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Abstract

In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its

application in brain mapping research. Using the Laplace-Beltrami eigen-system, we represent

each surface with an isometry invariant embedding in a high dimensional space. The key idea in

our system is that we realize surface deformation in the embedding space via the iterative

optimization of a conformal metric without explicitly perturbing the surface or its embedding. By

minimizing a distance measure in the embedding space with metric optimization, our method

generates a conformal map directly between surfaces with highly uniform metric distortion and the

ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the

metric optimization approach for group-wise atlas construction and multi-atlas cortical label

fusion. In experimental results, we demonstrate the robustness and generality of our method by
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applying it to map both cortical and hippocampal surfaces in population studies. For cortical

labeling, our method achieves excellent performance in a cross-validation experiment with 40

manually labeled surfaces, and successfully models localized brain development in a pediatric

study of 80 subjects. For hippocampal mapping, our method produces much more significant

results than two popular tools on a multiple sclerosis study of 109 subjects.

Index Terms

Laplace-Beltrami embedding; metric optimization; surface mapping; cortex; hippocampus

I. Introduction

The automated mapping and analysis of the surface representation of neuroanatomy is

critical in brain mapping research [1]–[5]. By accurately aligning corresponding anatomical

regions, surface mapping techniques allow the localization of subtle perturbations to brain

morphometry in population studies. While many promising techniques were developed,

there is still a lack of general, yet feature sensitive, methods that can be applied to various

anatomical structures. By representing surfaces with their feature-aware Laplace-Beltrami

(LB) eigen-functions, we propose in this work a novel approach for intrinsic surface

mapping in the LB embedding space via the optimization of the conformal metric on the

surface. We demonstrate the robustness and generality of our method by applying it to map

both the relatively smooth hippocampal surface and the convoluted cortical surface in

population studies.

To compare different brain surfaces, previous methods typically rely on the mapping of

surfaces to a canonical domain such as the unit sphere [2], [6]–[11]. After that, a customized

warping process can be applied to obtain the final map [2], [3], [12], [13]. To map a surface

to the canonical domain, conformal maps are among the most popular tools because they

have the mathematical guarantee of being diffeomorphic and the angle-preserving property

[7]–[9], [14], but large metric distortions in these maps could affect the computational

efficiency and mapping quality of the downstream warping process. During the customized

warping on the canonical domain, different choices were made in previous works according

to the specific brain structure under study. For cortical surfaces, sulcal lines or curvature

features were often used to guide the surface warping in the canonical domain [2], [3], [12].

For sub-cortical structures without obvious anatomical landmarks, many different strategies

were developed that include the use of orientation in atlas spaces [4], the minimization of

groupwise shape variability [13], and the incorporation of features derived from the Reeb

graph of LB eigen-functions [15], [16].

The eigen-system of the LB operator recently becomes increasingly popular as a general and

powerful tool for intrinsic surface analysis [16]–[28]. Because the LB eigen-system is

isometry invariant, which is more general than typically desired pose invariance in shape

analysis, they are naturally suited to shape analysis with intrinsic geometry. The LB

eigenvalues and the nodal counts of eigen-functions were successfully applied to shape

classification [17], [23], [28]. The LB eigen-functions as orthonormal basis on surfaces have
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been valuable for signal denoising [18], the construction of multi-scale shape representation

[29], and the detection of spurious outliers in mesh reconstruction [25]. As intrinsic feature

functions, the LB eigen-functions have also been used to construct intrinsic Reeb graphs for

the analysis of geometric and topological properties of MR images [22], [26]. One of the

most valuable properties of the LB eigen-functions is their effectiveness in intrinsically

describing the global geometric feature of anatomical shapes. This capability was

successfully demonstrated in the development of novel descriptors of cortical surfaces and

hippocampal surfaces [16], [29]. By viewing these feature-aware LB eigen-functions as

intrinsically defined coordinates, an embedding of the surface into an infinity dimensional

space was proposed, which naturally has the property of being isometry invariant and

provides a general framework for intrinsic shape analysis [19]. As a first application, a

histogram feature was developed in [19] from the embedding for shape classification. In this

embedding space, a novel distance measure was proposed that allows the rigorous

comparison of similarity between surfaces in terms of their intrinsic geometry [24]. Eigen-

functions from the Laplacian operator on weighted graphs were also proposed for the

mapping of cortical surfaces [27]. The main innovation of this method is to build a single

graph that connects the vertices on two different surfaces and use the Laplacian embedding

of this graph to establish detailed maps. State-of-the-art cortical labeling results comparable

with FreeSurfer [30] were reported with significantly improved computational efficiency.

By warping the LB embedding of surfaces and minimizing their distance in the embedding

space, we develop in this work a novel approach for surface mapping that can be applied to

general anatomical structures. Unlike surface deformation in the Euclidean space that

directly modifies surface geometry, our method iteratively changes the conformal metric on

the surface to realize its deformation in the high dimensional embedding space. This is also

different from previous works that directly warp the high dimensional embeddings with

affine or nonlinear transformations to minimize the distance between surfaces [31]–[33].

Our method ensures that the embedding is a valid manifold during the deformation process

and the final maps between surfaces satisfy the condition of conformal maps. Related to our

work is the Ricci flow method that also warps the metric on a surface to map it to canonical

spaces such as the unit sphere [34]. Guided by the feature-aware LB embedding, our method

computes the conformal maps directly between anatomical surfaces that have much more

uniform metric distortion than spherical conformal maps. Compared with the method in

[27], where the focus is on improving the diffeomorphic correspondences of cortical maps,

our method takes a mathematically different approach that produces a novel way of

computing conformal maps with much improved metric preserving property.We also

demonstrate the generality of our method with applications of mapping both cortical and

sub-cortical brain structures. Besides applying it to compute pairwise surface maps, we also

extend our method to build a group-wise atlas in the embedding space, which can be useful

in population studies. To demonstrate the application of our method in brain mapping

research, we developed an automated cortical labeling method by fusing the labels derived

from the maps to a set of labeled atlases that were computed in the LB embedding space.

Results from two population studies will be presented to illustrate the effectiveness of our

mapping method in modeling brain development and detecting hippocampal changes in

patients with multiple sclerosis (MS) and depression.
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A preliminary version of this work was presented in a conference paper [35]. Here we

present more complete descriptions of the algorithm, extensive comparisons with previous

surface mapping methods, and demonstrate the generality of our method with the mapping

of both cortical and sub-cortical structures. More extended explanations about the

mathematical and algorithmic details of the proposed method have also been added.

Applications to two brain mapping studies will also be presented: cortical thickness changes

in pediatric development and hippocampal atrophy in multiple sclerosis patients with

depression. The rest of the paper is organized as follows. In section II, we develop the

general framework of surface mapping in the LB embedding space with metric optimization.

The numerical algorithm to compute the optimized metric is developed in section III. After

that, the extension of the metric optimization algorithm to compute group-wise atlas in the

embedding space and its application for cortical label fusion will be described in section IV.

Experimental results will be presented in section V to demonstrate the application of our

method in mapping brain surfaces with varying complexity. Finally, conclusions are made in

section VI.

II. Surface Mapping via Metric Optimization

Instead of processing surfaces in the Euclidean space where they are defined, we develop in

this section a novel surface mapping technique in the high dimensional LB embedding

space. The key idea in our method is that deformation in the embedding space is realized by

modifying the metric on the surface. By minimizing a distance measure in the embedding

space, we can obtain optimized surface maps for general anatomical structures.

