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Abstract Cortical slow oscillations occur in the mam-

malian brain during deep sleep and have been shown to

contribute to memory consolidation, an effect that can be

enhanced by electrical stimulation. As the precise under-

lying working mechanisms are not known it is desired to

develop and analyze computational models of slow oscil-

lations and to study the response to electrical stimuli. In

this paper we employ the conductance based model of

Compte et al. (J Neurophysiol 89:2707–2725, 2003) to

study the effect of electrical stimulation. The population

response to electrical stimulation depends on the timing of

the stimulus with respect to the state of the slow oscillation.

First, we reproduce the experimental results of electrical

stimulation in ferret brain slices by Shu et al. (Nature

423:288–293, 2003) from the conductance based model.

We then numerically obtain the phase response curve for

the conductance based network model to quantify the

network’s response to weak stimuli. Our results agree with

experiments in vivo and in vitro that show that sensitivity

to stimulation is weaker in the up than in the down state.

However, we also find that within the up state stimulation

leads to a shortening of the up state, or phase advance,

whereas during the up–down transition a prolongation of

up states is possible, resulting in a phase delay. Finally, we

compute the phase response curve for the simple mean-

field model by Ngo et al. (EPL Europhys Lett 89:68002,

2010) and find that the qualitative shape of the PRC is

preserved, despite its different mechanism for the genera-

tion of slow oscillations.

Keywords Sleep � Cortex � Phase response �
Slow oscillation � Synchronization

Introduction

During the deep sleep stages S3/S4 of mammalian sleep the

electroencephalogram (EEG) exhibits large amplitude

oscillations at frequencies of 1 Hz and below (Contreras

and Steriade 1995). These so-called slow oscillations are a

phenomenon with a much slower time scale than that of a

single spiking neuron and reflect the alternation of periods

of activity and silence of large neuronal populations.

Cortical slow waves not only manifest an interesting

dynamical phenomenon on its own, but also have been

shown to significantly contribute to memory consolidation

in humans and other mammals (Diekelmann and Born

2010; Marshall et al. 2006; Stickgold 2005). A consequent

and appealing approach is therefore to enhance sleep slow

waves by stimulation techniques with the goal of enhanc-

ing the consolidating effect on memories (Marshall et al.

2004; Massimini et al. 2007). Therefore a more detailed

understanding of the underlying dynamical mechanisms is

desired to further develop stimulation techniques.

Networks of neurons often exhibit collective oscillations

(Brunel 2000; Gray et al. 1989; Jirsa 2008), during which
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single neurons spike irregularly (Hájos et al. 2004). The

collective dynamics are periodic though and one can treat

the network as one large oscillator (Akam et al. 2012;

Grannan et al. 1993). The cortical slow oscillation shows

high temporal regularity in ferret brain slices and in rat

auditory cortex under deep anesthesia (Deco et al. 2009;

Mattia and Sanchez-Vives 2012; Sanchez-Vives and

McCormick 2000) and can thus be characterized by a phase

response curve (PRC).

In this paper we obtain, based on computational models,

predictions for the PRC of the cortical slow oscillation for a

wide range of stimulus strengths. The PRC is a map that

describes how an oscillating system responds to perturba-

tions (Granada et al. 2009) and can easily be measured

experimentally. Phase models have a long tradition and

were successfully applied to study the interaction of

coupled oscillators (Kuramoto 2003; Tass 1999; Winfree

2001). More recently phase response curves were used to

characterize synchronization between cortex and thalamus

during epileptic seizures (Perez Velazquez et al. 2007) and

dentate gyrus—CA3 coupling in the hippocampus (Akam

et al. 2012).

Knowing the PRC one has a valuable tool to analyse the

influence of external stimulation, e.g. electric, magnetic or

sensory stimulation, on cortical sleep rhythms and also to

investigate the interaction of the sleeping cortex with other

brain structures, like hippocampus and thalamus. These

interactions are assumed to be of substantial relevance for

memory consolidation and transfer of memories between

brain regions (Peyrache et al. 2009).

Up and down states that comprise the slow oscillation

during mammalian sleep seem to be a robust dynamical

phenomenon across species and also across cortical brain

regions (Amzica and Steriade 1998; MacLean et al. 2005;

Sanchez-Vives et al. 2008). Therefore one would conjec-

ture that models for slow oscillations as well as models for

their stimulation should not crucially depend on model

details—albeit one has to specify a working model and its

parameters for computational studies.

