 

and fibronectin), leading to increased BBB permeability, edema and hemorrhagic 

transformation [80-85]. Early observations demonstrated that MMP-2 injection into the 

brain results in opening of the BBB with subsequent hemorrhaging around blood vessels 

[86] and that treatment with MMP inhibitors or MMP neutralizing antibodies reduces these 

effects [87] [88-90]. Further evidence that MMPs mediate BBB injury includes observations 

in MMP-9 knockout mice, which display a reduced infarct size and less BBB damage or 

hemorrhagic transformation compared to wild-type mice after focal ischemia [80, 82, 91, 

92]. Involvement of MMPs in BBB disruption is also supported by clinical observations in 

stroke patients that display significantly higher levels of MMP-9 [93, 94]. However, recent 

studies suggest that MMPs may have a beneficial role in post-ischemic vascular remodeling 

and neurovascular repair. It has been reported that a secondary phase of elevated MMP-9 

activity was observed in the peri-infarct cortical areas after mouse stroke, and this increase 

was closely associated with the development of angiogenesis. Inhibition of MMP-9 during 

this delayed upregulation resulted in malformed blood vessels, enlarged infarct volumes and 

cavitation, and worsened neurological deficits [95].

Thrombospondin-1—Thrombospondin-1 (TSP-1) is one of the potent anti-angiogenic 

(angiostatic) factors that have gained attention. It has been reported that this growth factor 

shows biphasic expression in rat [96] and mouse [45] brains after ischemia, with the first 

peak at one hour and the second peak at 72 hours following the onset of stroke. These 

studies revealed an elevated expression of TSP-1 in neurons, endothelial cells, and 

leptomeninges after cerebral ischemic insult. It is suggested that TSP-1 at the second peak 

may play a critical role in cessation of angiogenesis.

The angiopoietins and Tie receptors—The angiopoietin family consists of four 

members (Ang-1-4). Ang-2 promotes angiogenesis whereas Ang-1 inhibits angiogenesis 

[97]. A study shows that Ang-2 blocks the stabilization and maturation function of Ang-1 

and loosens the contacts between endothelial cells and pericytes in the vascular wall, thus 

allowing it to transition to a more plastic state [15]. Both Ang-1and Ang-2 levels increased 

in affected brain tissue up to 28 days following an ischemic insult [98-101].

Tie-1 and Tie-2 are two receptor tyrosine kinases of angiopoietins. All four angiopoietins 

have been identified as ligands for Tie-2, which is selectively expressed on vascular 

endothelial cells. Tie-1 is expressed in ischemic lesions as early as two hours after an 

ischemic insult [102]. Lin and his colleagues described a biphasic expression pattern of 
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Tie-1 and Tie-2 in rat brains following ischemia-reperfusion [98]. They also observed an up-

regulation of both receptors in capillaries inside the ischemic cortex.

Other angiogenic factors—Increasing numbers of other molecules and proteins have 

also been identified as potential angiogenic mediators in stroke. Following cerebral 

ischemia, endothelial nitric oxide synthase (eNOS) was increased in blood vessels of 

ischemic tissue [103]. Mice with a genetic deficiency of the eNOS gene showed increased 

brain infarction [104] and also decreased angiogenesis in the ischemic brain [105]. Placenta 

growth factor, another stroke-related angiogenic factor, is a ligand for VEGFR-1 that 

specifically potentiates the angiogenic response to VEGF by activation of VEGFR-1. 

Placenta growth factor mRNA and protein were both elevated in blood vessels of affected 

brain tissue with a peak of expression at three days after an ischemic insult [106]. 

Neuropilins (NP-1, NP-2) bind to VEGFR-2 [107, 108], and their mRNA expression levels 

were up-regulated following ischemic stroke [106, 109].

2. Angiogenesis-regulating microRNAs (AngiomiRs)

2.1 Overview of microRNAs

MiRs are small endogenous RNA molecules (~21-25 nt) that negatively regulate gene 

expression by hybridizing to 3′-UTRs of one or more mRNAs in a sequence-specific 

manner. Although the first miR, Lin-4, was identified in 1993 [110], it is only recently that 

we have begun to understand the scope and diversity of these regulatory molecules. MiR 

biogenesis and maturation require synergistic procession of a series of nuclear or 

cytoplasmic enzymes, including Drosha and Dicer [18, 20]. Depending on the level of 

complementarity between mature miR and a target sequence, mRNA can either be 

translationally repressed (partial) or cleaved (identical). Growing evidence has shown that 

miRs participate in a host of normal biological processes, including cell-cycle regulation, 

cell differentiation, apoptosis, development, angiogenesis, and metabolism [18, 22-24, 111, 

112]. In the past few years, miRs have also been implicated in the etiology of a variety of 

human diseases, such as cancer, metabolic diseases, cardiovascular diseases, stroke, 

neurodegenerative diseases, viral infections, and many others [28, 113-117].

