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The recent availability of data for cities has allowed scientists to exhibit scalings which present themselves in
the form of a power-law dependence on population of various socio-economical and structural indicators.
We propose here a stochastic theory of urban growth which accounts for some of the observed scalings
and we confirm these predictions on US and OECD empirical data. In particular, we show that the
dependence on population size of the total number of miles driven daily, the total length of the road network,
the total traffic delay, the total consumption of gasoline, the quantity of CO2 emitted and the relation
between area and population of cities, are all governed by a single parameter which characterizes the
sensitivity to congestion. Our results suggest that diseconomies associated with congestion scale
superlinearly with population size, implying that –despite polycentrism– cities whose transportation
infrastructure rely heavily on traffic sensitive modes are unsustainable.

T
he recent availability of an unprecedented amount of data has made possible quantitative studies of urban
systems1–3, opening the way to a new Science of Cities. In particular, the discovery of allometric scaling
relationships in cities has driven the quantitative research on urban systems in the past years. Indeed, there is

a great amount of evidence that different socio-economic indicators in cities, such as the GDP, the crime rate, the
number of patents as well as different structural indicators such as the total length of the road network, the
urbanized land area, etc., exhibit robust scaling relationships with respect to population4–10. The existence of these
simple scaling relationship hints at the existence of universal processes shared by urban systems, and thus at the
possibility of modeling cities.

A common trait shared by all complex systems –including cities– is the existence of a large variety of processes
occuring over a wide range of time and spatial scales. The main obstacle to the understanding of these systems
therefore resides in uncovering the hierarchy of processes and in singling out the few ones which govern their
dynamics. Albeit difficult, the hierarchisation of processes is of prime importance. A failure to do so leads to
models which are either too complex to give any real insight into the phenomenon, or too simple and abstract to
have any resemblance with reality. As a matter of fact, despite numerous attempts5,11–15, a theoretical understand-
ing of many observed empirical regularities in cities is still missing.

In the present study, we show that the spatial structure of the mobility pattern controls the behaviour of many
quantities in urban systems. Indeed, cities are not only defined by the spatial organisation of places fulfilling
different functions –shops, places of residence, workplaces, etc.– but also by the way individuals move among
them. Understanding where people live, where and how they travel within the city thus appears as a necessary step
towards a scientific theory of cities.

Although an increasing amount of data about mobility is now available16, we still lack a simple model explain-
ing the dominant mechanisms governing the formation and evolution of mobility patterns. Many factors such as
geographical constraints, facilities location and available transportation –to name a few– can impact the mobility
and it thus appears as an intricate issue. Here, we tackle the problem of mobility by making simplifying –yet not
simple– assumptions, trying to grasp the most important parameters which define the problem. We thus build
upon a simple out-of-equilibrium model previously developed17. This model, among other things, accounts for
the polycentric transition of cities and gives a prediction for the number of centers as a function of population. We
show that this framework allows us to predict the behaviour of many quantities related to mobility and the
structure of cities: the scaling with population of the total time wasted in congestion, transport related CO2

emissions, total travelled distance, total lane miles and surface area.
Our results allow us give a quantitative insight into two important debates around urban systems. First, we are

able to discuss the benefits of polycentricity and quantify some of its aspects. Then, maybe more importantly, we
are able to put into perspective the sustainability of urban systems.
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Results
Naive scalings. We start by presenting some naive arguments to
estimate the scaling exponents for the area A, the total daily
distance driven Ltot and the total lane miles LN. Although these
predictions turn out to be wrong, naive scalings are useful as a first
approach to the problem as they allow us understand how the
different quantities relate to each other.

Surface area. First, we estimate the dependence of the area A of a city
on its population P –a long standing problem in the field5. A first
crude approach would be to assume that cities evolve in such a way
that their population density r 5 P/A remains constant. This
assumption straighforwardly implies that the area should scale line-
arly with population

A*l2P ð1Þ

where l2 is the average surface occupied by each individual (the
assumption of a constant density is then equivalent to the one of a
constant average surface per capita).

