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Abstract Spike timing dependent plasticity (STDP)

likely plays an important role in forming and changing

connectivity patterns between neurons in our brain. In a

unidirectional synaptic connection between two neurons, it

uses the causal relation between spiking activity of a pre-

synaptic input neuron and a postsynaptic output neuron to

change the strength of this connection. While the nature of

STDP benefits unsupervised learning of correlated inputs,

any incorporation of value into the learning process needs

some form of reinforcement. Chemical neuromodulators

such as Dopamine or Acetylcholine are thought to signal

changes between external reward and internal expectation

to many brain regions, including the basal ganglia. This

effect is often modelled through a direct inclusion of the

level of Dopamine as a third factor into the STDP rule.

While this gives the benefit of direct control over synaptic

modification, it does not account for observed instanta-

neous effects in neuronal activity on application of Dopa-

mine agonists. Specifically, an instant facilitation of

neuronal excitability in the striatum can not be explained

by the only indirect effect that dopamine-modulated STDP

has on a neuron’s firing pattern. We therefore propose a

model for synaptic transmission where the level of neuro-

modulator does not directly influence synaptic plasticity,

but instead alters the relative firing causality between pre-

and postsynaptic neurons. Through the direct effect on

postsynaptic activity, our rule allows indirect modulation

of the learning outcome even with unmodulated, two-factor

STDP. However, it also does not prohibit joint operation

together with three-factor STDP rules.
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Introduction

Recent experiments have indicated that Dopamine may

directly influence the spiking activity of prefrontal neurons

by increasing signal-to-noise ratio (Kroener et al. 2009) or

gain (Thurley et al. 2008) during synaptic transmission.

These studies suggest that an instant effect of Dopamine

may only be present during additional synaptic input and

that Dopamine may not be capable of eliciting a synaptic

response on its own in this case.

While the influence of varying Dopamine on synaptic

learning processes has been recognized and modelled in a

large number of publications (Farries and Fairhall 2007;

Izhikevich 2007; Morrison et al. 2008; Potjans et al. 2009;

Reynolds and Wickens 2002), this has usually been done

by directly adapting the STDP rule to include an additional

third factor signalling dopaminergic reinforcement, beside

inclusion of the pre- and postsynaptic activities. The

requested synaptic weight change defined by STDP would

often be multiplied by a reinforcement factor in the interval

[-1,1], yielding no synaptic learning for baseline levels of

Dopamine (zero reinforcement) and inverted, or ‘‘anti-

hebbian’’, learning for negative values of reinforcement.

Postsynaptic activity would be only indirectly affected

by Dopamine in these models, through the gradual synaptic

weight change induced by reinforced STDP.

However, there have been modelling studies incorpo-

rating experimental evidence on increased postsynaptic

facilitation under Dopamine exposure (Chorley and Seth

2011), albeit by affecting the neuron-wide recovery func-

tion of the postsynaptic model neuron. To our knowledge,
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no previous modelling studies of dopaminergic influence

on synaptic transmission with an only indirect effect on the

synaptic learning process have been published.

We chose to investigate the possible network level

implications of a (Dopamine-like) neuromodulator purely

affecting synaptic transmission on a local scale. As any

postsynaptic activity is highly dependent on the received

synaptic input, changes to this input directly affect the

postsynaptic neuron’s spiking activity as the second factor

in usual STDP rules (Bi and Poo 2001). Any neuromodu-

lation of synaptic transmission is therefore in principle able

to affect the learning outcome of STDP, even when no

direct involvement of the modulator in the actual weight

adjustment process is present.

There are in theory two ways of affecting the amount of

synaptic input a neuron receives. The first would need

sufficient control over the spiking activity of presynaptic

neurons, which is difficult to provide for inputs arriving

from distant brain areas such as the axonal endings arriving

in the basal ganglia’s striatum from all parts of the cortex.

The second possibility would be to introduce a short-term,

reversible effect on the actual process of synaptic trans-

mission, which regulates the amount of input arriving at a

postsynaptic neuron through the synaptic connection when

a presynaptic neuron fires. If a neuromodulator were to

influence the short-term transmission efficacy of synaptic

connections, it would temporarily be changing the effective

weight of those synaptic connections for all intents and

purposes.

We therefore modulate only synaptic transmission in our

model, and show that we can still influence the learning

outcome with an unchanged STDP rule. Without any direct

reference to existing chemical neuromodulators, we coin-

cidentally call our neuromodulatory reinforcement factor

DA. However, simply multiplying the existing baseline

weight with the current DA level to form an effective

weight would be problematic: Whenever the applied rein-

forcement would reach a value around zero, all synaptic

transmission would stop, which is unwanted behaviour for

a neuromodulated synapse. Instead, we use a power law

relationship between baseline weights and the current level

of DA to form the effective synaptic weights used for

transmission. We define a threshold value h that divides the

baseline weights into strong and weak weights and shifts

the strong weights above 1 before applying the power law

(Eqs. 1, 2). For low DA, all effective weights now become

more similar to h. For high DA, all effective weights move

away from h, towards the extremes of the defined weight

range. We call h the generalisation threshold for low levels

of the reinforcement signal and the sparsification threshold

for high levels. Due to the shape of our effective weights

rule (Fig. 1), no strong baseline weight ever has an effec-

tive value below h, and no weak baseline weight ever has

an effective value above h. Also, as the effective weight

curves for low DA mirror those for high DA around

the unmodulated weights line (DA = 1, shown in green),

the overall postsynaptic firing rate remains unaffected

under reinforcement for uniformly distributed baseline

weights. For a possible chemical interpretation of h, see

‘‘Conclusion’’.

Methods

Modulation mechanics

We propose the existence of a neuromodulator which

directly affects the process of synaptic transmission.