2.2 microRNAs as key modulators in the development of angiogenesis

The discovery of miRs that mediate post-transcriptional silencing of specific target genes 

has shed light on how non-coding RNAs can play critical roles in angiogenesis [25-27]. The 

initial evidence showing the importance of miRs in the regulation of angiogenesis arose 

from several experiments using mice with a genetically manipulated Dicer gene [42, 43]. 

Dicer knockout mice exhibit embryonic lethality because of abnormal vascular wall 

structure and disarrangement. Mice with vascular-selective Dicer knockout have been 

reported to demonstrate a pathophysiological phenotype showing impaired angiogenic 

ability, such as reduced endothelial tube formation and slowed EC migration, which may 

have resulted from functional alteration of some key angiogenesis-related genes. Thereafter, 

an increasing number of individual miRs have recently been shown to regulate angiogenesis 

signaling pathways, thus modulating vascular endothelial migration, proliferation, and 

vascular-forming patterns [25-27]. In general, angiogenesis-related miRs can be classified 
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into two groups with often opposing effects, pro-angiogenic miRs (pro-angiomiRs) and anti-

angiogenic miRs (anti-angiomiRs). Several reviews have been published summarizing the 

literature on all angiogenesis-related miRs [25, 27]. Among them, the miR-17-92 cluster 

[43, 118-121], let-7 [42], miR-27b [122, 123], miR-126 [25, 124-126], miR-130a [127], 

miR-210 [128-130], miR-296 [131], miR-378 [132], miR-21 [133, 134], and miR-31 [133] 

are found to have pro-angiogenic effects; whereas miR-15/16 [135-139], miR-424 [135], 

miR-221/222 [140, 141], miR-92a [142], miR-320 [143], miR-200b [144], miR-217 [145], 

miR-503 [146, 147], miR-34 [148, 149], and miR-214 [150-152] have been thought to be 

anti-angiogenic (Table 1). This list is expected to expand quickly as more studies are 

performed. Of note, the effects of these miRs on vascular endothelial cell biology and 

angiogenesis have been identified in both cultured vascular endothelial cells and in cerebral 

ischemia-induced angiogenesis [142, 153]. Although a large number of angiogenesis-

regulating microRNAs (angiomiRs) have been recognized to play a role in development, 

cancer and cardiovascular diseases, only a few of them have been studied in the ischemic 

brain.

3. Stroke-associated microRNAs and angiomiRs

MiRs are abundantly expressed in the nervous system and regulate neural development and 

plasticity [154]. Recently, accumulating evidence has also linked dysregulated cerebral miR 

expression profiles to a variety of neurological diseases, including Alzheimer’s disease [28, 

29], Parkinson’s disease [30, 31], Amyotrophic lateral sclerosis [32], spinal cord injury [33], 

traumatic brain injury [34], and stroke [37-41]. Thus, the function and potential clinically-

relevant intervention of unique miRs in these neurological disorders begins to be uncovered.

3.1 Altered microRNA profile in stroke

Recently, several groups have shown the involvement of miRs in the pathogenesis of 

ischemic brain injury by using miR profiling techniques in a rat middle cerebral artery 

occlusion (MCAO) model [38, 155]. These findings suggest several miRs as potential 

candidates for possible biomarkers or therapeutic targets in stroke. The first report that 

demonstrated the potential importance of miR dysfunction in the pathogenesis of stroke was 

published in 2007 [155]. The authors used miR microarray to carry out miR expression 

profiling in brain and blood samples from rats subjected to 24-48h reperfusion following 

MCA occlusion. Their data showed that approximately 106 and 82 miR transcripts were 

identified in the brain of MCAO rats reperfused for 24 and 48 hours, respectively. The miRs 

identified as highly upregulated during the ischemia reperfusion periods (24 and 48 hours) 

included rnomiR-292-5p, -290, 206, -210, -215, -214, -223, -298, -327, -494, and -497. 