Total length of roads. We now estimate the total length LN of all the
roads within a city. If we consider that the network formed by streets
is such that all the nodes (intersections) are connected to their closest
neighbour, the typical length of a road segment is given by

‘R*

ffiffiffiffi
A
N

r
ð2Þ

where N is the number of intersections. Previous studies of road
networks in different regions, and over extended time periods18,19,
have shown that the number of intersections is proportional to the
population size. Therefore, the typical length of a road segment
(between two intersections) varies with the population size P as

‘R*

ffiffiffiffi
A
P

r
ð3Þ

and the total length of the network LN , P,R should then scale as

LNffiffiffiffi
A
p *

ffiffiffi
P
p

ð4Þ

Using the naive scaling for the dependence of A on population size
given previously in Eq. 1 we finally get

LN*P ð5Þ

Total daily commuting distance. Individual constraint. We also
estimate the total commuting distance Ltot. The first constraint on
this distance comes from individuals’s limitations and behaviour. We
make here the simple assumption that individuals choose their res-
idence and work place such that their total commuting distance is
fixed (or at least smaller than a certain value) and equal on average to
,C. In that case, we simply have

Ltot

P
*const:~‘c ð6Þ

(by constant, we mean independent from the population size of the
city).

The city structure constraint. An additional contraint on Ltot is
given by the structure of the city8,25. Indeed, the individual commut-
ing distance is also related to the total suface area of the city and the
location of activity centers.

If we first assume that the city is monocentric, individuals are all
commuting to the same center and the typical commuting distance is
controlled by the typical size of the city of order

ffiffiffiffi
A
p

Lm
totffiffiffiffi
A
p *P ð7Þ

On the other hand, if we assume that the city is completely decen-
tralized, the typical commuting distance is of order the nearest neigh-

bour distance
ffiffiffiffi
A
p . ffiffiffi

P
p

, and we obtain

Ld
totffiffiffiffi
A
p *

ffiffiffi
P
p

ð8Þ

Comparison of naive scalings with empirical results. The
comparison of the naive exponents with the exponents measured
on US data is shown in Table 1 (see the Methods section for
details about the data). There are important discrepancies, which
we discuss in the following.

First, we note that the naive scaling for the surface area A predicts a
value of the exponent that is quantitatively –and worse, qualitatively–
different from that observed. Indeed, we find that for real cities

A*P a ð9Þ

with a 5 0.85. While the naive argument implies a linear dependence
of the surface area A with population, we find a sublinear scaling in
the data, which is a qualitatively different behavior (Table 1). This
disagreement on this basic quantity will naturally impact the scaling
of the other quantities.

The data also show that Ltot/P can be considered reasonably inde-
pendent from P (with a value of approximately 23 miles for the US,
see Fig. 1), in agreement with the individual constraint assumption
(Eq. 6). This finding is also in agreement with the results drawn from
census data in Germany by20. Although this assumption of a constant
distance is simple and verified on the US data, we think that it
deserves to be systematically tested on other datasets for other coun-
tries and cities.

Finally, the scaling of Ltot

. ffiffiffiffi
A
p

given in the extreme cases of a

monocentric city structure and a totally decentralized city structure
disagree with the value measured on data (see Table 1). This suggests
that most cities have a structure that is neither completely centra-
lized, nor totally decentralized. In particular, this result cast some
doubts about the study15 which assumes implicitely that cities are
always monocentric. Any situation between the two previous

extreme cases would give a scaling of the form Ltot

. ffiffiffiffi
A
p

*Pb where

b g [1/2, 1]. One can easily see that this expression is consistent with
that of A/l2 and Ltot/P if

b~1{
a
2

ð10Þ

Table 1 | This table displays the value of the exponent governing
the behavior with the population P obtained by naive arguments
and the value obtained from empirical data. The discrepancies
reveal the failure of the naive scaling arguments and the necessity
to go further and model mobility patterns. The data used for this
table can be found in38–40

Quantity Naive exponent Measured value

A 1 0.85 6 0.011 (r2 5 0.93)
LN=

ffiffiffiffi
A
p

0.5 0.42 6 0.02 (r2 5 0.83)
LN 1 0.86 6 0.02 (r2 5 0.92)
Ltot=

ffiffiffiffi
A
p

[1/2, 1] 0.60 6 0.03 (r2 5 0.90)

Ltot=P 1 0.03 6 0.02 (r2 5 0.04)
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which is indeed what we observe empirically (up to error bars). This
preliminary analysis thus leads us to the conclusion that, in order to
compute the various exponents, we need to better describe the struc-
ture of commuting patterns. In other words, we need to find a
description of cities that goes beyond the naive monocentric or tot-
ally decentralized views, and which accounts for the observed sub-
linear scaling of the surface area A.