This paper is organized as follows. In Sect. 2 we

demonstrate that the network model introduced by

Compte et al. (2003) is capable of reproducing the

experimental results of Shu et al. (2003). Second, we

build on this result and argue that this model is a suitable

candidate to predict the response to weaker stimuli. We

present phase response and phase transition curves for

Type 1 (weak) and Type 0 (strong) resetting as well as for

intermediate stimulus intensities that serve as predictions

for experiments. Third, we obtain the infinitesimal PRC

from the mean-field model by Ngo et al. (2010), a min-

imal model for up–down state dynamics. We find that the

network model and the mean-field model yield qualita-

tively similar results.

Network model reproduces characteristic delay

of up–down transition upon stimulation

In this section we show that the network model introduced

by Compte et al. (2003) is capable of qualitatively repro-

ducing the experiment of Shu et al. (2003). Shu and col-

leagues showed that cortical activity can be switched on

and off externally with excitatory stimuli. In their experi-

ment two short current pulses of same polarity where

applied to ferret brain slices exhibiting spontaneous slow

oscillations. The second pulse was applied during the

evoked up state and would lead to a termination of the up

state after a certain delay. That delay was consistent across

trials and depended strongly on the stimulus amplitude and

the actual interstimulus interval.

The network model is conductance based and exhibits

up–down state dynamics as were observed in ferret brain

slices in vitro (Sanchez-Vives and McCormick 2000). The

model proved its usefulness in recent studies (Fröhlich and

McCormick 2010; Sanchez-Vives et al. 2008; 2010). All

details of the model can be found in the original paper

(Compte et al. 2003). We restate the full equations in

Appendix. In the following we only want to state some of

its main features. The system contains 80 % regular spik-

ing pyramidal neurons and 20 % fast spiking interneurons.

The pyramidal neurons possess two compartments and

show spike frequency adaptation when seeing a constant

injected current. Pyramidal neurons are all excitatory and

connect via AMPA and NMDA type synapses. Inhibitory

connections are only formed via GABAA synapses. The

transition from the down to the up state is caused by

spontaneously firing pyramidal neurons and recurrent

excitation. Importantly, the model does not require noise to

switch between up and down states and exhibits self sus-

tained activity without external drive. The mechanism for

the termination of up states is the activity dependent build

up of inhibitory currents during the up state. This occurs

via a sodium dependent potassium channel whose activa-

tion increases with each spike. The original model uses

1,280 neurons in total. However, one can reduce the size of

the system without changing the overall dynamics, if one

also scales down the range of the synaptic connections

accordingly. We compared the behavior of the system for

different sizes and found no significant differences. We

therefore chose to work with a system size of only 320

neurons, because of the large number of simulations nec-

essary for the results presented in this paper.

The network is stimulated two times with depolarizing

current pulses of same polarity, intensity and duration. The

pulses are applied to all neurons in the network at the same

time. The pulse duration is 10 ms. The first stimulus is

applied during the hyperpolarization phase inbetween two

otherwise self-generated up states. We implicitly assume
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that the external stimulation with electric shocks translates

into a transmembrane current that equally effects pyrami-

dal neurons and interneurons. We also point out that

stimulating all neurons is in contrast to the experiment,

where the stimulation was applied locally. The protocol is

illustrated in the raster plot (model data) in Fig. 1. We

applied the above stimulation protocol to the network

model and yield a similar dependence of up state duration

on stimulus amplitude and interstimulus interval. This is

depicted in Fig. 2. For comparison please see (Shu et al.

2003).

The protocol for obtaining a PRC is very similar to

paired pulse stimulation. Hence, if a model reproduces the

response to a paired stimulus protocol it is likely that one

can obtain the biologically realistic PRC from it. Our

simulations show that the experimental results obtained by

(Shu et al. 2003) are in the strong resetting regime.

The slow oscillation’s PRC as indicated by network

model and mean-field model

We now present PRCs of the network model introduced

above for weak resetting (infinitesimal PRC), strong

resetting and intermediate stimulus intensities. We com-

pare the infinitesimal PRC of the network model with the

infinitesimal PRC of the mean-field model (Fig. 5) intro-

duced by Ngo et al. (2010). As in the network model the

mechanism for terminating up states is the activity

dependent build up of an inhibiting current. This is in

contrast to rate models of the slow oscillation that are based

on fluctuation-driven transitions between two stable fixed

points (Deco et al. 2009; Ermentrout and Terman 2010;

Mejias et al. 2010). Although the two models we used are

of a different class and complexity they lead to PRCs with

similar features. from the network model.