Among them, miR-292-5p and miR-290 transcripts showed the highest expression after 

ischemic injury in the brain at 24- and 48-hour reperfusion times, respectively. Several miRs 

highly expressed in the ischemic brain were also detected in blood samples. Moreover, the 

miR profiling results with DNA microarray data further showed that the expression of 

AQP4, MMP9, transfelin, VSNL1 genes may be regulated by some miRs during the 

progression of cerebral ischemia.

Recently, Dharap et al.[38], in a provocative study on the cerebral microRNAome after 

stroke, employed similar miR microarray techniques to profile brain miRs in spontaneously 
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hypertensive rats at five different reperfusion times (from 3h to 3 days) following MCA 

occlusion. Of the 238 miRs investigated in spontaneously hypertensive rats, 3 miRs 

(miR-140, miR-145, and miR-331) showed a significant increase and 5 miRs (miR 376b-5p, 

miR-153, miR-29c, miR-98, and miR-204) showed decreased expression at all 5 reperfusion 

time points studied in comparison with the sham group. These miRs may mediate 

inflammation, neuroprotection, receptor function, and ionic homeostasis. In addition to miR 

putative negative regulation of gene translation, the authors also provided evidence that 

several ischemia-induced miRs may bind to the promoter region of target genes and activate 

their transcription. Importantly, these investigators identified superoxide dismutase 2 

(SOD2) as the direct target of miR-145 by informatics software. Infusion of antagomir-145 

to the cerebral lateral ventricle resulted in increased SOD2 protein expression and decreased 

ischemic infarction area.

Ischemic preconditioning was also shown to alter the abundance of miR expression, 

including miR-132 [41], the miR-200 family, the miR-182 family [156], and others [157] 

that may promote ischemic tolerance and trigger neuroprotective signaling pathways.

In addition to direct involvement of miRs in the regulation of stroke progression, increasing 

numbers of miRs have been found to be closely associated with several risk factors of 

human ischemic stroke, including atherosclerosis and other cardiovascular diseases, which 

may finally affect the pathogenesis of stroke. Abnormal miR expression and dysfunction in 

proliferating vascular smooth muscle cells are thought to be responsible for carotid stenosis, 

resulting in the reduction of cerebral blood flow. MiR-21 [158], miR-221/222 [159], and 

miR-143/145 [160-163] have recently been investigated in this specific pathological process 

and have been shown to be critical regulators in vascular neointimal lesion formation. 

During atherosclerosis, formation and vulnerability of atherosclerotic plaques play a 

dominant role in the onset and development of ischemic stroke in humans. Abundant miR 

expression has been reported in carotid arteries where atherosclerotic plaques accumulate 

and rupture to generate thrombi that block the cerebral arteries [164-166]. For example, 

miR-126, miR-21, miR-221/222, and miR-143/145 have been demonstrated to contribute to 

the progression of atherosclerotic plaques in experimental animal models by regulating 

either endothelial cell function or vascular smooth muscle cell proliferation via various 

complex molecular mechanisms [166]. Indeed, these findings are further supported by the 

Tampere Vascular Study demonstrating that miR-21, miR-210, miR-34a, and miR-146a/b 

are significantly up-regulated in human atherosclerotic plaques [167]. Importantly, another 

study conducted by Cipollone et al. reported significant overexpression of five specific miRs 

(miR-100, miR-127, miR-145, miR-133a, and miR-133b) in atherosclerotic plaques of 

stroke patients compared to non-stroke controls, and suggested that miRs may have an 

important role in regulating the evolution of atherosclerotic plaques toward instability and 

rupture [168]. Most of these findings have been well-summarized in several recent reviews 

(see reviews by Tan et al.[166], Santovito et al.[164], and Rink and Khanna [165]) and may 

be beyond the scope of this review article.

Hypoxia is a crucial pathogenic component of ischemic diseases and angiogenesis. 

Dysregulated miR profiles in cellular responses to hypoxia may also contribute to the 

initiation and development of post-stroke angiogenesis [169]. It has been reported that low 
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oxygen induces a variety of hypoxia-regulating miRs, including miR-210, miR-373, 

miR-103, miR-24-1, miR-181c, miR-26b, and miR-26a-2 [170-173]. In particular, miR-210, 

the most extensively investigated miR, is specifically sensitive to hypoxic stimuli and has 

been considered as a master miR of hypoxic response. MiR-210 has been demonstrated to be 

induced by hypoxia in almost all cells and tissues tested to date [174]. The induction of 

miR-210 is hypoxia-specific and enhanced by several classical hypoxia-related transcription 

factors, such as HIF-1α in a transcriptional manner (transactivation) [171, 172]. It is worth 

noting that the pathogenesis of ischemic stroke is very complex and not limited only to 

hypoxia. Thus, the altered miR profiles may be different between these two pathological 

processes.