Let (ℳ, g) be a genus-zero Riemannian surface where the metric g is the standard metric

induced from ℝ3. For a function f : ℳ → ℝ, the LB operator on ℳ with the metric g is

defined as:

(1)

where (gij) is the inverse matrix of g = (gij) and G = det(gij). Because the spectrum of  is

discrete, its eigen-system is defined as

(2)

where λn and fn are the n-th eigenvalue and eigen-function, respectively. The set of eigen-

functions Φ = {f0, f1, f2,⋯,} form an orthonormal basis on the surface. Using the LB eigen-

system, an embedding  was proposed in [36]:

(3)

For the mapping of anatomical surfaces, the most critical property of this embedding is that

it is isometry invariant. By finding the proper embedding after factoring out sign ambiguities

of the eigen-functions, we can capture the intrinsic characteristics of the surface geometry.
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This robustness has been demonstrated to be valuable in the identifications of landmark

features on anatomical structures such as the vervet and human brain cortical surfaces [24],

[29]. From the point of view of creating detailed, and high quality surface maps, however,

there are still important differences across surfaces that need to be addressed even after this

isometry invariant embedding. For example, we show in Fig. 1 the eigen-functions of two

hippocampal surfaces where the second surface has a stronger bending. This non-isometric

difference results in major differences in the eigen-functions as shown in Fig. 1(b) and (e).

Using the nearest point maps in the embedding space, we can project the originally regular

mesh of each surface onto the other surface as plotted in Fig. 1(c) and (f). From the large

metric distortions in the projected meshes, we can easily see that the maps are

unsatisfactory.

For surface mapping with LB embedding, the challenge is thus to overcome the non-

isometric differences of surfaces and increase their similarity in the embedding space. To

achieve this goal, we propose in this work to compute an optimized metric on the surface

because its LB eigen-system is completely determined by the metric on the surface. Let ĝ =

wg denote a new metric on the surface ℳ, where w : ℳ → ℝ+ is a positive function on ℳ.

For the regular metric, we have w = 1. By iteratively perturbing the new metric w on the

surface, we can deform the LB embedding of ℳ to remove its non-isometric differences to

other surfaces.

To optimize the metric and minimize differences between surfaces in the LB embedding

space, we need a distance measure in the embedding space. Given two surfaces and their LB

embeddings, a rigorous distance measure called the spectral l2-distance was proposed in

[24].

Definition 1 (spectral l2-distance)

Let (ℳ1, g1) and (ℳ2, g2) be two surfaces. For any given LB orthonormal basis Φ1 of ℳ1

and Φ2 of ℳ2, let

(4)

The spectral l2-distance d(ℳ1, ℳ2) between ℳ1 and ℳ2 independent of the choice of

eigen-systems is defined as:

where ℬ(ℳ1) and ℬ(ℳ2) denote the set of all possible LB basis on ℳ1 and ℳ2, and

dℳ1(x), dℳ2 (y) are normalized area elements, i.e., ∫ℳ1 dℳ1 (x) = 1 and ∫ℳ2 dℳ2 (y) = 1.

Because the definition of the spectral l2-distance includes the max and inf operations, it is

non-differentiable with respect to the weight w. To find the optimal weight w that minimizes

the spectral l2-distance of two surfaces (ℳ1, wg1) and (ℳ2, g2), we instead minimize a

more tractable energy function defined as follows:
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(5)

where w is metric on ℳ1, Φ1 and Φ2 are the basis used for the LB embedding of (ℳ1, wg1)

and (ℳ2, g2). When the energy equals zero, we can see that both energy terms have to be

zero, thus the minimizer of the energy also minimizes the spectral l2-distance. For

simplicity, we focus here on the development of the metric optimization algorithm and only

introduce the unknown metric on one surface. The same numerical algorithm, however, can

be easily extended to optimize the metrics on both surfaces. This could have potential

applications in symmetric surface registration and atlas construction. More details about this

possibility will be discussed in section VI.

For two genus-zero surfaces, the existence of the minimizer is guaranteed because all such

surfaces are conformally equivalent and the LB embedding is completely determined by

their metric. Let (w,  denote the solution that minimizes the energy. Given the

optimized metric w and assuming no multiplicity in the eigenvalues [37], the optimal basis

 and  of (ℳ1, wg1) and (ℳ2, g2) are selected from all possible sign combinations that

minimize the energy. Note that multiplicity could occur for symmetric shapes such as the

sphere, so our assumption of no multiplicity is for anatomical shapes with no obvious global

symmetry. The two manifolds (ℳ1, wg1) and (ℳ2, g2) are isometric when the metric w is

chosen so that the spectral l2-distance is zero [24]. Because the LB eigen-system is isometry

invariant, the identity maps between the embeddings give the isometric maps between the

surfaces when the spectral l2-distance is zero. Since isometry is a subset of conformal maps

and the weighting w introduced in the metric is conformal, we have a conformal map from

(ℳ1, g1) to (ℳ2, g2) when we combine these maps as illustrated in Fig. 2. Let Id denote the

identity map from  to , the conformal map μ :ℳ1 → ℳ2 from ℳ1 to ℳ2 is thus

(6)

where  is the inverse map of the embedding .

One important point to note is that the metric optimization approach is not limited to pair-

wise surface maps. The energy in (5) can be generalized to incorporate multiple surfaces and

used for the computation of group-wise atlases in the embedding space, which we will

discuss in section IV-A. Next we develop numerical techniques to minimize the energy that

are also general and can be applied to group-wise applications.

III. Numerical Optimization

In this section, we develop the numerical algorithm for metric optimization and the

computation of surface maps in the LB embedding space. As a first step, we describe the

numerical scheme to compute the LB eigen-system given the weighted metric. After that, an

energy minimization scheme will be developed to find the optimal metric.
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Let (ℳ, wg) denote a manifold ℳ with the weighted metric ĝ = wg. The LB operator with

the new metric is then  and its eigen-system is:

(7)

For numerical computation, we use the linear finite element method [38] and represent the

surface as a triangular mesh ℳ = ( , ) with K vertices, where  and  are the set of

vertices and triangles. At each vertex υi, we denote its barycentric coordinate function as ϕi,

and represent the weight function as , and , where wj and βk

are the coefficients of the basis functions. By choosing ϕi as the test function, the weak form

of (7) is:

(8)

Using this weak form, we can solve a generalized matrix eigen problem to find the eigen-

system under the weighted metric:

(9)

where the entry of the matrix Q and U on the i-th row and k-th column are defined as:

(10)

where  is the angle in the triangle l opposite to the edge (υi, υk), |·| denotes the area of a

triangle, (·) and (·, ·) denote the neighborhood of vertices, and i,j,k denotes the

triangle formed by three vertices: υi, υj, υk. Because Uik = ∑j wj ∫ℳ ϕiϕjϕkdℳ, the

coefficients in (10) are derived from the integral ∫ℳ ϕiϕjϕkdℳ of the barycentric

coordinate functions.