Beyond naive scaling: modeling mobility patterns. We begin with
the assumption that mobility patterns are mostly driven by the daily
commuting and we would like to understand how an individual, given
his household location, will choose his job location. We assume that
this choice will be determined by two dominant factors: the expected
wage at a given job, and the commuting time to this job’s location.
Indeed, places with high average salaries are attractive, but having to
spend a sensible amount of time commuting every day is less
desirable. We assume there are Nc potential activity centers in the
city, each characterized by an average wage w(j) at location j. This
wage is endogenously determined and depends a priori on many
factors such as agglomeration effects21, the type of industry, etc.
Although it is in principle possible to write down equations to
determine the wage (as attempted in11 for instance), not only is it
impossible to solve them, but also not necessarily useful. A similar
situation arises in physics when one studies the behaviour of atoms
made of a large number of electrons. Physicists found out22 that, in
fact, a statistical description of these systems relying on random
matrices could lead to predictions which agree with experimental
results. We would like to import this idea of replacing a complex
quantity such as wages –which depends on so many factors and
interactions– by a random one in spatial economics. So, we treat
the wage as if it was exogenous and random17, that is we write w(j)
5 s gj where s represents the typical income in this city and g is a
random number chosen uniformly in [0, 1]. Furthermore, we assume
that the commuting time does not only depend on the distance
between the two places, but also on the traffic Tij between those
two locations. An individual living at i will thus commute to the
center j which corresponds to the best trade-off between income
and commuting time, thus to the center j such that the quantity

Zij~gj{
dij

‘
1z

T jð Þ
c

� �m� �
ð11Þ

is maximum17. The quantity dij is the euclidean distance between i and
j (both supposed to be scattered randomly across the city), T(j) the

total incoming traffic at j, c the capacity of the underlying transpor-
tation network, and m is an exponent describing the sensitivity of the
network to congestion. The quantity , is the maximum distance that
people can financially travel daily, defined as the ratio between the
typical individual income and the transportation costs per unit of
distance.

This simple model displays a surprisingly rich behaviour17. In
particular, it accounts for the monocentric to polycentric transition
observed in most cities. It has been a well-known fact for quite some
time that as cities grow, they evolve from a monocentric organisation
where all the activities are concentrated in the same geographical area
– usually the central business district– to a more distributed, poly-
centric organisation11,23. Several theories in spatial economics exist1,
but are not satisfactory for many reasons. Among other things, they
do not take congestion into account and have no predictive, testable
content24. Within this framework, congestion is actually responsible
for the transition, and the number of activity centers in a city of
population size P is on average given by

k~
P
P�

� � m
mz1

ð12Þ

with

P�~c
‘ffiffiffiffi

A
p

Nc

� �1=m

ð13Þ

Using data of employment per Zip Code Area in the US17, we showed
that

k*P a ð14Þ

where we measure a 5 0.64 6 0.12 (95% confidence interval (CI)). In
other words, the number of centers scales sublinearly with popu-
lation size.

Computing the exponents. Area. At this stage, the number of
centers is a function of population and the area

k~F A,Pð Þ ð15Þ

and we need an additional equation in order to get a closed system.
Here we focus on the area and its evolution with the population size,
which reflects the growth process of the city. In the following, we will
investigate two different approaches. It is worth noting that both

Figure 1 | Constant daily driven distance per capita. (a) daily total driven distance per capita as a function of population for 441 urbanised area in the US

in 2010. The data shown in the plot are compatible with a population-independent behaviour. (b) Histogram of the daily total driven distance per

capita for the same cities. The average daily driven distance for these cities is 23 miles, and the standard deviation 7 miles.
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approaches give results in qualitative agreement, showing that some
stylized facts –such as super- or sublinearity– are very robust.

Fitting procedure. In the absence of knowledge of the processes
responsible for urban sprawl, we can assume that the area behaves as

A*P a ð16Þ

where a is the exponent to be determined, through fits on data. The
empirical value for the exponent for the US data is a^0:85. Once this
exponent is given we can then compute the various exponent for the
quantities of interest (see the following and table 2). We get for the
number of centers k

k*P
mza=2

mz1 ð17Þ

which is sublinear as long as a , 2, in agreement with the empirical
results for US cities. As we will see, this approach yields the same
qualitative behaviours as those predicted with the method of the next
section. In other words, even if the main mechanism behind urban
sprawl is not congestion, the conclusions of this paper are not affec-
ted as long as the area scales sublinearly with population.