3.2 Potential functions of stroke-associated microRNAs

3.2.1 Biomarker for stroke diagnosis and outcomes—MiRs have been recently 

reported as potential biomarkers in stroke. Altered miR levels were found in blood samples 

directly from rodent stroke models [37, 175-177]. Several highly dysregulated miRs in 

ischemic rat brains were detected in blood samples [37]. A total of 10 miRs were found to 

be present in both the blood and brain at both reperfusion times (24 and 48 hours). MiR-290 

was observed to be highly upregulated, whereas let-7i was downregulated. In addition, rat 

models of cerebral ischemia, cerebral hemorrhage, and kainate-induced seizures also 

showed changes in the expression of miRs in the hippocampus and blood samples, many of 

which changed significantly in both tissues in comparison with the sham controls [176]. One 

study from a Japanese group also reported that miR-124 is a brain-specific miR and plasma 

miR-124 levels were significantly increased at 6h, and remained elevated at 48 h after rat 

MCAO [37, 175-177].

Consistent with experimental data in rats, peripheral blood isolated directly from young 

stroke patients (18-49 years) also revealed differential expression of miR profiles, 

implicating them as potential biomarkers for identifying stroke subtypes or predicting 

therapeutic outcomes in stroke. For example, 157 of the 836 miRs present on the array chip 

have been found to be differentially regulated across stroke samples and subtypes, with 138 

miRs highly upregulated and 19 miRs downregulated. Among them, 17 miRs (hsa-let-7e, 

miR-1184, -1246, -1261, -1275, -1285, -1290, -181a, -25*, -513a-5p, -550, -602, -665, 

-891a, -933, -939, -923) can also be identified as highly expressed in the stroke subtypes, 

including large artery strokes, small artery strokes, cardioembolic strokes and undetermined 

causes, whereas 8 miRs (hsa-let-7f, miR-126, -1259, -142-3p, -15b, -186, -519e, -768-5p) 

are poorly expressed across these stroke subtypes. Moreover, miR-103 and miR-29a, -b, -c 

increase significantly and are associated with poor outcomes in both large artery and 

cardioembolic stroke subtypes. These miRs are widely implicated in vascular endothelial 

cell and vascular function, erythropoiesis, angiogenesis, neural function, and hypoxia, and 

altered miRs were detectable even several months after the onset of stroke [178].

Similarly, another study also revealed that circulatory miR-145 expression is significantly 

enhanced in ischemic stroke patients in comparison with the healthy control subjects, 

implying that circulating miR-145 may be a suitable biomarker for ischemic stroke [179]. 

Furthermore, miR-210, a master hypoxia-inducing miR, has also been evaluated for the 
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correlation of blood miR-210 levels with stroke severity and clinical outcome in acute 

ischemic stroke. Compared to healthy controls, miR-210 was significantly decreased in 

stroke patients at 7 and 14 days after stroke onset. MiR-210 levels in stroke patients with 

good outcomes were significantly higher than patients with poor outcomes. There is a 

positive correlation between blood and brain miR-210 in ischemic mice [180]. Thus, it is 

promising that peripheral blood miRs and their profiles can be utilized as biomarkers in the 

diagnosis and prognosis of acute cerebral ischemic stroke.

3.2.2 Modulating signaling cascades to regulate stroke pathology: the 
function of individual microRNAs in stroke—Most recently, the functions of several 

individual miRs have also been identified in post-ischemic pathology from several 

investigative groups, including our laboratory (Table 2). For example, a recent study showed 

that miR-145 is upregulated and responsible for translational inhibition of superoxide 

dismutase-2 in the hypertensive rat brain after stroke [38]. Inhibition of miR-145 in vivo is 

able to reduce cerebral infarction. Also, we have recently defined that miR-497 is induced 

and promotes ischemic neuronal death in vitro and in vivo by directly inhibiting anti-

apoptotic genes, bcl-2 and bcl-w [40]. Moreover, we are the first to document that the 

expression of miR-15a is significantly increased in cerebral vascular endothelial cell (CEC) 

cultures after ischemic insults and that miR-15a plays a causative role in the regulation of 

apoptosis by directly targeting bcl-2 in ischemic vascular injury in vitro. The inhibition of 

this effect is also shown to contribute to the PPARδ-mediated vasoprotective role in mouse 

stroke [39]. On the other hand, miR-320a [181] and miR-21 [182] were demonstrated to 

protect neurons from ischemic death by targeting water channel modulators, aquaporins and 

the Fas ligand gene, respectively. Several other studies from different groups also 

documented that direct modulation of miR-23a [183], miR-181 [184], miR-29b [185], and 

Let7f [186] can provide neuroprotective roles in rodent experimental stroke models. 