To minimize the energy in (5) with respect to the metric w, we represent the two surfaces as

triangular meshes ℳm = ( m, m)(m = 1, 2) and develop an iterative algorithm. For

numerical approximation of the LB embedding of the surfaces, we choose the first N eigen-

functions for both surfaces. For the target surface ℳ2, we compute its LB eigen-system by

solving (9) with the uniform weight and fix its embedding by picking Φ2 randomly from

ℬ(ℳ2), which is the set of LB basis with all possible sign combinations. For the surface

ℳ1, we start with the uniform weight w = 1 and iteratively update Φ1 and w to minimize E.
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At each iteration, we first compute the eigen-system of ℳ1 by solving (9) given the current

weight and search Φ1 from ℬ(ℳ1) to minimize E. With the current basis Φ1 and Φ2 for

embedding, we denote Id1( 1) = A 2 and Id2( 2) = B 1 as the nearest point maps from

 to , and vice versa. In each triangle of , the nearest point to the embedding

 of a vertex 1,i in ℳ1 is calculated and the one achieved the minimum distance is

defined as the projection of  onto . Thus this projection relation Id1 can be

represented as the linear interpolation from the vertices of the corresponding triangle in ℳ2

and the interpolation coefficients are saved in the matrix A. Similarly, the projection from

the embedding of ℳ2 to ℳ1 is represented as the matrix B. Given these two maps, we write

the energy in discrete form as:

(11)

where S(ℳ1) and S(ℳ2) are the surface area of ℳ1 and ℳ2, the matrices U1 and U2 are

defined in (10) with uniform weight, i.e., the standard metric induced from ℝ3. Using the

eigen-derivatives with respect to the weight functions, we can update the weight function w

in the gradient descent direction as in (12) at the bottom of the page, where  and 

are the derivatives of the eigen-system with respect to the conformal metric. By updating w

according to (12), we iteratively move w in the direction of minimizing the differences of

corresponding eigen-functions of the two surfaces, and thus their distance in the embedding

space. Numerical details about the computation of the eigen-derivatives are summarized in

the Appendix. By repeating the above steps for searching Φ1 and updating w, we minimize

the energy function until convergence. The final conformal map is then obtained by the

composition of the embedding , the nearest point map Id1 and the inverse map  as

defined in (6). Because  is an embedding, its inverse is one-to-one and onto. Numerically

we carry the same interpolation represented in A and B to the Euclidean space to obtain the

inverse map.

(12)

When a large number of eigen-functions are used, the search for the optimal embedding

from B(ℳ1) becomes computationally expensive. We not only need to search from 2N

possible sign combinations of the eigen-functions, but also have to consider possible

switching of the order of the eigenfunctions between different surfaces [31]–[33]. Histogram

features were used in previous work to search for matched eigen-functions across surfaces

[32]. While true multiplicities are rare, numerically it is possible for near multiplicities to

cause the eigen-spaces to split in different directions, which would make the direct matching
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of eigen-functions a difficult task. In our algorithm, we mainly focus on resolving the sign

ambiguities and the change of the ordering of eigen-functions. The detection and analysis of

high-dimensional eigen-spaces with multiplicity greater than one will be the work of future

research. In our algorithm, we take a multi-scale approach to alleviate some of these

challenges and will show that our method can produce excellent results for many surface

mapping problems. We first optimize the embedding with low-order eigen-functions, and

progressively increase the dimension of the embedding until the maximum order of

embedding is achieved, which greatly reduces the search space for sign ambiguities. With

this strategy, the final metric optimization algorithm is summarized in Table I. In this

algorithm, we start the metric optimization at the order of N = Ninit. Convergence of the

iterative process is determined by the oscillation of the energy to be minimized. While there

is currently no theoretical guarantee about convergence, we find this criterion provides a

satisfactory solution in all our experiments. Once convergence is reached for this process,

we increase the order by a number Nincr, which is typically chosen as 5 in our experiments.

The algorithm stops when the process stops at the highest order Nmax. Note that different

search strategies for the optimal embedding of ℳ1 are used in step 2.1 of the algorithm.

When N = Ninit, we only search from the 2N sign combinations of the eigen-functions for the

optimal embedding at the first iteration. In subsequent iterations, for every eigen-function

computed with the updated w, we find its best match with eigen-functions in the previous

iteration to establish its order and sign in the embedding, which only involves N(N +1)/2

comparisons. This not only removes the sign ambiguity, but also accounts for possible

switching of the ordering of eigen-functions. When the order is increased by Nincr, we keep

the eigen-functions optimized previously and search from the 2Nincr sign combinations of

the latest Nincr high-order eigen-functions for the optimal embedding. This only needs to be

done once in the first iteration. After that, the same correlation operations are used to

establish the optimal embedding in subsequent iterations, where the sign and ordering of all

N eigen-functions are reestablished in each iteration.

With the numerical algorithm in Table I, we have a novel way of computing surface maps in

the embedding space. At the core of this algorithm is the computation of the gradient of the

energy with respect to the metric to be optimized. This technique is general and could be

useful in other surface analysis problems in the embedding space. In the next section, we

will apply it to compute a group-wise atlas in the LB embedding space.

IV. Brain Mapping Applications

For population studies, it is desirable to take a group-wise perspective for atlas construction

[13], [39]–[41]. This has the advantage of reducing bias and speeding up convergence. In

this section, we develop a group-wise atlas construction approach in the LB embedding

space with the metric optimization technique developed in the previous section. Based on

this atlas construction method, a cortical label-fusion method is developed in the embedding

space.

A. Group-wise Atlas Construction

Given a set of genus-zero surfaces ℳp(p = 1,⋯, P), our goal is to compute a group-wise

atlas (ℳ*, w* g) that has the smallest average distance to all individual surfaces in the
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embedding space. Theoretically we can choose the geometric representation of the atlas ℳ*

as any genus-zero surface because they are conformally equivalent. In practice, we choose

ℳ* as the surface that has the smallest distance to all other surfaces in the set to speed up

convergence. Our goal is to find the optimized metric w* g that minimizes the following

energy function:

(13)

where Φ* and Φp are the LB embeddings of ℳ* and ℳp(p = 1,⋯, P). To avoid potential

bias, multiple surfaces could be used as ℳ* and the optimized energy of each choice can be

compared to find the group-wise atlas with the smallest distance to all the surfaces.

(14)

To numerically compute the group-wise atlas, we follow a similar approach as in section 2

for metric optimization. While the multi-scale approach in Table I could be extended to the

group-wise atlas construction, we focus here on using only the low-order eigen-functions for

computational efficiency. Practically this also makes sense as the goal is to use the atlas to

capture low frequency variability across the population without over-fitting the data. Let N

denote the number of eigen-functions used for embedding. At initialization, we first

compute the eigen-system for ℳ* with w = 1 and denote them as (λn, fn). By fixing this

initial embedding, we remove sign ambiguities in all surfaces as follows. For each surface

ℳp, we compute its eigen-system and search through 2N sign combinations to obtain the

embedding that minimizes the distance to the embedding of ℳ*. We denote the eigen-

system for this embedding of ℳp as (λp,n, fp,n). Note that they are fixed in subsequent

iterations. After that, we iteratively optimize the weight to find the group-wise atlas. At each

iteration, we compute the eigen-system of (ℳ*, w* g). The sign ambiguities are removed by

comparing with the eigen-system computed in the previous iteration as in Table I. Given the

embedding, the gradient of the energy with respect to the metric w* can then be computed as

defined in (14) at the bottom of the page, where S(·) denote the area of surface, U and Up are

defined as in (10) for ℳ* and ℳp, respectively. The interpolation matrix Ap, and Bp are

used to represent the nearest point maps between ℳ* and ℳp in the embedding space. We

update w* in the gradient descent direction and continue this process until convergence to

obtain the groupwise atlas (ℳ*, w* g). Note there is no averaging of surfaces in the group

for the computation of the atlas, and it has exactly the same mesh structure as the initial

surface ℳ*.