Coherent growth. Let us now assume that the scaling of A with
population is determined by the number of activity centers and the
constant commuting length of individuals. This means that the
growth of the area is controlled by the appearance of new activity
centers. if we assume that a city is organized around k activity centers
and that the attraction basin of each of these centers are spatially
separated17, we then have A , k A1 where A1 is the area of each
subcenter’s attraction basin. This area A1 is related to the average
individual commuting distance by

ffiffiffiffiffiffi
A1
p

*Ltot=P, and we obtain

A*k
Ltot

P

� �2

~k‘2
c ð18Þ

This leads to expression for the number of centers

k*P
2m

2mz1 ð19Þ

which is always smaller than 1, also in agreement with the empirical
results for US cities. We can now also compute the scaling of the
surface area

A
‘2

c

*
P
c

� � 2m
2mz1

ð20Þ

We further assume that Ltot/P is a fraction of the longest possible
journey , individuals can afford, that is to say

‘c*‘ ð21Þ

It is important to note that if ,c is independent from ,, the quant-
itative predictions of our model would still hold. The final expression
for the area is then here given by

A
‘2
*

P
c

� �2 d

ð22Þ

where d~
m

2mz1
. The exponent d is smaller than 1/2 whatever m $

0, which implies that the density of cities increases sublinearly with
population. In other words, the density of cities increases with popu-
lation. We verify this prediction in Table 2, with data about land area
of urbanized areas in the US (Figure 2). We find 2demp 5 0.85 6 0.01
(95% CI) which is not too far from the theoretical value 2dth 5 0.64 6
0.12 (95% CI), equal to a in this case.

Because the area of an urban system results from centuries of
evolution, we do not a priori expect our model–where individual
vehicles are assumed to be the only vector of mobility– to give a
prediction valid for all countries and all times. Nevertheless, these
results give us reasons to believe that the spatial structure of the
journey-to-work commuting should still be the dominant factor in
the dependence of land area on population.

Total commuting distance. Using Eq. 6 and Eq. 22 we are now able to

compute Ltot

. ffiffiffiffi
A
p

Table 2 | This table displays the predicted theoretical behavior and the empirical observations versus the population size P for different
quantities: Ltot is the daily total driven distance, A is the area of the city, LN is the total length of the road network, dt is the daily total delay
due to congestion, Qgas is the yearly total consumption of gasoline and QCO2 is the total CO2 emissions emitted yearly due to transporta-
tion. In the third (fourth) column, we show the predicted values of the exponent of P using the value of a (of a) measured on US data. In the
fifth column, we show the value of the exponents directly measured on data about US and OECD cities. The measured values are in good
agreement with the prediction. In particular, the exponents for LN and dt are consistent with our prediction that their difference should be
1/2

Quantity
Theoretical dependence

on P in self-consistant case

Predicted value of the exponents

Measured valueself-consistent case fitting case

Ltot P 1 1 1.03 6 0.03 (r2 5 0.95)
A=‘2 P

c

� �2 d 2d 5 0.64 a 5 0.85 0.853 6 0.011 (r2 5 0.93)38–40

LN=‘ ffiffiffi
P
p P

c

� �d 1
2
zd~0:82

1za
2

~0:93
0.765 6 0.033 (r2 5 0.92)38–40

dt=t
P

P
c

� �d 1 1 d 5 1.32 1.22 1.270 6 0.067 (r2 5 0.97)38–40

Qgas,CO2

�
‘

P
P
c

� �d 1 1 d 5 1.32 1.22 1.262 6 0.089 (r2 5 0.94)38–40

1.212 6 0.098 (r2 5 0.83)41

1.33 6 0.0326

LN

. ffiffiffiffi
A
p ffiffiffi

P
p

0.5 0.5 0.42 6 0.02 (r2 5 0.83)38–40

Ltot

. ffiffiffiffi
A
p

P
P
c

� �{d 1 2 d 5 0.68 1 2 a/2 5 0.58 0.595 6 0.026 (r2 5 0.90)38–40
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Ltotffiffiffiffi
A
p ~P

P
c

� �{d

ð23Þ

We plot Ltot

. ffiffiffiffi
A
p

for urbanized areas in the US on Figure 2, and one

can check in Table 2 that the exponent predicted from the previously
measured value of a agrees well with the exponent measured on the
data. In the fitting case, the exponent would simply be given by 1 2 a/
2.