Depending on the ratio of enabling receptors (henceforth

called D1-type) to attenuating receptors (henceforth called

D2-type) in a neuron’s synapse, an increase of neuromod-

ulator above baseline levels may sparsify synaptic trans-

mission by easing transmission through strong synapses
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Fig. 1 Proposed effects of a reinforcement signal DA on synaptic

transmission, perceived as a DA-dependent synapse-local change of

effective weights. As in biological dopaminergic systems, a tonic base

line of the reinforcement signal (DA = 1) exists, which here keeps the

effective weights equal to their actual baseline values. The threshold

for defining strong and weak weights can be changed by varying h
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and hindering transmission through weak synapses. Simi-

larly, we suggest that declining amounts of neuromodulator

in the surrounding tissue may have a generalising effect on

synaptic transmission, where the efficacy of strong and

weak synapses becomes more equal around some threshold

ratio h.

We further assume that the threshold h at which the

sparsification bifurcates, and to which the generalisation

tends, may slowly be regulated by homeostatic (chemical)

gradients within the cell. This will be explored in future

work.

Here, we examine the implications of our proposition,

and show that synaptic learning can be reliably modulated

by only the given mechanisms. No direct influence in the

actual spike timing dependent plasticity process is needed

for modulation to succeed.

Affecting synaptic excitability

We define a modulatory parameter DA that contains our

reinforcement information within the range [0,2], where

the value 1 stands for no specific feedback. If it were to be

mapped to the activity of dopaminergic cells in the Sub-

stantia Nigra pars compacta (SNc), DA = 1 would be

equivalent to normal tonic firing and default levels of

dopamine released into the striatum.

We simulate DA-dependent changes in perceived syn-

aptic efficacy as changes to effective weights eij used for

computation of synaptic transmission, in distinction from

the default efficacy of synapses at baseline levels of the

neuromodulator (DA = 1), which we call baseline weights

wij. We set

eij ¼
h wij

h

� �n
wij� h

1� ð1� hÞ 1�wij

1�h

� �n
wij [ h

8
<

:
ð1Þ

and

n ¼ 2rðDA�1Þ ð2Þ

where h 2 ½0; 1� is the homeostatic threshold for weight

sparsification and generalisation, DA 2 ½0; 2� is the level of

Dopamine currently applied to the network, and r is a range

parameter for controlling the impact on sparsification or

generalisation the neuromodulator can have (see Fig. 1).

For simplicity we assume r = 5 and h = 0.5 within most

of this article. Slow homeostatic adaptation of h and r will

be explored in future work. The double power law rela-

tionship between the baseline weight and the current DA

level (introduced by combining Eqs. 1 and 2) allows a

bijectional projection to effective weights and makes the

curves for high DA levels mirror those of low DA levels

across the DA = 1 line.

Effective weight distribution

The formulation of effective weights allows us to compare

any instant changes in the perceived distribution of weights

that are due to changes in neuromodulator level. In Fig. 2

we show a selection of baseline weight distributions in a

centre column, and their DA-induced changes as effective

weight distributions in the other columns. Synaptic trans-

mission is computed using the current effective weights,

while any STDP-induced weight change is applied to the

baseline weights. The effective weights are updated on any

change of baseline weights or DA level.

As the neurotransmitter level is increased, any broad

distribution of weights becomes more bimodal, away from

the sparsification threshold h. Slightly stronger synapses

(weights above the threshold) thereby become dominant in

guiding postsynaptic activation, while connections with

weights even slightly below the threshold loose influence on

postsynaptic activation. A slightly trained network therefore

acts as if it has undergone more training and acts more

selective to a smaller number of inputs. Any over-repre-

sentation of strong effective weights that would lead to

excessive postsynaptic firing is then gradually reduced by

our asymmetric STDP rule towards sparse coincidental fir-

ing, given random uncorrelated inputs. This competition

reduces the number of strong synapses and readies the

Fig. 2 Effects of the proposed effective weight rule on existing

weight distributions. Example weight distributions at DA = 1 are

given in the centre column. On the right are the effective weight

distributions for high DA, and on the left are the effective weight

distributions at low DA levels as defined in Eqs. 1 and 2. Rows 1 and
2 Any double-peak distribution where the two peaks are on opposite

sides of h will remain so for high DA, but with increased sparseness.

For low DA levels, the two peaks move closer to h, and thereby make

discrimination of strong versus weak weights increasingly difficult.

Rows 3 and 4 A uniform or a normal distribution of weights around h
will act as a true bimodal distribution for high DA levels and become

a thin unimodal distribution for low levels of DA. The reduced signal-

to-noise ratio for low DA and increased ratio for high DA (assuming

the signal is represented by the strong weights) becomes visible
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neuron for detecting more structured, non-random inputs by

adapting it to mostly ignore random background input

activity.

As the neurotransmitter level is decreased, any distri-

bution of effective weights becomes more centred around

the generalisation threshold h, leading towards an equal-

ization of effective weights. The effect of each synaptic

connection on membrane activity of the postsynaptic neu-

ron becomes less dependent on the actual (baseline) syn-

aptic strength. Instead, all connections start to behave

increasingly similar in transmission efficacy, making it

harder for the neuron to discriminate strong learnt inputs

from ignorable background activity. This amplified noise

level leads to frequent random weight adjustments, causing

existing baseline weights to perform a semi-random walk.

This randomisation process causes the baseline weights to

become less sparse, while their mean is also reduced due to

the asymmetry of the STDP rule used. Even a strongly

trained neuron can thereby be ‘‘reset’’ to a general state

with unimodal distribution of weights if the decrease in DA

and range parameter r are large enough. As most weights

act as being close to h for very low amounts of neuro-

transmitter, the definition of h directly affects the output

activity of the postsynaptic neuron: A high value of h leads

to infinite firing of the postsynaptic neuron, while a low

value of h may make the postsynaptic neuron silent as soon

as the strongest connections cease to be able to provoke

postsynaptic firing. A slow adaptation of h as a local var-

iable within the postsynaptic neuron may therefore prove

useful for continued activity, which may or may not be

implemented as a slow chemical gradient for homeostasis.