B. Fusion of Cortical Labels

Anatomically cortical surfaces are composed of a set of relatively well-defined regions, and

their automated parcellation can help ROI-based analysis for features such as gray matter

thickness [11], [30], [42]. Based on the group-wise atlas and conformal surface maps, we
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develop here a novel approach for automated cortical labeling by fusing the manually

delineated labels on a set of surfaces [43]–[45].

Given a set of surfaces ℳp(p = 1,⋯, P) and their manually delineated label Lp : ℳp → ,

where  is a set of discrete labels, we first construct their group-wise atlas (ℳ*, w* g). Let

 denote the LB embedding of the group-wise atlas. For each surface, we then compute

its optimized embedding  using the pair-wise surface mapping algorithm in Table I that

minimizes the distance to . For an unlabeled, subject surface ℳS, we compute its

optimal metric wS such that the distance between its LB embedding  and  is

minimized. With all the embeddings, the conformal maps μp : ℳS → ℳp from the subject

surface to the labeled surfaces can be defined easily:

(15)

where Idp denote the nearest point map from  to .

Using these maps, we calculate the label on the subject surface ℳS by fusing the labels

from ℳp(p = 1,⋯, P) with weighted voting [43]–[45]. At every point of ℳS, the weight of

ℳp are computed according to the similarity of mean curvature between the labeled and

subject surface. Let υi ∈ ℳS be the i-th vertex, and Γ(υi) be its Γ-ring neighborhood. The

map of this set of points onto ℳp is μp( Γ(υi)). The similarity between ℳS and ℳp at this

vertex υi is defined as the Pearson’s correlation coefficient between the mean curvature of

the two set of points Γ(υi) and μp( Γ(υi)):

(16)

where κ(·) denote the mean curvature. Following the label fusion approach, we calculate the

weight for each label q ∈  as Wq = ∑Lp(μp( i))== q Cp by summing up the similarity

measure from surfaces with the same label q at the corresponding point μp( i). The final

label L(υi) at the vertex υi is derived as the one with the maximal weight:

(17)

By applying the label fusion approach to all vertices on ℳS, we obtain the label map for the

whole cortical surface.

V. Experiments

In this section, we demonstrate our metric optimization approach for surface mapping by

applying it to map cortical and hippocampal surfaces in brain imaging studies. We will first

illustrate the detailed property of our method in individual mapping experiments. After that,

both the cortical labeling and hippocampal mapping methods derived from our metric

optimization approach will be compared with previous surface mapping methods and
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applied to two population studies to demonstrate their potential in large scale brain mapping

research.

A. Mapping Cortical and Hippocampal Surfaces

In this experiment, we apply our algorithm to the mapping of cortical and hippocampal

surfaces extracted from MR images. We will show that our method can achieve high quality

mapping results on brain surfaces of varying complexity and demonstrate its applicability in

studying general neuroanatomical structures.

Before we perform surface mapping with our method, we need to determine the number of

eigen-functions Nmax to use for different surfaces. Ideally we want the embedding to be as

isometric as possible to minimize numerical errors of all the interpolation operations in the

embedding space, but computational cost should also be considered for large meshes. For

this purpose, we calculate the metric distortion during the embedding process. Given a

triangular mesh ℳ = ( , ), its embedding is also a triangular mesh ,

where  denotes the coordinates of the vertices in the embedding space. The metric

distortion during embedding is calculated as the ratio of the length of corresponding edges in

ℳ̂ and ℳ after normalization with respect to surface areas. For a cortical and hippocampal

surface, we plotted in Fig. 3 the 90th and 10th percentile of edge length distortion ratio as a

function of the number of eigenfunctions. With the increase of Nmax, the metric distortion

decreases as the two curves move toward each other. For the cortical surface, we can see the

largest drop in metric distortion happens when we increase Nmax from 3 to 6. For the

hippocampal surface, the largest drop in metric distortion occurs when we increase Nmax

from 5 to 10. The two curves in Fig. 3(b) also move much rapidly toward each other as

compared with the curves in Fig. 3(a). Guided by the plots in Fig. 3, we typically choose

Nmax = 6 for cortical surfaces as a trade-off between embedding quality and computational

cost. For hippocampal surfaces, the mesh size is much smaller, so we can afford to pick a

higher Nmax = 30 in our experiments.

For the mapping of cortical surfaces, the source and target surfaces are shown in Fig. 4(a)

and (b), where the surfaces are colored with their mean curvature. Both surfaces are

represented as triangular meshes with 10,000 vertices. For the parameters in Table I, we

choose Ninit = Nmax = 6, and Nincr = 0. The iterative process in metric optimization is

illustrated in Fig. 5. The decrease of the energy with the increase of the iterations is plotted

in Fig. 5(a). Starting with w = 1 plotted in Fig. 5(b), the metric w gradually changes and

stabilizes after iteration 30. The whole computational process took around 3 hours on a

2.6GHz Intel Xeon CPU with maximal memory consumption around 3 Gigabytes. With the

minimization of the energy, the LB embedding of the surface moves toward the embedding

of the target surface. To demonstrate that this is indeed the case, we plotted the 3rd and 6th

eigen-functions of the source surface before and after metric optimization as compared with

the target surface in Fig. 6. The most obvious changes can be observed in regions

highlighted by the dashed ellipsoids, where the agreement of the corresponding eigen-

functions can be seen clearly. Compared with the optimized metric plotted in Fig. 5(h), we

can see that these two regions are unsurprisingly among those with large metric

deformations.
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Using our map from the source to the target surface, we can project the mesh of ℳ1 in Fig.

4(a) to the target surface ℳ2. The result is plotted in Fig. 4(c), where the projected mesh is

color-coded by the mean curvature of ℳ1.We can see not only the regular mesh structure is

very well preserved during the projection, but the folding pattern of the gyrus of ℳ1 aligns

very well with the target surface. As a comparison, we also projected the mesh of the source

surface onto the unit sphere using its spherical conformal map computed with the method in

[9]. The projected mesh is also color-coded with the mean curvature of ℳ1. The difference

of our direct conformal map between cortical surfaces and the spherical conformal map can

be best illustrated with the metric distortion during the mapping process, which we measure

as the ratio of the length of corresponding edges of the projected mesh in Fig. 4(c) and (d) to

the original mesh in Fig. 4(a). The histograms of the metric distortion of these two maps are

plotted in Fig. 4(f) and (g). Compared with the metric distortion of the spherical map in Fig.

4(f), we can see that the histogram in Fig. 4(e) is centered around one and shows the

conformal map computed with our method does a much better job in reducing metric

distortion. For further comparison with spherical maps, we applied the publicly available

Spherical Demons registration algorithm [11] to register the spherical conformal maps of

both surfaces using their mean curvature. The source mesh ℳ1 was then projected to target

surface ℳ2 using the registered spherical map and the result is shown in Fig. 4(e). The

histogram of the edge length distortion ratio between the projected mesh in Fig. 4(e) and

Fig. 4(a) is plotted in Fig. 4(h). Clearly it has much more variable metric distortion as

compared to our method.

Besides the distortion of local edge length, we also used pairwise geodesic distances of a set

of uniformly scattered points on the surface to compute more global metric distortions of the

maps. As shown in Fig. 4(i), a set of 100 points scattered over the source surface ℳ1 were

used in this experiment. The geodesic distance between each pair of points was computed

with the fast marching algorithm on triangular meshes [46]. Using the surface maps

computed with our method and Spherical Demons, we projected the point set onto the mesh

in Fig. 4(c) and (e). Pairwise geodesic distances of the point set were then computed on the

projected meshes and their ratio with respect to the corresponding pairwise geodesic

distance on the source surface ℳ1 was calculated. As a summary, the histogram of the ratio

of geodesic distances from our method and Spherical Demons are plotted in Fig. 4 (j) and

(k). As can be seen from the much smaller standard deviation of geodesic distance distortion

ratio in Fig. 4 (j), our method achieved better performance in preserving more global

geodesic distances as well.