Total length of roads. If we use the previously derived expression for
the area A, we find

LN*‘
ffiffiffi
P
p P

c

� �d

ð24Þ

The quantity d is less than 1/2, which implies that LN scales subli-
nearly with the city’s population size. In other words, larger cities
need less roads per capita than smaller ones: we recover the fact that

agglomeration of people in urban centers involves economies of scale
for infrastructures. Within the fitting assumption (Eq.16), we would
obtain (1 1 a)/2.

Total delay due to congestion. Unfortunately, agglomeration in cities
does not only generate economies. Congestion, for instance, is a
major diseconomy associated with the concentration of people in a
given area. A simple way to quantify the impairement caused by
traffic congestion is through the total delay it generates. If we make
the first order approximation that the average free-flow speed v is the
same for everyone, the total delay due to congestion is given –accord-
ing to our model–by

dt~
1
v

X
i,j

dij
Tj

c

� �m

ð25Þ

If we assume that all the centers share the same number of commu-
ters –a reasonable assumption within our model17–we obtain

Figure 2 | Mobility and city structure and their impact on agglomeration economies and diseconomies. (a) Variation of the daily total driven distance

with the population for 441 urbanized areas in the US in 2010. The dashed line shows the power-law fit with exponent 0.595 6 0.026 (r2 5 0.90). (b)

Variation of the land area with population for 3540 urbanised areas in the US in 2010. The fit assuming a power-law dependence gives an exponent 0.853

6 0.11 (r2 5 0.93). Both exponents are smaller than 1, as predicted by our theory. (c) Variation of the total lane miles with population for 363 urbanised

areas in the US. A power law fit (dashed line) gives LN/, 5 P0.76560.033 (r2 5 0.92). The sublinear behaviour –which agrees with our prediction–means that

larger cities need to spend less in infrastructure per capita than smaller ones. (d) Variation of the total delay due to congestion with population for

97 urbanised areas in the US. A power law fit gives an exponent 1.270 6 0.067 (r2 5 0.97). The superlinear behaviour agrees with the prediction given by

our model and challenges the claims of sustainability of cities.
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dt*
Ltot

v
P
k

� �m

ð26Þ

which, using the expressions for Ltot and A given in Eq. 23 and Eq. 22
respectively, gives

dt*
‘ P
v

P
c

� �d

ð27Þ

The total commuting time corresponding to the same distance but
without congestion scales as t0 , Ltot and thus less rapidly than the
total delay which scales super-linearly with population (even when
polycentricity is taken into account). This means that, for the largest
cities, delays due to congestion actually dominate the time spent in
traffic, and that economical losses per capita due to the time lost in
congestion –and the corresponding strain on people’s life– increase
with the size of the city.

In the fitting assumption Eq. 16, and using the same arguments for
the calculation of dt, we easily obtain for the exponent the value

1z
m

mz1
1{

a
2

� 	
.

Transport related CO2 emission. Gasoline consumption. Another dis-
economy associated with congestion is the quantity of CO2 emitted
by cars and the gasoline consumed by motor vehicles. This amount
not only depends on the distance that has been driven, but also on the
traffic during the journey. It indeed turns out that for the same length
driven, a car burns more oil when the traffic is heavy than when the
road is clear. Within our model, the presence of traffic is seen in the
time spent to cover a given distance, and we write that the quantity of
CO2 emitted by a vehicle is proportional to the total time spent in
traffic, leading to

QCO2~q
X

i,j

dij 1z
Tj

c

� �m� �
ð28Þ

where q is the average quantity of CO2 produced per unit time. In the
polycentric case with k 5 k(P) subcenters, the typical trip length dij is

given by
ffiffiffiffiffiffiffiffi
A=k

p
and we obtain

QCO2~q ‘P 1z
P
c

� �d
" #

ð29Þ

The first term in brackets is a constant, and the quantity of CO2 is
thus dominated by congestion effects at large populations