Phase response of network model

A phase response curve quantifies the response of a peri-

odically oscillating system to a perturbing stimulus at a

given phase. We define the phase variable H as

H ¼ 2pt=T , where t denotes the elapsed time from the

previous down state onset and T is the period of the net-

work oscillation (Tsubo et al. 2007). This is illustrated in

Fig. 2 Qualitative reproduction of the experimental results reported

by Shu et al. (2003) with the network model. Data points are the

average of 5 trials. Two depolarizing stimuli, separated by the

interstimulus interval, where applied, see Fig. 1. The peaks just

before the transition to shorter up state durations that are visible in

every curve are an artifact stemming from a heterogenous network

response like the one shown in Fig. 7. Top weak stimuli, e.g.

Is = 0.1 lA, that already cause strong resetting only reduce the up

state duration, independent of phase. Increasing the stimulus strength

reduces the up state more the more the two stimuli are apart, until the

second stimulus directly terminates an up state. For certain stimulus

strengths the second stimulus ends an up state immediately for almost

all interstimulus intervals. Bottom in our simulations it was possible to

evoke up state like network behavior also with very high stimulus

strengths. This was different from mere after spiking. The higher the

stimulus strength was the larger the interstimulus interval had to be in

order to reduce up state durations. This reversed tendency is not

covered by (Shu et al. 2003) and remains to be tested experimentally

Fig. 1 Response of neural network to two consecutive strong stimuli

(ISI = 310 ms, Is = 1 lA) as in (Shu et al. 2003). The first stimulus

causes an immediate transition from the down to the up state. The

following second stimulus (straight line within second up state)

determines the remaining time the system spends in the up state. It

causes a massive influx of calcium which in turn activates the

inhibiting IKCa (not shown) that then leads to the termination of the up

state. Only pyramidal neurons are shown. The stimuli are applied to

each neuron in the network
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Fig. 3. Onsets of up and down states were determined from

the voltage trace of single neurons with the MAUDS

algorithm (Seamari et al. 2007). We define the ensemble

phase of the network as the average phase of the individual

neurons with respect to their down state onset. The phase

reset DH is the phase difference between the perturbed and

unperturbed neuron,

DH ¼ H�H ¼ Dt

T
; ð1Þ

where H is the new phase immediately after the

perturbation and H is the phase at which the stimulus

was applied. Variables Dt and T are as in Fig. 3. The new

phase is calculated from the simulation data via

H ¼ 1� td � ts
T

ð2Þ

with T being the oscillation period, td the beginning of the

down state following the perturbation and ts the time when

the perturbation is applied. The old phase H is (ts - t2)/T,

where t2 is the beginning of the down state before the

perturbing stimulus.

The PRC can be determined using conductance changes

or current pulses as perturbation. It has been shown that

both approaches are equivalent (Achuthan et al. 2010). We

chose the latter option as it depends only on the intrinsic

properties of a neuron. To obtain the PRC we calculated H

and H of each pyramidal neuron for 50 different stimulus

times. The perturbation is applied to all neurons at the same

time but each neuron is in a slightly different phase with

respect to the transition to its down state. We used nearest

neighbor interpolation and transformed the data points

ðH;HÞ to an equidistant grid h with step size 1/50 to

facilitate averaging. Finally, the ensemble phase is deter-

mined using the circular mean h of the individual phases of

pyramidal neurons in the network,

h ¼ arg
1

N

XN

k¼1

ei2pHk

 !
ð3Þ

and the phase reset Dh is analog to 1. The infinitesimal PRC

of the network model is depicted in Fig. 5 (left). It is

renormalized to 1 for comparison with the mean-field model.

For stimulus amplitudes up to 19 nA it scales linearly with

stimulus amplitude. Figure 4 shows the PRC’s dependence

on intermediate stimulus intensities. For intensities between

19 and 400 nA the PRC is still qualitatively similar to the

infinitesimal PRC, but does not scale linearly with stimulus

intensities anymore. For intensities above 400nA up states

are evoked immediately. The up state duration shows a

dependence on the stimulation phase but in this regime is

largely independent of stimulus strength, as shown in Fig. 6.