Next we show the mapping results of two hippocampal surfaces with the use of a much

higher number of eigenfunctions. The source and target surfaces are plotted in Fig. 7 (a) and

(b). These are the same surfaces shown in Fig. 1 (a) and (d), except that we color-code both

surfaces here with their mean curvature for better visualization of mapping quality. The non-

isometric difference between the surfaces can be seen that the target surface has more

bending. This is reflected in the eigen-functions plotted in Fig. 8, where the 6th and 7th

eigen-functions of both surfaces are plotted. To minimize their differences in the embedding

space, we applied the algorithm in Table I with the following parameters: Ninit = 10, Nincr =

5, and Nmax = 30. Note that here the multi-scale optimization scheme was applied for
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computational efficiency. For these hippocampal surfaces with 1000 vertices, the

computational process took 20 minutes on a 2.6GHz Intel Xeon CPU and the maximal

memory consumption is around 60 Megabytes. The optimized metric w is plotted on the

source surface in Fig. 7(c). From the eigen-functions computed with the optimized metric

shown in Fig. 8(c) and (d), we can see the metric optimization process successfully aligns

the LB embeddings of the two surfaces. With the direct conformal map from the source to

the target surface, we can project the mesh of the source surface onto the target surface as

shown in Fig. 7(d), which is color-coded with the mean curvature of the source surface. By

comparing the coloring of the mesh in Fig. 7(b) and (d), we can see corresponding regions

are very well aligned. More quantitatively, the correlation coefficient between the mean

curvature of corresponding points on the source and target mesh is 0.87. Similar to the

cortical mapping experiment, we also project the source mesh onto the unit sphere with the

spherical map computed with the algorithm in [9] and plot the result in Fig. 7(e), which

shows the spherical map generates very irregular mesh structure. This is corroborated by the

histograms of metric distortions shown in Fig. 7(g) and (h) from our map and the spherical

map, respectively. For the spherical maps of both hippocampal surfaces, the Spherical

Demons algorithm was applied to align the surfaces with their mean curvature. After that,

the obtained map was used to project the source mesh ℳ1 onto the target surface as shown

in Fig. 7 (f). We can see it has more irregular mesh structure than the mesh in Fig. 7 (d) even

though the mean curvature is matched thanks to the Spherical Demons registration, which

resulted in a correlation coefficient of 0.85 between the mean curvature of the source mesh

and its projection on the target surface. The edge length distortion ratio between the

projected mesh in Fig. 7 (f) and source mesh Fig. 7 (a) is calculated and its histogram is

plotted in Fig. 7 (i). For the three maps shown in Fig. 7 (d), (e), and (f), the standard

deviations of the edge distortion ratio are: 0.16, 0.71, and 0.38. This confirms that our

method produces the most regular mesh structure. We also quantify the metric distortion of

surface maps with more global geodesic distances of a set of 50 points shown in Fig. 7(j).

Similar to the cortical mapping experiment, the ratio of pairwise geodesic distances are

calculated for our map and the Spherical Demons map, and the histograms of the geodesic

distance distortion ratio of the two maps are plotted in Fig. 7(k) and (l). For the two maps

shown in Fig. 7 (d) and (f), the standard deviation of the geodesic distance distortion ratio

are 0.10 and 0.17. This further confirms that our method achieves better performance in

preserving metric than the maps produced by spherical registration. These results

demonstrate that our method can generate hippocampal surface maps with highly regular

metric distortion and excellent alignment of geometric features.

B. Multi-atlas Cortical Label Fusion

In the second experiment, we demonstrate our metric optimization method in group-wise

atlas construction and cortical label fusion. Using the LONI Probabilistic Brain Atlas

(LPBA40) [47], which consists of a set of 40 manually labeled MR volumes, we develop an

automated cortical labeling system by fusing labels from the atlases. Cross-validations will

be performed on the LPBA40 data to quantitatively evaluate the accuracy of the labeling

system. The effectiveness of this system in brain mapping study will also be demonstrated

on a brain development study with 80 subjects.
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As a first step for atlas construction, we reconstructed the cortical surfaces from the T1-

weighted volumes of the LPBA40 data set with the method in [26]. A set of 24 manually

delineated gyral labels were projected onto the cortical surfaces to generate the individual

atlas surfaces in our system. Example surfaces with labels are plotted in Fig. 9. In our

experiment, only the left hemispherical surfaces were used for atlas construction, but the

automated labeling system was applied to both left and right hemispherical cortical surfaces.

This helps demonstrate the robustness of our intrinsic mapping method to contralateral

differences of cortical surfaces. From the 40 atlas surfaces, we constructed a group-wise

atlas surface with N = 6 eigen-functions. As a test of the robustness of the group-wise atlas

construction algorithm, we started it with two different initial surfaces and compared the

obtained atlases. To visualize the results, we applied multi-dimensional scaling (MDS) to

the 40 atlas surfaces and the two group-wise atlases with their spectral l2-distances as the

dissimilarity measure. The results are shown in Fig. 10. We can see clearly that the group-

wise atlas construction algorithm converges to the same solution with two different

initializations. For the first initial surface, the group-wise atlas is visualized in the center of

Fig. 9, where the coloring on the surface shows the optimized weight function.

With the pairwise mapping algorithm, we computed the conformal map from every

individual atlas surface to the group-wise atlas surface to enable the multi-atlas fusion

algorithm in section IV-B. To automatically generate the label on a new surface, we first

computed its conformal map to the group-wise atlas with metric optimization. After that, the

fusion algorithm developed in section IV-B can be applied.

Using the 40 individual atlas surfaces with manual labels, we first conducted a leave-one-out

cross-validation to quantitatively evaluate the performance of our labeling algorithm. Note

that the group-wise atlas surface only serves as a geometric center of the population and

there is no label associated with the surface, thus it was fixed during the cross-validation.

For each of the 40 surfaces, we computed its automatically generated labels by fusing the

manual labels from the other 39 surfaces. The Dice coefficient between the manual and

fused label was computed for each region on all surfaces. The mean and standard deviation

(STD) of the Dice coefficients for the 24 ROIs are listed as Dice I in Table II. Across all

regions, the average Dice is 0.82. For many regions, the Dice coefficients approach 0.9. As a

comparison, we turned off the metric optimization process in all computations and ran the

leave-one-out cross-validation experiment again to generate fused labels on the 40 surfaces.