Network structure

The network structure is shown in Fig. 3a, where the two-

layer network consists of Npre = 1,800 presynaptic units

(inputs) that are fully connected to one postsynaptic neuron

(output) via DA-modulated synapses. The modulation

instantly affects the excitability of each synapse, which can

be perceived as a change in effective synaptic weight. The

activity-dependent learning process (STDP rule) is not

altered.

Neuron model

We use the standard Izhikevich model in its one-dimen-

sional form (Izhikevich 2004) as postsynaptic neuron. This

gives us the realism of a delayed, self-firing neuron while

improving predictability and computational complexity for

large-scale simulations. The predictability specifically

benefits from the reduction to a one-dimensional model as

the neuron’s future activity is fully described by only its

current membrane state and the current sum of arriving

input currents. The neuron’s membrane potential is con-

trolled by:

v0 ¼ 0:04v2 þ 5vþ 140� uþ I ð3Þ

where u is fixed at its typical starting value of -13, and I is

the weighted sum of inputs arriving at the neuron.

The amount of current arriving at the postsynaptic

neuron was computed by multiplying each weighted input

with 3,000/Npre to achieve some scalability to the number

of input units.

Input statistics

The input layer provides random background inputs with

an interspike interval (ISI) distribution that follows the

gamma distribution with shape k = 3 and a mean firing

rate of 10 Hz.

Additional time-structured patterns are inserted into the

input stream, consisting of a chain of serially firing units of

fixed length at regular intervals. We set the chain length to

50 ms, with each of three different patterns being presented

by 200 units (see Fig. 5a).

As the subsequent background activity of an input unit is

affected by any pattern it presents, the overall firing rate of

the input layer is only slightly affected during pattern

presentation, and remains in the range of random back-

ground variation (see Fig. 5a, input rate).

Fig. 3 Network structure and dynamics overview. Left Network

structure. Npre = 1,800 presynaptic input units transmit spikes via

DA-modulated synapses to one postsynaptic output neuron. The

modulation influences the synaptic transmission process, and has no

direct involvement in updating long term weights during STDP. Right
top Asymmetric STDP rule. The integral over the full range of the

curve is negative, so random firing generally leads to a slow decrease of

weights. Right middle Interspike interval (ISI) of background noise.

The mean ISI is 100 ms in a right-skewed gamma distribution, giving a

mean background firing rate of 10 Hz. Right bottom Arbitrary soft

bound on weights. The effect of STDP is greatest on medium weight

values, and decreases towards the extremes on each side. This also has

the effect that synaptic connections are most volatile at medium weight

values, while becoming more robust for more extreme weight values
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STDP rule

Our weight update rule is based on that of spike-timing

dependent plasticity (STDP) used in Masquelier et al.

(2008). It is from the class of anti-symmetric rules where

the sign of weight modification depends on the pairwise

sequence in which the pre- and postsynaptic units fire. It is

also an asymmetric rule in that the area-under-curve of the

negative side (long term depression, LTD) is greater than

that of the positive side (long term potentiation, LTP) for

the full defined range. This property slowly decreases the

overall distribution of weights towards zero on low random

inputs if the postsynaptic neuron is forced to keep firing.

Alternatively, if the postsynaptic neuron is allowed to

become quiet as all its input weights decline, this asym-

metric rule leads to a habituation to the input background

activity, making the neuron highly reactive to any non-

random time-structured inputs.

The negative integral of the STDP curve within

[-50,50] ms does not prohibit the integral from becom-

ing positive within shorter ranges around ±5 ms, e.g. for

very high firing rates or bursting, which could lead to a

possibly unintended overall increase of synaptic weights.

A possible solution for dealing with higher firing rates is

proposed in Pfister and Gerstner (2006). We circumvent

the problem by reducing the occurrence of bursts by

reducing the standard two-dimensional Izhikevich model

(Izhikevich 2003) to a one-dimensional model (Izhike-

vich 2004). We define the prospective weight change

Dwp
ij as:

Dwp
ij ¼

aþexpðtj�ti
sþ Þ tj� ti ðLTPÞ

�a�expð� tj�ti
s� Þ tj [ ti ðLTDÞ

�
ð4Þ

where a? = 0.03125, a- = 0.85 9 a?, s? = 16.8 ms, s-

= 33.7 ms, tj and ti are the spike times of the pre- and

postsynaptic spikes. Useful features of this STDP rule

include:

Causal firing (presynaptic, then postsynaptic) leads

to fast potentiation.

Anti-causal firing (postsynaptic, then presynaptic)

leads to fast depression.

Acausal (random) firing leads to slow depression

because the integral of the STDP curve is negative.

We apply STDP in an all-to-all pairwise matching

scheme. To keep all weights within an interval of [0,1], we

apply the following soft bound on the weight change.

Weight bounding

We define a soft bound that keeps the actual (baseline)

weights from growing to infinity or becoming negative by

reducing the amount of weight change as the synaptic

weight comes closer to either 0 (lower bound) or 1 (upper

bound). We choose to base the mapping function on the

sine function within the range [0, p] as it gives us the

characteristics of a wide range of applied change around

medium weight values and reduced change as weights

come closer to their extremes (see Fig. 3b bottom). We

define the bounded change of weights Dwij as:

Dwij ¼ Dwp
ij sinðpðwij þ Dwp

ijÞÞ ð5Þ

where wij is the synapse’s current weight, Dwp
ij is the pro-

spective weight change without bounding, and Dwij is the

actual change that will be applied. Different soft bound

kernels with steeper slopes may be also used in future

work.