Accordingly, miRs such as miR-331 and miR-885-3p [187], miR-146a [188], and 

miR-199a-5p [189] can also mediate valproic acid, VELCADE-tissue plasminogen activator 

combination therapy, Vitamin E-mediated neuroprotection or improvements in neurological 

deficits, and motor performance in rodent stroke models. Interestingly, stroke is also able to 

alter miR expression in neural progenitor cells of the subventricular zone (SVZ) and in 

particular, miR-124a mediates stroke-induced neurogenesis by targeting the JAG-Notch 

signaling pathway [190]. Taken together, these findings support and highlight the 

importance of miRs in the pathogenesis of stroke [165, 166, 191, 192].

3.3 AngiomiRs in stroke pathologies

Emerging evidence shows that miRs may be involved in the regulation of post-ischemic 

angiogenesis after stroke (Table 3). In young stroke patients, circulating miRs in blood that 

are associated with vascular endothelial function and angiogenesis (hsa-let-7f, miR-130a, 

-150, -17, -19a, -19b, -20a, -222 and -378) and vascular remodeling (miR-21, -126, -150) 

have been found to be differentially regulated under ischemic conditions. Similarly, miRs 

that are expressed in hypoxic conditions (miR-23, -24, -26, -103, -107, -181) and cardiac 

ischemia/reperfusion (miR-15, -16, -21, -23a, -29, -30a, -150 and -195) have also been 

detected in blood samples from stroke patients [178]. Moreover, miR-320, which is a 

negative angiogenic mediator in myocardial microvascular endothelial cells of type 2 
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diabetic rats, is significantly reduced in all stroke patients, especially those with good 

outcome [178].

Consistent with clinical observations, we recently documented the effects and potential 

mechanisms of vascular endothelial cell (EC)-enriched miR-15a, a stroke-associated miR, 

on angiogenesis after ischemic insults [136]. We have shown a novel finding that EC-

selective miR-15a transgenic overexpression leads to reduced blood vessel formation and 

local blood flow perfusion in mouse hindlimbs at 1-3 weeks after hindlimb ischemia (Figure 

1). Mechanistically, gain- or loss-of-miR-15a function by lentiviral infection in ECs 

significantly reduces or increases tube formation, cell migration and cell differentiation, 

respectively. By FGF2 and VEGF 3′UTR luciferase reporter assays, real-time PCR, and 

immunoassays, we further identified that miR-15a directly targets FGF2 and VEGF to 

facilitate its anti-angiogenic effects. Our data suggest that miR-15a in ECs can significantly 

suppress cell-autonomous angiogenesis through direct inhibition of endogenous endothelial 

FGF2 and VEGF activities [136]. Moreover, we further investigated the role of miR-15a in 

the regulation of post-brain ischemic angiogenesis (unpublished data). We have shown that 

expression of the miR-15a is significantly increased in the cerebral vasculature at the 

penumbral area 7 days after mouse middle cerebral artery occlusion (MCAO). Accordingly, 

endothelial cell (EC)-selective miR-15a transgenic overexpression leads to reduced cerebral 

blood vessel formation, increased brain infarction and neurological deficits in mice 7 days 

post-MCA occlusion. These findings may suggest miR-15a can suppress post-ischemic 

cerebral angiogenesis. Pharmacological modulation of miR-15a function may provide a new 

therapeutic strategy to intervene against angiogenesis with potential promise for further 

development of neurorestorative therapies after ischemic stroke.

In addition, another group has recently found that miR-210, a hypoxia-induced miR, is 

significantly up-regulated in adult rat ischemic brain cortexes in which the expression of 

Notch1 signaling was also increased. Gain-of-miR-210 function in cultured HUVE-12 cells 

caused activation of the Notch1 signaling cascade and induced endothelial cells to migrate 

and form capillary-like structures. These data may imply that miR-210 mediates 

angiogenesis following cerebral ischemia [193].