The mean and STD of the Dice coefficients between manual and automatically generated

labels are listed as Dice II in Table II. Interestingly we can see that these two methods

achieved very similar performance in many of the regions, which indicates that label fusion

applied to the LB embedding space can already achieve very good results. For each of the 24

ROIs, we applied a t-test to the 40 Dice coefficients from these two methods to compare if

their performance is significantly different. In seven ROIs (pre-cuneus, middle-occipital,

inferior-occipital, cuneus, middle-temporal, inferior-temporal, and lingual gyrus), Dice I is

significantly higher (P-value<0.05) than Dice II. There is no ROI that Dice II is significantly

better than Dice I. This shows that much improved performance of gyral labeling can be

achieved with the help of metric optimization.
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To compare with state-of-the-art cortical labeling methods, we first mapped all 40 surface to

the sphere and then applied Spherical Demons to align them using their mean curvature. We

chose Spherical Demons as the tool for spherical registration because it is computationally

efficient and can obtain the same level or better performance in cortical parcellation than the

spherical registration tool in FreeSurfer [11]. After that, tools in FreeSurfer [30] were

applied to perform the leaveone- out cross-validation. For each surface, the mris_ca_label

tool of FreeSurfer was applied to automatically generate the labels using the classifier

learned by the mris_ca_train tool of FreeSurfer from the other 39 surfaces. To test the

impact of different spherical mapping methods on the accuracy of cortical labeling, we

repeated the experiments with spherical maps obtained from two different ways: the

spherical conformal map and the spherical map generated by the mris_inflate and

mris_sphere tool in FreeSurfer. For spherical maps calculated from each method, Spherical

Demons registration and FreeSurfer labeling were applied. Dice coefficients between

manual and automatically generated labels were computed and their mean and STD are

listed in Table II: Dice III for the spherical conformal map and Dice IV for the FreeSurfer

spherical map. For each ROI, a t-test was applied to the Dice coefficients from our metric

optimization method (Dice I) and FreeSurfer (Dice III or Dice IV) to test if there are

significant differences. From the t-test results applied to Dice I and Dice III, there are 7

ROIs that our method achieved significantly better performance (P-value<0.05): gyrus-

rectus, inferior-occipital, para-hippocampal, lingual, fusiform, insular and cingulate gyrus.

There is no ROI that Dice III is significantly better than Dice I. From the t-test results

applied to Dice I and Dice IV, there are 5 ROIs that our method achieved significantly better

performance: gyrus-rectus, para-hippocampal, lingual, insular, and cingulate gyrus, and one

ROI that FreeSurfer achieved better performance: cuneus. For the rest of the ROIs, both our

method and FreeSurfer achieved similar level of accuracy. In Table II, we have highlighted

results of Dice I with red color for ROIs that it achieved significantly better performance in

both comparisons with Dice III and IV from FreeSurfer. The Cuneus region that Dice IV

obtained significantly better performance than Dice I is also highlighted with blue color.

From these comparisons, we can see our method achieved excellent performance in

automated cortical labeling.

To demonstrate the effectiveness of our method in population studies, we applied it to MR

images from a brain development study. The dataset is composed of T1-weighted MR

volumes from 80 subjects with an age distribution from 7 to 17 years old. For each MR

volume, both pial and white matter cortical surfaces were automatically extracted with the

method in [26] and the labeling algorithm was applied to automatically generate the labels

on the pial surface of both the left and right hemisphere. Because our surface mapping and

labeling algorithms are intrinsic to surface geometry, there is no need of special handling for

either hemisphere. As an illustration, we plotted the labeling results of five subjects in Fig.

11. For each subject, superior and inferior views of the labels on both hemispheres were

plotted. We can see that excellent results have been obtained for all subjects.

With cortical labels, we can investigate localized changes of structural and functional

features during brain development. Here we focus on the change of gray matter thickness

with age. Gray matter thickness at each point of the pial surface was computed as the
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shortest distance to the white matter surface [26] and the mean thickness of each gyrus was

used as the variable for regression analysis. For brain development, it was reported in

various studies that an inverted U-shape trajectory, which was typically modeled with third

order polynomials, reflects the underlying synaptic pruning process [5], [48]. In this

experiment we follow a similar approach and applied the third order polynomial for the

regression analysis of thickness changes versus age. The significance of the regression

model is measured with the F-test. For demonstration purposes, we plot the results of five

regions on the lateral and medial surfaces of the left hemisphere in Fig. 12, where the

adjusted R2 and p-value of the F-test were included. We can see that highly significant

results were obtained with our method. The results also show that these regions experience

different development processes. In particular, the inferior and superior frontal gyrus clearly

demonstrate a nonlinear development process, while the thickness of regions such as the

superior parietal gyrus exhibits an almost linear trajectory. This is consistent with previous

reports that higher-order frontal regions mature later than lower-order regions such as the

superior parietal gyrus [5], [48]. This experiment demonstrates that potential of our method

in large scale cortical mapping studies.

C. Hippocampal Mapping in Multiple Sclerosis

In the third experiment, we applied our mapping algorithm to study hippocampal atrophy in

MS patients with depression. The dataset includes T1-weightedMR images from 109 female

patients with MS. Using the Center for Epidemiologic Studies-Depression (CES-D) scale as

the measure for depression, the subjects were split into two groups: low depression (CES-

D< 20) and high depression (CES-D≥ 20). Hippocampal masks were automatically

segmented from the MR image with the FSL software [49]. The mesh representation of each

hippocampus was then generated with the surface reconstruction method in [25], which has

the advantage of being able to remove outliers without introducing shrinkage. In this

experiment, we applied our method to map the right hippocampus of all subjects, which

establishes one-to-one correspondences across population for points on hippocampal

surfaces and allows the application of statistical tests to detect localized group differences.

As a first step, we constructed a group-wise atlas as the target for each subject. For the

construction of the group-wise atlas, we used the first 10 eigen-functions for metric

optimization. The selection of the order at 10 is mostly based on the trade-off between

computational cost and the metric distortion in embedding. The parameter analysis in Fig. 3

(b) shows that the largest drop in metric distortion occurs when we increase the order from 5

to 10. While further increasing the order will reduce the metric distortion, the computational

cost will rise dramatically and become infeasible for a large collection of shapes used here.

From the 109 surfaces, we picked the surface with the minimal spectral l2-distance to all

other subjects as the geometric representation of the group-wise atlas. A remeshing process

was applied to this surface to generate a regular mesh representation with 1000 vertices [50],

which we denote as the atlas surface. The number of vertices selected in the remeshing

process is to reduce computational cost in metric optimization, yet preserve enough detail

for the detection of group differences. To complete the construction of the group-wise atlas,

we computed the optimized metric by minimizing the energy in (13) and the result is plotted

in Fig. 13 on the atlas surface. To study group differences, all surfaces were mapped to this
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group-wise atlas with the metric optimization algorithm in Table I with the same parameters

as in the first experiment: Ninit = 10, Nincr = 5, Nmax = 30. Using the conformal maps to the

atlas, we pulled back the mesh structure of the atlas surface to each subject surface, which

established the one-to-one correspondences for statistical analysis. At each vertex, the

thickness was then computed using the Reeb graph of the first LB eigen-function [16].

Using the thickness as the variable, a two-tailed t-test was applied at each vertex to map the

differences between the lowdepression and high-depression groups. The p-value generated

by the t-test at each vertex is plotted onto the atlas surface in Fig. 14 (a) and (b). The

correlation between thickness and the CES-D score are plotted in Fig. 14(c) and (d), where

we have masked out regions with non-significant correlation coefficients (p > 0.05). Clearly

the regions with significant p-values have mostly negative correlation coefficients. The

detected group differences thus show patients with high depression have more atrophy in

those regions. To correct for multiple comparison, we applied 10,000 permutation tests and

obtained an overall p-value of 0.016 [3], which shows the significance of the p-value map in

Fig. 14(a) and (b).