Results

We performed two stages of tests with our proposed new

method of modulation. During the first stage, we examined

the direct effect on postsynaptic activity for a typical dis-

tribution of fixed weights, while on-line synaptic modifi-

cation using spike timing dependent plasticity was

incorporated during the second stage of tests.

Instant effects

A central feature of our method is its instant effect on the

activity of the postsynaptic cell. All later differences in

learning are guided only by this alteration of postsynaptic

spiking activity. No modulation whatsoever takes place

within the STDP rule itself. The fact that an influence in

synaptic learning processes can still be observed in our

simulations points to the high importance of how exactly

these instant effects in synaptic transmission change the

postsynaptic neuron’s instant response.

Firing tendency

In the first test, we examined the amount of input needed

to produce a spike response from the one-dimensional

Izhikevich neuron. As its recent history can be summed up

in the model neuron’s current membrane state, we can ask

the question differently: At which preset level of mem-

brane depolarisation does the model neuron still fire, given

a specific number of synchronous unit inputs?

The answer is plotted in Fig. 4 for 1, 5 and 10 syn-

chronously arriving inputs, and for range parameters r = 5

and r = 3. At a membrane potential above about

-53.5 mV, the model neuron will fire even without inputs.

This upper bound is approached when all actual weights

are far below h and the level of neurotransmitter is
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increased above baseline (DA [ 1). Analogously, when all

weights are above h while neurotransmitter level is

increased, the neuron’s membrane threshold before inputs

can be more negative as any inputs are fully transmitted to

the postsynaptic neuron.

For decreasing levels of neurotransmitter (DA \ 1),

synaptic transmission always approaches that of weights

around the current value of h. The effect of this may be

imagined as a neuron-level reduction in signal to noise

ratio, as the effect of strong synapses (possibly having

learnt structured patterns) is decreased while that of weak

synapses (possibly having learnt to ignore background

activity) is increased. This tendency is shown in section

‘‘Effects during synaptic learning’’.

The amount of synaptic transmission depends less on the

actual baseline weight of a synapse as the level of neuro-

transmitter moves away from baseline. The range of

transmission effects is evenly distributed for DA = 1

(green dots in each plot), while decreasing levels of DA

make the transmission effect become solely dependent on h
(blue dots) and increasing levels make the effect go

towards that of weights in the extremes of 0 and 1 (red

dots).

Causal postsynaptic response

Due to its temporary changes in effective weight distribu-

tion, our proposed rule for DA-dependent modulation of

synaptic efficacy leads to a change in causal relationships

between presynaptic and postsynaptic activity.

Figure 5a shows a snapshot of typical input data gen-

erated online as described in ‘‘Methods’’, together with the

instantaneous firing rate in 1 ms bins. The purple dots

exemplify the spiking behaviour of one input unit that

happens to take part in both the random background

activity and representing the partially trained time-struc-

tured input pattern 3.

The inputs are projected via DA-modulated synapses

with fixed, partially trained weights to the postsynaptic

model neuron, evoking an output response that strongly

depends on the current neuromodulator level (Fig. 5b). For

visual clarity, we again used h = 0.5 during this test, which

Fig. 4 Effects of various DA levels 2 ½0; 2� on firing onset membrane

potentials of a 1D-Izhikevich neuron (Izhikevich 2004). At baseline

level (DA = 1) the onset potentials seem evenly distributed across a

voltage range defined by the amount of neural input (green dots).

Lower DA makes the onset potentials become less dependent on the

actual weight of the input synapses and instead approach a central

mean value dependent on h as DA goes towards 0 (blue dots). As the

activity of the postsynaptic neuron now depends less on the actual

weights but mostly on the overall input to the network, we can argue

that the firing pattern of the postsynaptic neuron becomes less causal
(less dependent on specific inputs) compared to baseline DA levels. In

the opposite case of high DA (DA! 2), the effect of the weights also

changes. Increasing levels of DA make inputs arriving through weak

connections have an even smaller effect on the postsynaptic neuron’s

activity (the upper membrane boundary seen in the figures near -53.5

mV is the neuron’s onset potential in absence of any inputs). The

influence of inputs arriving through already stronger connections is

increased up to a maximal effect when effective weights are near the

maximum value of 1 (the lower membrane boundary seen in the

figures is the neuron’s lowest onset potential for the given number of

inputs). The effect of partially trained synapses is thereby enhanced,

up to a binary effect strongly depending on the synaptic strength
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has the side effect that the postsynaptic firing rate is

increased for low values of DA and decreased for high

values of DA for any typical (right-skewed) weight distri-

bution. However, apart from the changes in firing rate, the

important difference between the three response plots is the

increasing selectivity of action potentials on presentation of

the partially trained pattern as the neuromodulator level

increases. While near-random firing is observed for low

values of DA, the output behaviour becomes more sparse at

DA = 1, with no misses but some false positives in detecting

pattern 3. The detection of the pattern becomes perfect for

the highest level of DA = 2 in this case, as the postsynaptic

neuron now fires if and only if pattern 3 is presented.

To make a statement on the generality of this observa-

tion, we chose a fixed distribution of weights as shown in

Fig. 6a and simulated the response of a postsynaptic neu-

ron for 20 s on each of three different levels of DA,

repeated 100 times for each DA level. The vast majority of

1,800 synapses had random weights around 0.1, while 100

connections to units coding pattern 3 were given weights

around 0.7 (units 801–900). By repeatedly counting the

number of occurrences of single events, of causal pairs, and

anti-causal pairs, we can examine the relative change in

selectivity for the values DA = 0, DA = 1, DA = 2.