4. AngiomiR-based therapeutics in cardiovascular diseases and stroke

Greater attention has been paid to angiomiRs as key regulators of angiogenesis as well as 

novel treatments for cancer, limb ischemic injury, retinopathy, cardiovascular diseases, and 

stroke [25, 27, 194]. The use of angiomiR mimics and angiomiR inhibitors are two 

therapeutic approaches to promoting and inhibiting angiogenesis. The use of these strategies 

depends on the requirements of upregulating or downregulating target angiomiRs to inhibit 

or enhance the angiogenic process according to the pathological angiogenic status of 

relevant diseases. In ischemic diseases with insufficient angiogenesis such as myocardial 

infarction, ischemic stroke, and peripheral artery diseases, pro-angiomiR mimics or anti-

angiomiR inhibitors can be used to promote angiogenesis for a better beneficial outcome. 

Conversely, pro-angiomiR inhibitors or anti-angiomiR mimics may be applied to reduce 

excessive neovascularization in tumor angiogenesis and retinopathy [25, 27, 194].
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Generally, angiomiR mimics are basically designed as double-stranded oligonucleotides that 

resemble miR precursors. Depending on the delivery system, overexpression of an angiomiR 

mimic can be achieved by lipid-mediated transfection, adenoviral or lentiviral vectors, or 

transgenesis. For example, miR-126 mimics might be utilized to enhance neoangiogenesis 

after myocardial infarction or ischemia [153]. MiR-15 and -16 mimics might be a useful 

anti-tumor tool that blocks angiogenesis, resulting in the inhibition of tumor cell growth and 

proliferation [26, 42].

AngiomiR inhibitors are originally designed as single-stranded angiomiR antisense 

oligonucleotides that bind to the full or partial complementary reverse sequence of a mature 

miR. The use of antisense sequences has been successful in various cultured cell systems. 

However, for use in vivo, several different chemical modifications have been developed to 

improve their pharmacokinetic characteristics in vivo [195, 196]. These modifications 

include the initial antagomiRs in which anti-miR oligonucleotides are synthesized and 

further modified by incorporations of a methyl group (2′-O-methyl [2′-O-Me]) together with 

the partial phosphorothioate linkage and cholesterol conjugation at the 3′ end of the strand 

(which improves tissue distribution and cellular uptake), alterations to the sugar moiety with 

2′-O-methoxyethyl phosphorothioate (2′-MOE) and the use of locked nucleic acids (LNAs). 

Studies have revealed that inhibition of miR-17-92 cluster activity is associated with 

angiogenesis [118, 197]. Systemic administration of antagomirs has been used to silence 

miR-122 in the liver of mice [198] and miR-133 in mouse heart [113]. In addition, anti-

miR-122 LNA has been used to treat chronic viral hepatitis in chimpanzees [199]. Several 

companies are now developing miR-based therapeutics. Santaris Pharmaceuticals (http://

www.santaris.com) has launched a phase II clinical trial for the treatment of hepatitis C 

using liver-specific anti-miR-122 LNA. Most recently, angiomiR inhibitor technology has 

been used for miR-15 inhibition in ischemic heart disease [200]. Also, anti-miR-15/195, 

miR-92, and miR-143/145 LNA preclinical studies are ongoing at miRagen Therapeutics 

(http://www.miragentherapeutics.com) to develop anti-miR inhibitors for the improvement 

of post-myocardial infarction remodeling and treatment of peripheral artery disease and 

vascular disease. In terms of ischemic stroke studies, our laboratory, together with other 

groups, has also shown that local delivery of antagomiR-497 [40], or antagomiR-145 [38] by 

intracerebroventricular injection provides a significant neuroprotective role in rodent 

experimental stroke models. However, there is no direct experimental evidence to show that 

angiomiR therapeutics reduces brain infarct volume or improves functional outcomes after 

stroke.

5. Future prospects

Recent miR-based therapeutic angiogenesis through direct injection or viral gene transfer of 

angiomiRs has shown us several promising results in reducing myocardial infarction or 

promoting new vessel growth and blood flow recovery in peripheral vascular diseases. 

These encouraging trials should prompt us to apply similar approaches to the treatment of 

ischemic stroke. Although selective regulation of particular angiomiRs appears to be a 

promising restorative therapy for ischemic stroke, there are several potential challenges or 

limitations for application of miR and angiomiR therapeutics in stroke. These obstacles 

include a lack of understanding the function of individual angiomiRs in stroke pathogenesis, 
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a less than effective delivery system to achieve neural cell specific delivery in vivo, 

limitations pertaining to miR target specificity, and the unique structure of the blood-brain 

barrier. For systemic delivery of virus-based angiomiR mimics and inhibitors, potential 

pitfalls such as virus-derived toxicity and off-target effects may also hinder their future 

translational application in human studies. Moreover, in addition to the beneficial outcomes 

of angiogenesis in the restorative treatment of ischemic stroke, angiogenesis-derived 

negative effects should also be carefully taken into account. For example, essential attention 

should be paid to tumor cells growth-promoting roles when thinking about systemically 

modifying miR expression with antagomiRs and/or angiomiRs, especially in patients 

suffering from ischemic stroke with comorbid cancers.