For comparisons with previous methods, we first applied the popular SPHARM tool [51],

[52] to map the right hippocampus of all subjects and test for group differences. With the

segmented masks from all subjects as the inputs, the SPHARM tool was able to

automatically generate their mesh representations whose vertices have one-to-one

correspondences across all subjects. As suggested in the manual of the SPHARM tool,

spherical harmonics up to order 12 was used for hippocampal mapping. An icosahedron

subdivision of the sphere at the division rate 10 was adopted such that all surface meshes

will have 1024 vertices that are comparable to the number of vertices in our group-wise

atlas. It was shown that the reconstructed meshes from SPHARM tended to have more

artificial oscillations than the meshes we generated with the method in [25]. To factor out

the impact of different mesh reconstruction algorithms, we projected the SPHARM mesh to

the mesh used in our experiment. For each vertex in the SPHARM mesh, we find the

triangle from our mesh that has the smallest distance to this vertex and calculate its

projection as the nearest point in that triangle. Thus the projection has sub-vertex accuracy.

This is the same projection process we used in the LB embedding space for calculating maps

between the embeddings of surfaces. After that, the thickness was computed for statistical

analysis. This allows us to focus on the impact of the correspondences generated by the

SPHARM tool on studying group differences. The p-value map from the SPHARM

correspondences is plotted in Fig. 15 (a) and (b). We can see very few regions reach

significance in detecting group differences. To correct for multiple comparison, the same

number of permutation tests were applied and it gave an overall p-value of 0.18 to this p-

value map, which failed to reach significance.

Next we compare our method with the ShapeWorks tool that uses an entropy-based particle

system to perform group-wise surface mapping [53]. The inputs to the ShapeWorks tool are

the 109 segmented masks. The only parameter to set are the number of particles to use and

the STD of the Gaussian kernel used in the preprocessing step of ShapeWorks for smoothing

the mask boundaries, which we found a necessary step for ShapeWorks to achieve good

performance. To be comparable to the number of vertices used in previous experiments, we
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set the number of particles to be 1024. For all masks, we set the STD=0.5mm to avoid

overly shrinking the boundary. In our experience, if the STD is set to be ≥ 1, it will result in

the removal of critical anatomical information, especially in thin regions such as the

subiculum of the hippocampus. After group-wise optimization, ShapeWorks generate a set

of particles for each shape that have one-to-one correspondences across the population.

Unlike our method and the SPHARM tool, there is no consistent mesh structure across

population for the particles in ShapeWorks. This means that the correspondences could be

non-diffeomorphic. To demonstrate this point, we computed a mesh representation of the

particles in the mean shape generated by ShapeWorks. As shown in Fig. 16(a), a very

uniform mesh structure was generated for the mean shape, where the particles from

ShapeWorks serve as the vertices of the triangular mesh. Using the correspondences of

particles, the mesh structure of the mean shape was applied to all subjects. As an example,

we show in Fig. 16(b) the mesh representation of one subject surface, where several

selfintersections were highlighted with arrows. In Fig. 16(c), we also show the projection of

the mesh structure from the group-wise atlas in Fig. 13 to the same subject with our method.

Clearly there is no self-intersection. The histogram of the number of self-intersections in the

109 hippocampal shapes computed by ShapeWorks was plotted in Fig. 16(d), which shows

that this is a general problem for particle-based optimization in ShapeWorks. The same test

of self-intersection was also applied to all 109 mapped surfaces computed by our method

and no self-intersection was detected.

For thickness-based statistical analysis, we projected the particles of each subject surface

onto the corresponding mesh used in our experiment to pull back the thickness with linear

interpolation. After that, the same statistical analysis can be applied to every particle to test

for group differences. To visualize the results, we plotted the p-value map on the mean

shape in Fig. 17(a) and (b). To correct for multiple comparisons, we also applied 10,000

permutations to the ShapeWorks mapping results and an overall p-value of 0.042 is

achieved, so the map in Fig.17 reaches significance. On the other hand, the p-value map

generated by our method, as shown in Fig. 14, not only reaches a higher level of significance

from permutation tests, but also shows more continuity in regions with highly significant p-

values. This is especially obvious from the inferior view of map shown in Fig. 14(b) and

Fig. 17(b). More quantitatively, there are only 2.9% particles in Fig. 14 that have a p-value

below 0.01, but 6.1% points with p-values below 0.01 in our map in Fig. 14. Overall we can

see that our method has the advantage of being able to compute high quality surface maps

with no self-intersection, and can produce more significant p-value maps for this

hippocampal study. On the other hand, we have to be cautious in interpreting the results

when comparing the p-value maps because no ground truth is available about the

hippocampal atrophy. For this study, we used correlation with CES-D scores shown in Fig.

14 (c) and (d) as a simple way of testing whether the detected shape differences are

clinically interpretable. To obtain ground truths about neuronal loss in hippocampus,

however, would require data from postmortem histological studies. This is future work of

great value to medical shape analysis research.
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VI. Discussion and Conclusions

In this paper, we developed a novel approach for the mapping of neuroanatomical surfaces

based on their intrinsic geometry. By optimizing a conformal metric, our method minimizes

a distance measure in the LB embedding space and generates conformal maps directly

between anatomical surfaces with highly regular metric distortion. This metric optimization

technique has also been generalized to the construction of group-wise surface atlas in the

embedding space and used for cortical label fusion and population studies. We demonstrated

the robustness and generality of our method by successfully applying it to map cortical and

hippocampal surfaces in two brain mapping studies.

In this work, we focused on unidirectionally warping the metric of a single surface to

minimize its distance to a target surface or a group of surfaces in the LB embedding space,

but the techniques developed in this paper can be extended to simultaneous warping of the

metrics on two or multiple surfaces with a slight modification to the algorithm described in

Table I. Instead of running Step 2 of the algorithm only for one surface, we only need to

repeat it for each surface with the metric and embedding of the other surfaces fixed. As an

example, we show in Fig. 18 the optimized metrics for the two hippocampal surfaces in Fig.

7 after this modification. By comparing the metrics on the two surfaces in Fig. 18(a) and (b),

we can see intuitively they complement each other throughout the surfaces. More

specifically, in regions where the first surface ℳ1 expands with the increase of its metric,

the second surface ℳ2 works cooperatively by decreasing its metric at corresponding

locations. From a transitivity point of view, this symmetric warping process is equivalent to

establishing the map between ℳ1 and ℳ2 by going through a middle surface ℳo in the

embedding space. Compared with the results in Fig. 7, we found numerically that the

distances of corresponding vertices of the unidirectional and symmetric mapping results are

around 12% of the average edge length of the surfaces. This shows the transitivity error is

almost an order of magnitude below the resolution of the mesh representation of the

surfaces. The symmetric warping process could be viewed as a way of computing the mean

shape of two surfaces in the embedding space. For future work, we will study the extension

of our algorithm to the simultaneous warping of multiple surfaces. This could lead to new

ways of computing group-wise atlases in the LB embedding space.

One important direction in our future work is to improve the computational speed of our

algorithm. The bottleneck of the metric optimization process is the calculation of the eigen-

derivatives. We will investigate coordinated descent strategies to cycle through a different

set of vertices at each iteration to reduce the number of eigen-derivatives to be computed.

We will also study new ways of representing the weight function to reduce its dimension,

and thus the computational burden on eigen-derivative evaluation.

For cortical label fusion, we used a weighted voting approach in our current work. For

further improvement, we could incorporate smoothness regularization for better regularity of

region boundaries. More interestingly, we plan to introduce the novel fusion strategy

proposed recently in [54] to our labeling system and investigate whether it will further

improve the performance of automated cortical labeling.
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For future work, we will also conduct more extensive validation of our algorithm on the

mapping of other subcortical surfaces extracted from T1-weighted MR images. The

extension of the mapping algorithm for the analysis of fiber bundles extracted from diffusion

MR images will be an interesting direction. Besides intrinsic geometry, we will also explore

the integration of multi-modal measures with the LB embedding for more accurate mapping

of brain anatomy.
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Appendix

Gradient of eigen-values and eigen-functions

The generalized eigen-function problem is

(18)

where Ū denotes the matrix U(w) in (9). Following the algorithm proposed in [55], we

describe here how to compute the derivative of the eigenvalues and eigen-functions with

respect to the weight w.