Phase reduction of mean-field model

Ngo et al. recently introduced a minimal model for the

generation of cortical up and down states. The original

model of Ngo et al. is a time-discrete map. The full model,

reformulated as system of differential equations, is

dx

dt
¼ 1þ e�bðCx�df�#Þ
� ��1

�x ð4aÞ

dl
dt
¼ kllþ gx� l ð4bÞ

d#

dt
¼ k##þ h 1þ e�bðl�dbÞ

� ��1

�# ð4cÞ

Fig. 3 Definition of phase resetting in network model and mean-field

model. The solid line is the membrane potential trace produced by the

network model averaged over all pyramidal neurons and smoothed

subsequently. The perturbation I(t) causes a phase reset that can delay

or advance the oscillation (dashed line). We defined phases 0 and 1 to

be the beginning of a down state/end of an up state. The phase reset is

Dh ¼ Dt
T

Fig. 4 Dependence of the network model’s PRC on stimulus strength

Is. The PRC tilts to the left as the stimulus strength increases. Note

that the phase resetting is only normalized to the oscillation period

and not to Is
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The variable x ranges between 0 and 1 and describes to

what extent the population is active. l is an activity

dependent variable that increases when x is active and

could be interpreted as calcium current. 0 has an inhibiting

effect on x and is triggered by l. It could be interpreted as

calcium dependent potassium current. b describes the noise

level of the population, C stands for the coupling strength, df

is a constant firing threshold and kl and k0 are recovery rates

of l and 0, respectively. We then used the software XPPAUT

to numerically obtain the PRC (Ermentrout 2002). The result

is shown in Fig. 5 (right). We chose the parameters of the

mean-field model to closely match phases of up and down

states and PRC of the network model. According to this

model perturbations have the largest influence in a relatively

short time window right before the transition to the up state

and lead to a phase advance, i.e. a shortening of the down

state. At the beginning of an up state perturbations also lead

to a phase advance and a shortening of the up state, however

only to a comparatively small extent. Perturbations toward

the end of an up state have a larger impact, leading to a phase

delay and hence can prolong the up state.

Discussion

In this paper we obtained a testable prediction for the PRC

of the neocortex during deep anesthesia and for slices of

cortex tissue exhibiting up and down states. In the weak

resetting regime we found type II PRCs with similar fea-

tures for two different models that reproduce many aspects

of up and down states in slices. The obtained PRCs show

maximal responsiveness close to the transition to the up

state. This is in agreement with evoked potential studies

(Massimini 2002) in humans and animals (MacLean et al.

2005; Petersen et al. 2003). In the strong resetting regime

both models also conform to the experimental results by

Shu et al. (2003). Our results strictly apply only to ferret

brain slices, as both investigated models build on obser-

vations from those preparations. However, considering the

universality of sleep and related phenomena like spindles

and hippocampal ripples across mammals our results

should, at least qualitatively, translate to other species as

well.

During natural deep sleep cortical slow oscillations are

less regular than observed under certain kinds of anesthesia

and in slice preparations. The reason for this is largely

unclear. Theoretical investigations assuming noise as

driving force for the switching between up and down states

predict a power law distribution (Mejias et al. 2010) of the

residence times in up and down states, but also showed that

a purely fluctuation driven transition between up and down

states is not sufficient to account for the statistics of resi-

dence times (Deco et al. 2009). Rather, the probability

density function obtained from experimental data is

Fig. 5 Comparison of the two estimates of the slow oscillation’s

infinitesimal PRC. The dashed curves show the phase of the

unperturbed oscillation in both plots and are in arbitrary units. Left:
PRC of the network model for I = 19 nA. Black dots are from direct

perturbation of the network at the respective phase h. The solid curve
is a Fourier approximation of the data points of order 7. The voltage

trace was obtained by averaging one oscillation period over all

pyramidal neurons and subsequent smoothing. Right: PRC of mean

field model with df ¼ 0:17; db ¼ 0:98; C ¼ 0:6; r ¼ 0:05;