Events in this context were either a spike of a presynaptic

input unit taking part in coding the beginning of a pattern,

the presentation of the patterns themselves, or a spike of

the postsynaptic neuron. Event pairs were either causal

(pre-syn. then post-syn. within 50 ms) or anti-causal (post-

syn. then pre-syn. within 50 ms).

Each bar plot in Fig. 6c shows groups of causal and anti-

causal event pairs and single events where a presynaptic

event is the respective onset time of each of the three time-

structured input patterns. A postsynaptic event is a spike of

the postsynaptic neuron. While the distribution of events is

similar for all three patterns on DA = 0, there is a slight

increase in causal pairs and a slight decrease in single

postsynaptic firing for DA = 1 on presentation of pattern 3

compared to presentation of the other patterns. The differ-

ence becomes obvious for DA = 2, as pattern 3 reliably and
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Fig. 5 Typical response snapshot for a fixed-weights trial. a Input

patterns created by presynaptic input units (see ‘‘Methods’’). Pattern 1

is repeatedly presented by units 001–200. Pattern 2 by units 401–600.

Pattern 3 by units 801–1,000. The first 100 units that present pattern 3

are connected to the postsynaptic neuron through strong weights

around 0.7 while all other units are connected through weak weights

around 0.1 (compare Fig. 6a). The purple dots represent the firing

activity of input unit 804 (used in Fig. 6d as Unit 3), with striped lines

representing the times of a spike for comparison with the postsynaptic

response. Purple lines signal a spike within pattern presentation, and

grey lines signal spiking due to random background activity. The

instantaneous firing rate of the input layer is shown below. Only little

variation in presynaptic rate is discernable. b The membrane response

of the postsynaptic neuron for different levels of DA with h = 0.5.

The full data from which this image is a snapshot was used for the

results shown in Fig. 6
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perfectly provokes a postsynaptic spike on each presenta-

tion, with no false positives or misses. The equally high

white single event bars for patterns 1 and 2 represent the

same postsynaptic activity that was counted as part of the

causal pair for pattern 3, except that here it represents a

single event, unrelated to neither pattern 1 nor 2.

A more noisy result is seen when comparing not the

onset of pattern presentation to postsynaptic firing, but the

spiking activity of a presynaptic unit that happens to take

part in the pattern. Figure 6d shows the results of this

comparison, where the same tendency can be observed:

The response to all three patterns seems highly similar for

the lowest level of DA, while a slight difference is seen for

normal neuromodulator levels. Again, a strong change in

response to the unit presenting pattern 3 is observed when

the neuromodulator level reaches DA = 2.

The differences in total number of events for different

levels of DA are again due to the chosen value of h = 0.5,

which increases the effective weight of the majority

of synapses for low levels of neuromodulator. In a

(a)

(b)

(c)

(d)

Fig. 6 Effective weight distributions and resulting changes in

relative spike event pairings. As any deviation of DA from 1

temporarily alters the effective weight of each synapse in our model,

we show the effective distribution of weights for three levels of DA

above. a Actual (baseline) weight distribution used for this test.

b DA-dependent effective weight distributions for DA levels 0, 1, and

2. As all firing of the postsynaptic neuron is caused only by inputs

from the input layer, the relative amount of spike pairs gives a hint at

the causality relationship between pre- and postsynaptic events.

Causal or anti-causal event pairings are counted if a presynaptic and a

postsynaptic event occur within 100 ms of each other. If two events

occur with longer time difference, both are counted as single

presynaptic and single postsynaptic events. c Comparison of event

times where the presynaptic event is the presentation time of each

pattern, and the postsynaptic event is the time of each spike of the

postsynaptic neuron. d Comparison of event times where the

presynaptic event is the time of spike of input unit 004 for pattern

1, 404 for pattern 2, and 804 for pattern 3
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(biologically less plausible) left-skewed weight distribution

with the majority of weights above h, the opposite effect on

firing rate would be observed. Automatically keeping h
within a homeostatically plausible range is therefore an

important topic for widespread applicability in large scale

multi-layer networks.

Effects during synaptic learning

After testing our proposed neuromodulation approach on

fixed-weight networks, we now examine the modulatory

effects of our transmission rule on independent synaptic

plasticity. As described in ‘‘Methods’’, no modulation

whatsoever is factored directly into the STDP rule we use.

The only adjustment in how STDP-induced synaptic plas-

ticity is converted to actual weight changes is the soft

bound to keep all weights within the interval [0,1].

After examining unsupervised learning behaviour at

baseline levels of DA, we test reinforced learning with

fixed, non-baseline levels of neuromodulator and examine

the effects of sudden DA level changes on synaptic

learning characteristics.

Fast variation of neuromodulator gradients for large-

scale reinforcement learning will need automatic adjust-

ment of h.

Learning with baseline modulator levels

When the level of neuromodulator remains around the

baseline of DA = 1, the network performs unsupervised

learning, depending only on the structure of arriving inputs.

Figure 7 shows a test where 10 independent postsynaptic

neurons were trained in parallel to the same inputs. Each

neuron’s weights were initialised randomly around 0.8

within the range [-0.025,0.025] in a uniform distribution.

Spike timing dependent plasticity was allowed to change

the weights of synaptic connections, but no modulation

signal was given (DA = 1). At the start of the simulation,

the postsynaptic neurons begin to fire excessively due to

the high mean of inputs arriving at each simulation step

Fig. 7 Development of baseline weights: Unsupervised learning of

structured input patterns by 10 independent postsynaptic neurons at

baseline DA levels (DA = 1). Given equal inputs (see Fig. 5a) and a

narrow range of starting weights, the 10 neurons tune to different

patterns. The slight preference for choosing pattern 2 here comes from

the coincident timing of the equal background inputs, and different

random background inputs lead to a different pattern preference.