Accumulating evidence has linked dysregulated cerebral miR expression to a variety of 

neurological diseases. Much hope has been laid on these tiny non-coding RNA molecules as 

novel pharmaceutical targets in many fields, including cardiovascular and cerebrovascular 

diseases. However, we should realize that we are still at the early stages in miR or 

angiomiR-based therapy in the stroke research field. Future studies will focus on elucidating 

the in vivo functions of angiomiR members after focal cerebral ischemia. In particular, 

utilization of general or cell-specific angiomiR transgenic and knockout animals will be 

necessary to validate the particular functional significance and molecular mechanisms of 

individual angiomiRs in the pathogenesis of stroke. Moreover, the molecular regulatory 

network of particular angiomiRs may also need to be elucidated to fully understand the 

function of angiomiRs. Specific attention will also be paid to miR target identification and 

cell-type specificity of miRs. Also, non-toxic angiomiR modulators and better local delivery 

methods need to be developed or optimized to avoid the side effects and lower specificity 

caused by the systemic administration of virus-based angiomiR mimics and inhibitors. In the 

meantime, employing nanoparticle-packaged angiomiR mimics or inhibitors will be needed 

to overcome barriers such as BBB damage and brain edema after the onset of stroke. In 

addition, since a number of angiomiRs may be associated with post-ischemic angiogenesis, 

a whole family of miRs and/or multiple miRs will likely need to be silenced for effective 

angiomiR therapeutics. Toward this goal, tiny LNA-substituted phosphorothioate anti-miR 

oligonucleotides complementary to seed sequences [201] and miR sponges [202] will be 

used to antagonize all the respective miR family members or multiple miR targets, 

respectively. These studies will contribute to emerging efforts for angiomiR therapeutics in 

stroke, and may lead us to uncover new insights for further development of neurorestorative 

therapies after ischemic stroke.
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Figure 1. 
miR-15a attenuates angiogenesis and local blood flow recovery after mouse hindlimb 

ischemia [136]. miR-15a transgenic (TG) mice and littermate wild-type controls (WT) were 

subjected to femoral artery ligation and subsequently monitored by laser Doppler perfusion 

imaging at 0 day (D0) and 3 weeks (W3) after hindlimb ischemia (n=8 per group).
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Table 1
Identified Angiogensis-regulatory MicroRNAs (AngiomiRs)

microRNAs Function on Agiogenic Process GeneTargets Cell Types

Pro-angiomiRs

miR-17-92 cluster Promotes tumor angiognesis and EC-mediated
angiogenesis in vitro and in vivo

Tsp-1, CTGF,
E2F1, TGFBR2

Cancer cells,
HUVECs

let7 Promotes EC angiogenesis in vitro Unknown HUVECs

miR-27a/b Promotes EC angiogenesis in vitro SEMA6A, Spry2,
Dll4

HUVECs

miR-126 Promotes EC angiogenesis in vitro and in vivo Spred-1, PIK3R2,
VCAM-1

Various ECs

miR-130a Promotes EC angiogenesis in vitro GAX, HOXA5 HUVECs

miR-210 Promotes EC-mediated and renal angiogenesis in
vitro

Ephrin A3, VEGF
and VEGFR2

HUVECs

miR-296 Promotes tumor angiognesis and EC-mediated
angiogenesis in vitro and in vivo

HGS HBMVECs

miR-378 Promotes tumor angiognesis in vitro and in vivo SuFu, Fus-1 Cancer cells

miR-21 Induces tumor angiognesis in vitro PTEN Cancer cells

miR-31 Promotes tumor angiognesis in vitro Unknown Cancer cells

Anti-angiomiRs

miR-15/16 Inhibits tumor angiognesis and EC-mediated
angiogenesis in vitro and in vivo