Let λi and fi denote the i-th eigenvalue and eigen-function, we can compute the derivative on

both sides of the above equation as:

(19)

where Q is independent of wj. From the above equation, we have

(20)

Pre-multiplying both sides with , we obtain

(21)

because  and .

Let . To compute the derivative of the eigen-function, we

then need to solve

(22)
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Because Q − λiŪ is singular, this equation is under-determined. To address this problem,

Nelson proposed to write

(23)

and we obtain

(24)

which is still under-determined. To fix this problem, we can fix the p-th component of uij to

be zero, where p is the index of the component that has the largest magnitude in fi. This is

realized by setting the p-th component of Fi as zero and the p-th row and column of (Q −

λiŪ) as zero except the diagonal term, which is set to one. The equation becomes

(25)

where [Fi]1 is the 1 to (p − 1)-th components of Fi, and [Fi]2 is the p + 1 to the end of the

vector Fi. This problem is non-singular given the assumption that there is no multiplicity at

λi [55]. We can solve it and obtain μij.

Using the condition that , we obtain

(26)

Substituting the expression  into the above equation, we get

(27)

This completes the solution for .
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Figure 1.
Impact of non-isometric shape differences of two surfaces ℳ1 (a) and ℳ2 (d). The 4,5,6,7-

th eigen-functions on ℳ1 and ℳ2 are plotted in (b) and (e), respectively. The projection of

ℳ2 onto ℳ1, and ℳ1 onto ℳ2 using the nearest point map in the embedding space are

plotted in (c) and (f), respectively.

Shi et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
An illustration of the composition of three maps to form the direct conformal map between

two surfaces.

Shi et al. Page 27

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Metric distortions of a cortical and hippocampal surface during the LB embedding process.

For each surface, the 10th and 90th percentile of edge length distortion ratio with respect to

the dimension of the embedding space are plotted.
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Figure 4.
A demonstration of the mesh quality in the cortical mapping experiment.(a) The source

surface ℳ1. (b) The target surface ℳ2. (c) The projection of the mesh of ℳ1 onto ℳ2 with

our map. (d) The projection of the mesh of ℳ1 onto the unit sphere with the spherical

conformal map. (e) The projection of the mesh of ℳ1 onto ℳ2 with the map computed by

Spherical Demons. (f) Metric distortion of our map from ℳ1 to ℳ2: 0.98 ± 0.25 (Mean

±STD, same for (g)(h)(j) and (k)). (g) Metric distortion of the spherical conformal map: 0.91

± 0.43. (h) Metric distortion of the map computed by Spherical Demons: 0.93 ± 0.52. (i)
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Point set on ℳ1 for the computation of geodesic distances. (j) Metric distortion of our map

as measured by geodesic distances: 1.02 ± 0.066. (k) Metric distortion of the Spherical

Demons map as measured by geodesic distances: 0.93 ± 0.24.
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Figure 5.
The iterative energy minimization process for metric optimization. (a) The minimization of

the energy. (b)–(h) The iterative changes of the metric w.
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Figure 6.
Alignment of eigen-functions between the source surface ℳ1 and the target surface ℳ2

with metric optimization. The 3rd and 6th eigen-functions are shown here for comparison,

especially in regions highlighted by the dashed ellipsoids. The eigen-functions of ℳ1 after

metric optimization are denoted as  and .
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Figure 7.
Mapping results of hippocampal surfaces. (a) The source surface ℳ1. (b) The target surface

ℳ2. (c) The optimized metric w. (d) The projection of the source mesh onto the target

surface. (e) The projection of the source mesh onto the unit sphere with spherical conformal

map. (f) The projection of the source mesh onto the target surface after Spherical Demons

registration. (g) Metric distortion of our map: 0.99 ± 0.16 (Mean±STD, same for (h)(i)(k)

and (l)). (h) Metric distortion of the spherical conformal map: 0.69 ± 0.71. (i) Metric

distortion of the map after Spherical Demons registration: 0.97 ± 0.38. (j) Point set for the
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computation of geodesic distances. (k) Distortion ratio of Geodesic distances with our map:

0.99 ± 0.10. (l) Distortion ratio of geodesic distances with the map from Spherical Demons

registration: 0.99 ± 0.17.
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Figure 8.
Improved agreement of hippo eigen-functions. The 6th and 7th eigen-functions are shown

here for comparison. The eigen-functions of ℳ1 after metric optimization are denoted as

 and .
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Figure 9.
An illustration of the group-wise atlas construction using the LPBA40 data. The group-wise

atlas is plotted in the center of the figure.
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Figure 10.
Projection of the 40 surfaces (plotted as *) and group-wise atlases (plotted as ◊) from two

initial surfaces (plotted as ○) onto a 2D plane using MDS.
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Figure 11.
Cortical labeling results on both hemispheres of five subjects from the pediatric study. Top

row: superior view; Bottom row: inferior view.
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Figure 12.
Regression results on the left hemisphere. (a) The results of the superior-fronal, inferior

frontal, superior-parietal, medial-occipital,, and medial-temporal gyrus. (b) The results of the

cingulate, precuneous, lingual, fusiform, and inferior-occipital gyrus.
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Figure 13.
The optimized metric of the group-wise atlas of the hippocampal surfaces. (a) Superior

view. (b) Inferi.or view.
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Figure 14.
Hippocampal mapping results from our method. (a)(b) Superior and inferior views of the p-

value map. (c)(d) Superior and inferior views of the correlation coefficients with CES-D

scores. Note that regions with non-significant correlation coefficients have been masked out

and plotted as gray. 10,000 permutation tests were applied and an overall p-value of 0.016

was obtained.
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Figure 15.
The mapping results from SPHARM for comparisons with our method. (a) Superior view.

(b) Inferior view. 10,000 permutation tests were applied and an overall p-value of 0.18 was

obtained.

Shi et al. Page 42

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 16.
Non-diffeomorphic mapping results from ShapeWorks. (a) Mesh representation of the mean

shape from ShapeWorks results. (b) Self-intersections of one subject shape. (c) The

projected mesh structure from the group-wise atlas to the same subject with our method. (d)

Histogram of self-intersections in all 109 ShapeWorks mapping results.
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Figure 17.
The mapping results from ShapeWorks for comparisons with our method. (a) Superior view.

(b) Inferior view.
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Figure 18.
Results from simultaneous metric optimization for the mapping of two hippocampal

surfaces. (a) Optimized metric on ℳ1 (b) Optimized metric on ℳ2.
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Shi et al. Page 46

TABLE I

Metric Optimization Algorithm

Inputs:ℳ1, ℳ2, Ninit, Nincr, Nmax. Outputs: optimized metric w on ℳ1.

1 Initialization: For ℳ2, fix its embedding with N = Nmax.For ℳ1, set N = Ninit and w =1.

2 Iterative optimization of the metric

2.1 Compute the eigen-system of ℳ1 with the current weight w and find the optimal embedding.

2.2 Find the maps between ℳ1 and ℳ2, i.e., the matrix A and B.

2.3 Compute the gradient and update w.

2.4 If convergence is reached, go to step 3; otherwise continue the iteration.

3 If N = Nmax, stop the algorithm. Otherwise, set N = min(Nmax, N + Nincr), and go to step 2.
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