Here, all connections start with strong weights around 0.8, leading to

an initial overall decrease due to high postsynaptic activity and the

asymmetry of the STDP rule. Then, as only the time-structured inputs

repeatedly cause the postsynaptic neuron to fire, the weights of the

connections to input units reliably firing just before postsynaptic

activation begin to be strengthened. As the now stronger weights

(shown in Red) lead to an earlier onset of firing of the postsynaptic

neuron relative to pattern presentation times, connections to even

earlier firing input units are strengthened. The earliest firing units

of a repeating pattern soon form the strongest connection, as seen

by the rise of red lines in the weight development plots. Also,

connections to input units representing a late part of a pattern are

now weakened, because they repeatedly fire after a postsynaptic

spike. Far Right Input response delay plots for each of the three

patterns show an initially decreasing and then constant delay of the

postsynaptic neuron’s response to learnt pattern 2, and an extinction

of responses to patterns 1 and 3, to which the neuron did not tune.

Bottom Right Instantaneous firing rate of postsynaptic model

neuron
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(thin red vertical line at t = 0 in each plot). This is then

reduced by the asymmetric all-to-all STDP rule which

adapts the weights to account for the random background

activity arriving through the input units (light blue).

Without structured patterns occuring within the input

stream, all postsynaptic firing would stop at this point (data

not shown). However, after about 3 s, the first postsynaptic

neurons begin to increase the weights of synaptic connec-

tions to pattern presenting input units. After usually no

more than 10 s, all postsynaptic neurons have tuned to at

least one structured pattern (yellow to orange), and start

developing strong connections to the first input units of

each pattern (dark red). Shortly after this, synaptic weights

to any input units that fire repeatedly at a later stage in

pattern presentation are reduced to near zero (dark blue).

This fast LTD is due to the repeated (anti-causal) post-pre

pairing of spikes in opposition to the slower LTD induced

by uncorrelated background activity.

The decision on which of the patterns is learnt depends

both on the random starting distribution of weights and on

coincidental peaks in the background activity (noise).

Because of the soft bound on weights we use, narrow ini-

tialisation ranges near the extremes can have a similar

exploratory effect on tuning preference as a wide initiali-

sation range has around the centre value of 0.5.

In absence of Dopamine or other strong modulatory

factors, previous approaches stopped all form of learning

(Izhikevich 2007). In our proposed method, learning sim-

ply switches from reinforced to unsupervised learning

when the modulatory signal remains fixed at baseline

levels.

Learning with modulation of causal firing

We now add some permanent reinforcement into the sim-

ulation by changing the applied level of neuromodulator.

Figures 8 and 9 show the typical development of weights

for DA = 1.8, DA = 1.3, DA = 0.7 and DA = 0.2. The

strongest change while modulating learning in this way is

the increased difficulty of tuning to patterns for low DA

levels.

For DA = 1.8 (Fig. 8a), the postsynaptic neuron has the

highest tendency to quickly tune to multiple time-struc-

tured input patterns. The probability of tuning to new

patterns is highest during the first few seconds of simula-

tion and diminishes in absence of any homeostatic weight

(a) (b)

Fig. 8 Modulated learning of time-structured input patterns by

synaptic weights of two postsynaptic neurons at high levels of DA.

Each postsynaptic neuron is more likely to tune to any of the patterns,

where just slightly increased baseline weights act as high effective

weights, enabling further strengthening of those connections. a For

DA = 1.8, this neuron quickly tunes to all three patterns, but initially

only with a late response to presentations of pattern 2. Because of

natural STDP behaviour, the neuron slowly re-tunes to input units

representing the start of pattern 2, while connections to late-firing

input units in pattern 2 are weakened. The shortest response delay for

pattern 2 is reached after about 30 s of simulation, with a seemingly

stable double spike response to pattern 2 presentations. b For

DA = 1.3, this neuron happens to only tune to one input pattern, but

the effect of high DA levels on weights to background inputs is nicely

visible (compare Fig. 7): While the weights to input units taking part

in pattern 3 quickly go towards either 0 (blue) or 1 (red), all other

weights are only slowly weakened when background activity happens

to coincide with postsynaptic firing. Although the baseline weights of

connections to background inputs are still between 0.1 and 0.3 and

would usually induce postsynaptic firing for normal DA levels, the

DA-dependent effective weights to background inputs have become

low enough to have no chance in activating the postsynaptic neuron
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adjustment due to random background activity while sim-

ulation progresses. Here, the postsynaptic neuron starts

responding to all three input patterns quickly, but initially

has a high response delay (*50 ms) when detecting pat-

tern 2 because it happens to initially tune to late input units

of this pattern. It then slowly re-tunes to the first input units

repeatedly firing within pattern 2. As the postsynaptic

neuron continues to tune to the first spiking input units of

the pattern, connections to units representing late parts of

the pattern are again actively decreased, as indicated by the

gradual upwards shift of the middle red line.

For DA = 1.3 (Fig. 8b), the postsynaptic neuron tends

to tune to less input patterns. Once it has started to fire

regularly to one of the patterns, the random background

activity continues to diminish all weights to other (ran-

domly active) input units not taking part in the tuned pat-

tern. As the weights to units taking part in other patterns

are hereby also slowly reduced, the postsynaptic neuron

slowly looses its ability to further tune to more patterns and

remains highly specialised. The reduction of weights to

background inputs is slower than in Fig. 7 although in both

cases the neurons tune to only one pattern, because the

increased DA level here decreases transmission by below-h

(weak) weights earlier and the lower resulting firing rate of

the postsynaptic neuron produces slower LTD on back-

ground activity.