km ¼ 0:96; kl ¼ 0:9; g ¼ 0:1; h ¼ 0:2. The parameters where chosen

to closely match the PRC of the network model. The model has a

similar qualitative behavior over a wide range of parameters. In both

models stimulation is ineffective right after an up state. It has the

largest impact at the end of the down state right before the transition

to the up state. Within the up state, stimulation initially leads to a

phase advance, i.e. a reduced up state duration. During the following

up–down transition a phase delay is possible resulting in a prolonged

up state

Cogn Neurodyn (2012) 6:367–375 371

123



unimodal and centered on a preferred frequency not close

to zero (Deco et al. 2009). The global dynamics of the

conductance based network are that of a relaxation oscil-

lator. The slow potassium currents in the model lead to a

gradual build up of inhibition during the action of fast

spiking currents in the up state and terminate it subse-

quently. This inhibition then relaxes during the down state.

Although phase response theory fails in predicting the

rapid synchronization behavior of relaxation oscillators

(Somers and Kopell 1995) it is appropriate for relaxation

oscillators if coupling is weak and the oscillator is not close

to the relaxation limit (Izhikevich 2000; Várkonyi and

Holmes 2008). The observation that the cortical slow

oscillation propagates as a travelling wave (Massimini

et al. 2004) supports this notion.

Phase response theory allows for accurate prediction of

phase locking between oscillators and can be useful to

analyze interactions between brain regions (Levnajić and

Pikovsky 2010; Ko and Ermentrout 2009; Kori et al. 2009;

Perez Velazquez et al. 2007), especially their phase

coherence (Akam et al. 2012). During mammalian deep

sleep hippocampal sharp wave ripple complexes and tha-

lamic spindles tend to be phase-locked to the neocortical

slow oscillation (Clemens et al. 2007; Mayer et al. 2007;

Mölle et al. 2002) and parahippocampal activity seems to

be phase-locked to the troughs of parietal and parahippo-

campal spindles. A characterization of these rhythms in

terms of PRCs might shed light on the nature of this

observation. Furthermore, knowing the response function

of the system enables one to estimate cortical inputs based

on the drift velocity of spiral waves (Biktasheva et al.

2010).
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Appendix: The network model

In the original model by (Compte et al. 2003) 1,024

pyramidal neurons (see Table 1) and 256 interneurons (see

Table 2) are distributed equidistantly along a line of 5 mm.

The probability that two neurons, separated by a distance x,

are connected is PðxÞ ¼ 1ffiffiffiffiffiffiffi
2pr2
p
� �

expð�x2=2r2Þ with a

synaptic footprint of r ¼ 250 lm for excitatory connec-

tions and r ¼ 125 lm for inhibitory connections. The

Fig. 6 Phase transition curves (PTCs) of the network model for Type

0 (strong) resetting. The solid line marks the condition h ¼ h, e.g.

slope 1. The shortening of an up state that results from a stimulation at

h ¼ ½0:1; . . .; 0:75� is almost independent of the stimulus intensity, as

indicated by the overlapping curves in that range. Significant

differences are apparent at the transition from up to down state and

down to up state, respectively. Top the PTCs mostly stay above h ¼ h,

indicating that in this intensity range up state durations can only be

decreased. Bottom the model predicts that there is a refractory period

only for mediumly strong stimuli (Is ¼ ½23:2; 43; 58:7� � lA), as the

phase transition curve is close to h ¼ 1. Also, the slopes near the state

transitions are steeper for strong stimuli. Hence it is more likely for

very strong stimuli to have the desynchronizing effect shown in Fig. 7

Fig. 7 Disrupting effect of a strong stimulus (Is ¼ 6:7 lA; h � 0:85)

applied at phases with rapidly changing slope of the PRC for strong

resetting, depicted in Fig. 6. As individual neurons never have

identical phases when being in a collective up state it is possible to

terminate the up state in one part of the network while at the same

time extending it in another part, thus resulting in an effective

desynchronization of the 1D system
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Table 1 Regular-spiking pyramidal neurons