FGF2, FGFR1,
VEGF, VEGFR2

Cancer cells,
HUVECs

miR-424 Inhibits EC-mediated angiogenesis in vitro FGF2, FGFR1,
VEGF, VEGFR2

HUVECs

miR-221/222 Inhibits EC-mediated angiogenesis in vitro c-kit, eNOS HUVECs

miR-92a Inhibits EC-mediated angiogenesis in vitro and in
vivo

Integrin α5 HUVECs

miR-320 Inhibits diabetic angiogenesis in vitro IGF-1 ECs

miR-200b Inhibits EC-mediated angiogenesis in vitro Ets-1 HMEC

miR-217 Promotes endothelial senescence SIRT1 HUVECs,
HAECs

miR-503 Inhibits EC-mediated angiogenesis in vitro and in
vivo

CCNE1, cdc25A HUVECs

miR-34 Inhibits endothelial and EPC angiogenesis in vitro
and increased senescence

SIRT1 HUVECs,
EPCs

miR-214 Inhibits tumor angiognesis and EC-mediated
angiogenesis in vitro and in vivo

HDGF, Quaking,
eNOS

Cancer cells,
HUVECs
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Table 2
Identified Stroke-Associated MicroRNAs

microRNAs Function Targets References

miR-145 Antagomir-145 decreases brain infarction. SOD-2 Dharap A et al.,2009
[38]

miR-497 Antagomir-497 attenuates ischemic brain
infarction, and improves neurological outcomes.

Bcl-2, Bcl-w Yin KJ et al, 2010a [40]

miR-15a Inhibition results in cerebral vascular protection
in vitro and in vivo.

Bcl-2 Yin KJ et al., 2010b [39]

miR-132 Decreased miR-132 expression correlates with
increased MeCP2 protein.

MeCP2 Lusardi TA et al., 2010
[41]

miR-21 Overexpression protects neurons from ischemic
death in vitro.

FASLG Buller B et al., 2010
[182]

miR-320a Antagomir-320a reduces brain infarct volume. AQP1, AQP4 Sepramaniam S et al.,
2010 [182]

miR-200
family

Overexpression results in neuroprotection in in
vitro ischemia.

PHD2 Lee ST et al., 2010
[156]

miR-124a Inhibition reduces progenitor cell proliferation
and promots neuronal differentiation in vitro.

Jag1/Notch/p27K
ip1

Liu XS et al., 2011 [190]

miR-23a Sex difference in miR-23a regulates XIAP in
ischemic cell death.

XIAP Siegel C et al., 2011
[183]

miR-29b Upregulation promotes neuronal cell death in
vitro.

Bcl2L2 Shi G et al., 2011 [185]

miR-181 Knockdown provides protection against ischemia-
induced brain cell death in vitro and in vivo.

GRP78 Ouyang YB et al., 2011
[184]

miR-210 Biomarker, the higher miR-210 level, the better
stroke outcome in patients.

Unknown Zeng L et al., 2011 [180]

miR-124 Biomaker, increases in plasm in rat following
MCAO

Unknown Weng H et al., 2011
[177]

Let7f Antagomir to let7f promotes neuroprotection in
rat ischemic stroke model.

IGF-1 Selvamani A et al.,
2012 [186]

miR-145 Biomarker, circulatory microRNA-145
expression is significantly higher in ischemic
stroke patients.

Unknown Gan CS et al., 2012
[179]

miR-199a-5p Mediates the neuroprotection of vitamin E α-
Tocotrienol against focal cerebral ischemia

MRP1 Park HA et al., 2011
[189]

miR-146a Mediates the neuroprotection of VELCADE and
tPA in aged rat MCAO medel

IRAK1 Zhang L et al., 2012
[188]

miR-331,
miR-885-3p

Mediates the neuroprotection of valproic acid in
rat MCAO medel

Multiple targets Hunsberger JG et al.,
2012 [187]
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Table 3
Stroke-Associated AngiomiRs

microRNAs Function in Angiogenesis Targets Cell
types References

miR-320 Blood miR-320 level is significantly downregulated
in all young stroke patients with good outcome.

Unknown Blood Tan KS et al., 2009
[178]

miR-15a Upregulates in ischemic brain regions. Gain or
loss-of-miR-15a function reduces or increases EC
tube formation, migration, and differentiation,
respectively. EC-miR-15a transgenic
overexpression leads to reduced blood vessel
formation and local blood flow perfusion after
hindlimb ischemia.

FGF2,
VEGF

CECs,
HUVECs

Yin KJ et al., 2010b
[39]; Yin KJ et al.,
2012 [136]

miR-210 Upregulates in rat ischemic brain cortexes.
Overexpression increases Notch1 expression and
induces ECs to migrate and form capillary-like
structures on Matrigel.

Notch1 HUVECs Lou YL et al., 2012
[193]
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