For DA = 0.7 (Fig. 9a), we still see the neuron tune to

one of the structured patterns, albeit only after a long time

of uncertainty (here *70 s). Coincidentally, it also

repeatedly fires twice on each pattern presentation for the

remaining duration of the test. Note that in this test we were

able to start with a very low initial range of baseline

weights, because our low DA level lets the effective weights

act as closer to our generalisation threshold h = 0.5.

For DA = 0.2 (Fig. 9b), no more tuning is observed, and

the postsynaptic neuron reaches a pathological state of

relentless firing. While this high postsynaptic activity could

be controlled by lowering h, the failure in tuning can not be

compensated as DA goes towards zero. The structured

inputs vanish in the random background activity that is

transmitted to the neuron with equal efficacy. From the

neuron’s perspective, the signal-to-noise ratio between

structured and random inputs is strongly reduced and can

no more be used for successful learning.

In the next test we reduce the neuromodulator level

suddenly after 60 s of simulation time. Figure 10a shows

(a) (b)

Fig. 9 Modulated learning of time-structured input patterns by two

postsynaptic neurons at low levels of DA. Each postsynaptic neuron is

less likely to tune to patterns, as any initial increase in baseline

weights is masked by the high similarity of all effective weights. Any

correlated inputs are increasingly difficult to discriminate from

background activity as the DA level decreases. a For DA = 0.7, this

neuron does finally manage to reliably tune to pattern 2 after about

70 s, and even forms a double spike response shortly before 90 s of

simulation have passed. Note that here we were able to start with very

low baseline weights around 0.1, because the high value of h = 0.5

keeps the initial effective weights high enough to produce a

postsynaptic response. b For DA = 0.2, no more learning is possible.

Most effective weights come very close to h, completely blocking out

any baseline weight variation. In this case, as h is fixed at the value

0.5, the DA-dependent grouping of effective weights around this

value also leads to continuous, pathological firing of the postsynaptic

neuron. While this high activity could be reduced by (automatically)

lowering h, the masking of trained versus untrained connections can

not
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results of a trial that starts with DA = 1 and drops to

DA = 0 after some initial training has occurred. While the

neuron now instantly enters the pathological state of

excessive firing due to the high h value, a delayed influence

on the learnt weights becomes visible. The response delay

plot for pattern 1 shows a repeating two-spike response

before the DA level drop. This is due to strong learnt

connections to input units *1–50 as indicated by the wide

red bar at the top of the main plot. About 2–3 s after DA

drop, the weights to input units 27–47 are quickly reduced

as they move away from the maximum value defined by the

soft bound. In a normally firing neuron, this would remove

the second response spike to pattern 1, and may be used for

pruning a neuron’s response. At about 10–12 s after DA

drop, the last existing strong weights (1–23) break down

and all weights of the neuron go towards zero. This com-

plete formatting of weights resets the neuron into an un-

specialised state. For allowing the neuron to tune to new

patterns, some homeostatic form of re-enabling spiking

activity would need to be added to the neuron. This may be

a combination of either random weight growth or auto-

matic adjustment of h together with low DA levels.

Moderate baseline weight increase can then allow new

tuning to correlated inputs as used in Fig. 9a.

Figure 10b shows a reduction to DA = 0.5 after 60 s,

which again initially leads to fast postsynaptic firing.

However, in this case the neuron is able to recover normal

operation after a few seconds by further reducing weak

connections to a level low enough to not be pulled up to

high effective weights near h by the given DA level. This

sudden reduction of DA still allows pruning of double

spiking to take place, but preserves the single-spike

response to trained patterns 1 and 3.

Synaptic competition

With the described effects of our proposed rule for DA-

dependent signal transmission, we can affect the network

learning process without directly changing the STDP rule.

While we can push the network into sparsely fitting an

active input signal for high levels of DA, we can induce a

randomization process through low levels of DA, thereby

resetting the network into a higher-entropy state, or ‘‘for-

getting’’ the learnt patterns. Dopamine, or any combination

(a) (b)

Fig. 10 Modulated learning behaviour for baseline levels of DA,

dropping to low levels after 60 s. During the first 60 s, the weight

development is similar to Fig. 7, and both a and b tune to pattern 1

with a double spike response. a When DA drops to zero, the neuron

instantly starts firing quickly as all effective weights move close to

h = 0.5. The effect on trained weights is slower, as it takes about 3 s

after DA drop for the first group of weights to be decreased. After

about 8 s, all weights have been decreased to values close to zero, as

the high spiking activity of the postsynaptic neuron is continued. The

drop of DA hereby led to a deletion of trained weights, or unlearning
of previously learnt patterns. If weights of this neuron were randomly

increased in the future, it would be ready to learn completely new

patterns without relation to its previous identity. b When DA only

drops to 0.5, the neuron still instantly increases its firing rate, but

manages to recover by further reduction of synaptic weights to

background inputs. The group of weights causing the second spike

response on each presentation of pattern 1 is reduced towards zero

during the initial phase of high postsynaptic firing. But the group of

weights causing the repeating first spike response to pattern 1 survives

here. After the neuron recovers to normal firing, the one-spike

response to pattern 1 is still intact. A sudden decrease of DA may

therefore be useful as a pruning measure to sparsify trained neural

responses
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of neurotransmitters signalling reinforcement, can in this

way be simulated to either increase the probability of

learning a given input pattern or to reduce the probability

of learning and even forgetting learnt weights to active

inputs. The inputs must be active at least occasionally in

order for any change to occur, so completely silent inputs

would always remain unchanged.

Apart from fast LTP and LTD through repetitive causal

or anti-causal event pairs, we induce slow LTD by taking

advantage of the fact that random firing causes weight

decrease for asymmetric STDP rules. So by equalising the

effective synaptic weights towards h on low DA, we are

allowing the random backgrund activity to induce slow

LTD.