Description Equations Parameters

Somatic voltage CmAs
dVs

dt
¼ �AsðIL þ INa þ IK þ IA þ IKS þ IKNaÞ Cm = 1 lF/cm2

- Isyn,s - gsd(Vs - Vd) ? Iext As = 0.015 mm2

gsd = (1.75 ± 0.1) lS

Dendritic voltage CmAd
dVd

dt
¼ �AdðICa þ IKCa þ INaP þ IARÞ Ad = 0.035 mm2

- Isyn,d - gsd(Vd - Vs) ? Iext

dm

dt
¼ / axðVÞð1� mÞ � bmðVÞm½ �

dm

dt
¼ / m1ðVÞ � m½ �=smðVÞ

Leakage current IL = gL (V - VL) VL = (-60.95 ± 0.3) mV

gL = (0.067 ± 0.0067) mS/cm2

Spiking sodium current INa ¼ gNam3
Na;1hNaðV � VNaÞ gNa = 50 mS/cm2

mNa;1 ¼ amNa
=ðamNa

þ bmNa
Þ VNa = 55 mV

amNa
¼ 0:1ðV þ 33Þ=½1� expð�ðV þ 33Þ=10� / = 4

bmNa
¼ 4 expð�ðV þ 53:7Þ=12Þ

dhNa

dt
¼ / ahNa

ðVÞð1� hNaÞ � bhNa
ðVÞhNa

� �

ahNa
¼ 0:07 expð�ðV þ 50Þ=10Þ

bhNa
¼ 1=½1þ expð�ðV þ 20Þ=10Þ�

Spiking potassium current IK = gK hK
4 (V - VK) / = 4

dhK

dt
¼ / ahK

ðVÞð1� hKÞ � bhK
ðVÞhK

� �
gK = 10.5 mS/cm2

ahK
¼ 0:01ðV þ 34Þ=½1� expð�ðV þ 34Þ=10Þ� VK = -100 mV

bhK
¼ 0:125½expð�ðV þ 44Þ=25Þ�

Fast inactivating current IA ¼ gAmA;1hAðV � VKÞ gA = 1 mS/cm2

mA;1 ¼ 1=½1þ expð�ðV þ 50Þ=20Þ� shA ¼ 15 ms

dhA

dt
¼ hA;1ðVÞ � hA

� �
=shA

hA;1 ¼ 1=½expð�ðV þ 80Þ=6Þ�
Non-inactivating K?-channel IKS = gKSmKS(V - VK) gKS = 0.576 mS/cm2

dmKS

dt
¼ mKS;1ðVÞ � mKS

� �
=smKS

mKS;1 ¼ 1=½1þ expð�ðV þ 34:5Þ=6:5�
smKS
¼ 8=½expð�ðV þ 55Þ=30Þ þ expððV þ 55Þ=30Þ�

Non-inactivating sodium channel INaP ¼ gNaPm3
NaP;1ðV � VNaÞ gNaP = 0.0686 mS/cm2

mNaP;1 ¼ 1=½1þ expð�ðV þ 55:7Þ=7:7Þ�
Hyperpolarization de-inactivated channel IAR ¼ gARhAR;1ðV � VKÞ gAR = 0.0257 mS/cm2

hAR;1 ¼ 1=½1þ expððV þ 75Þ=4�
High-threshold Ca2?-channel ICa ¼ gCam2

Ca;1ðV � VCaÞ gCa = 0.43 mS/cm2

mCa;1 ¼ 1=½1þ expð�ðV þ 20Þ=9Þ� VCa = 120 mV

Calcium dependent potassium channel IKCa = gKCa[Ca2?]/([Ca2?] ? KD)(V - VK) gKCa = 0.57 mS/cm2

d [Ca2?]/dt = -aCaAdICa - [Ca2?]/sCa aCa ¼ 0:005 lM=ðnA �msÞ
sCa = 150 ms

Sodium dependent potassium channel IKNa ¼ gKNaw1ð½Naþ�ÞðV � VKÞ gKNa = 1.33 mS/cm2

w1 ¼ 0:37=½1þ ð38:7=½Naþ�Þ3:5�
Sodium dynamics d [Na?]/dt = - aNa(As INa ? Ad INaP) aNa ¼ 0:01 mM=ðnA �msÞ

-Rpump{[Na?]3/([Na?]3 ? 153) - [Na?]eq
3 /([Na?]eq

3 ? 153)} Rpump = 0.018 mM/ms

[Na?]eq = 9.5 mM
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equations governing the synapses can be found in Table 3.

Each neuron makes 20 ± 5 connections to other neurons.

In our simulations we used 256 pyramidal neurons and 64

interneurons. The network length and synaptic footprint

was linearly scaled to preserve the properties of the original

model. We applied periodic boundary conditions.
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