If the inputs through strong synapses are strong enough

to produce spikes in the postsynaptic neuron and are

themselves correlated, the causal relation between the

repeated presentation of inputs and postsynaptic firing

leads to a further strengthening of these weights (for pre-

dictable order of inputs see Masquelier et al. 2008). If, on

the other hand, the number of strong weights is high and

the presynaptic neurons fire mostly independently, causing

the postsynaptic neuron to fire at random, the noisy input

leads to an overall decrease of even these strong weights as

synapses compete for control over postsynaptic activation.

The network behaviour for high levels of DA is therefore

the following: If many synapses are strong at the beginning

of DA application, an overall reduction of weights takes

place, until most synaptic weights have passed the

threshold h and are effectively close to zero. When only a

small number of strong weights remain, the competition

between synapses for control over postsynaptic firing that

caused the overall decrease is weaker, which allows a small

number of weights to remain strong and even be reinforced

again up to maximal selectivity when some inputs are

correlated in time. This allows a sparse distribution of

synaptic weights to develop.

Conclusion

In this article, we demonstrated how we can influence the

learning outcome of a spiking network simply by apply-

ing some global reinforcement during synaptic transmis-

sion. All synaptic modification is only dependent on

the pre- and postsynaptic spiking activity, and no third

(modulatory) factor is used during spike-timing dependent

plasticity. Through controlling a global level of neuro-

modulator concentration, we are able to influence the

effective range of synaptic efficacies, and thereby the

discriminability of trained vs. untrained inputs arriving at

a postsynaptic neuron. This change in synaptic efficacy is

computed locally in each synapse, using only the current

synaptic strength and the current global neuromodulator

concentration.

A variable neuron-wide threshold h may be used in

future work as a homeostatic slow parameter that auto-

matically updates to retain normal excitability on varying

neuromodulator levels for non-uniform weight distribu-

tions. The size of h would likely come to be far below 0.5

in an automatically adopting implementation.

Applying modulation by locally affecting synaptic

transmission instead of direct manipulation of the STDP

rule gives the advantage of direct control over the causal

firing relationship between selected presynaptic and post-

synaptic neurons, which can instantly be observed as the

modulation factor changes. In terms of network learning,

the reinforcement signal does not directly increase or

decrease active synapses, but instead leads to a temporary

sparsification of effective weights for high reinforcement

and a generalisation around h for low reinforcement.

As the modulatory factor needs to be present during the

arrival of inputs, we do not approach the distal reward

problem (Izhikevich 2007) through our model, but assume

for the case of delayed reward an involvement of hippo-

campus and cortical working memory instead of direct

application of delayed reward into an STDP rule. Instead,

we hope to provide a possible explanation for experimen-

tally observed (Kroener et al. 2009; Thurley et al. 2008)

instantaneous effects during neuromodulator application.

Assuming the process of novelty detection by subcortical

sensory nuclei performs faster than or equally fast as the

semantic processing of some signals in the cortex (Trimmer

et al. 2008), our model may also be useful for learning the

short-latency novelty portion (Redgrave and Gurney 2006)

of the nigral reinforcement signal (Schultz et al. 1997).

Although we have until now only been studying pair-

wise rules of STDP, there is no reason to assume that the

proposed modulation rule should not be combinable with

STDP learning based on triplets of spikes (Pfister and

Gerstner 2006). Specific examination of this combination is

not focus of the current article.

Our model presents some interesting questions for bio-

logical validation: It is currently unclear if and how exactly

Dopamine affects signal transmission locally at single

synapses. Little is known about the exact local concentra-

tions of dopaminergic receptors across a neuron’s mem-

brane (Reynolds and Wickens 2002; Shen et al. 2008;

Surmeier et al. 2007). Also, it might be useful to look for a

biological analogy to our theoretical sparsification/gen-

eralisation threshold h, as this may explain many of the

observed instant effects of Dopamine or related substances.

A chemical prediction by our proposed rule may start at

the ratio between D1-type and D2-type receptors on a

Dopamine-modulated synapse of a D1-dominant postsyn-

aptic neuron. While a neuron-wide baseline ratio of
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dopaminergic receptors may represent a homeostatic

default configuration similar to h in our model, any

strengthening synaptic connection may be found to also

increase the local concentration of D1-type receptors

towards a higher excitability on raised levels of Dopamine.

Similarly, a weakening synaptic connection may reduce the

local concentration of D1-type receptors, allowing the

existing D2-type receptors to become locally dominant in

controlling the synapse’s reaction to drops in global

Dopamine concentration. Although the actual curve of

h-dependent neuromodulation of synaptic efficacy would

be up for experimental refinement, such a weight-depen-

dent dynamic reconfiguration of D1-type/D2-type receptor

ratio might allow for fast Dopamine-dependent modulation

of synaptic transmission to take place. Similarly, on

D2-dominant neurons, the concentration of D2-type dopa-

minergic receptors may be locally increased with a

strengthening of synapses, leading to a supposed opposite

behaviour on application of Dopamine.

While both D1-type and D2-type receptors seem to be

evenly distributed across the main striatal target areas of

dopaminergic projections, it is currently unknown whether

local concentrations among and within neurons diverge

from this general ratio or if neurons tend towards skewed

distribution of receptor ratio depending on synaptic

strength and projection target area.

An additional effect of the increased efficacy of weak

synapses on D1-type neurons for low DA is that as these

synapses tend to be more active, any neurons that have

nearly all weights close to zero and may never fire, have a

new chance of becoming active to the current inputs. This

opens the chance of recovering muted model neurons that

would previously never fire, given useful values for h.

Low DA may inherently support exploration through

D1-type neurons in our model, while high DA may

inherently support exploitation, with opposite behaviour

for D2-type neurons (compare recent work of Humphries

et al. 2012).
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