QCO2*q ‘ P
P
c

� �d

ð30Þ

and the total daily transport-related CO2 emission per capita thus
scales as

QCO2

P
*q‘

P
c

� �d

ð31Þ

The quantity of CO2 emitted per capita in cities thus increases with
the size of the city, a consequence of congestion. This prediction
agrees with the exponent we measure (Figure 3) on data gathered
for US and OECD cities (Data about the area and population of
urbanised areas can be found on the Census Bureau website38, data
about congestions in urban areas can be found in the Urban Mobility
Report39, and data about the total lane miles and the daily total miles
driven in urbanized areas can be found on on the Federal Highway
administration website40). We are aware that the scaling of CO2 with
population size is controversial, with results varying from one study
to another. Although a systematic meta-analysis of these results is
beyond the scope of this paper, we note that the authors of27 are
concerned with the total emissions of CO2, while this paper is only

concerned with emissions due to transportations. Moreover, our
prediction agrees well with the exponent of 1.33 measured by the
authors of26 on the same dataset, but with a different definition of
cities. Finally, our prediction also agrees with measurements made
in28 for developing countries.

Another important related quantity is the the consumption of
gasoline which in principle is proportional to the emission of CO2

and the time spent driving. The total daily gasoline consumption is
then given by

Qgas*q ‘P
P
c

� �d

ð32Þ

where q is the average quantity of gasoline needed per unit time.
From this expression, we see that the total daily gasoline consump-
tion per capita scales as

Qgas

P
*‘

ffiffiffi
P
r

s
~‘

ffiffiffiffi
A
p

ð33Þ

and is therefore not a simple function of the city density, in contrast
with what was suggested by the seminal paper of Newman and
Kenworthy4. At this stage however, more data about gasoline con-
sumption is needed to test this prediction and draw definitive
conclusions.

Discussion
Monocentric versus polycentric. Although polycentricity emerges
naturally from our model as a result of congestion, many
circumstances can prevent or foster the appearance of new activity
centers in a city. There are many debates as to whether policies
should favour polycentric or monocentric developpement of cities.
Most of them are based on ideologies and opinions about how cities
should be, very few are based on a quantitative understanding of the
city as a complex system. Although this only represents a small part
of the debate, our model allows to quantify the effect of polycentricity
on the total delay due to congestion.

We can indeed compute the total delay due to congestion in the
case of a monocentric configuration. In this situation, all the popu-
lation commutes to a single destination 1 and we have

dtmono~
1
v

X
i

di1
P
c

� �m

~Ltot
P
c

� �m

ð34Þ

It follows, using the expression given above for Ltot

dtmono~
‘

v
P1zm ð35Þ

From the fact that 1zmw1z
m

2mz1
, we indeed find that the total

delay due to congestion is worse for monocentric cities than it is for
polycentric cities with the same population, which agrees with the
usual intuition. More precisely the ratio of delays is given by

dtmono

dtpoly
*

P
c

� �b

ð36Þ

where the exponent is of order b < 0.57. Therefore, even though
diseconomies associated with polycentric cities scale superlinearly
with population, it would be even worse if we did not let cities evolve
from the monocentric case. The same reasoning applies to the con-
sumption of gasoline and the CO2 emissions. This suggests that,
everything else being equal, polycentricity should be favoured for
quality of life and environmental reasons.

Megapolis versus urban villages. Also, given the superlinear beha-
viour of the diseconomies associated with living in cities, it is clear
that we would be better off living in several smaller cities rather than a

www.nature.com/scientificreports
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single huge city. However, due to the economies of scale realised in
large cities, we can wonder whether this is also economically
reasonable. If we assume that the total cost of a city of population
P is the sum of its infrastructure cost and the economical losses due to
congestion we have

CT Pð Þ~EI LN Pð ÞzEC Dt dt Pð Þ ð37Þ

where EI is the average cost of a kilometer of roads, EC the average
hourly wage and Dt the planning horizon in years (this expression is
not exhaustive, as the costs dues to CO2 emissions and gasoline
consumptions are not included). The infrastructure needs
maintenance, and its cost depends on the planning horizon as well
and can be written EI~EBzDt EM where EB is the construction cost
in $/km and EM the maintenance cost in $/km/year.

We assume that the population P is distributed among n cities of
the same size P/n (see Figure 4). The total lane miles for the n cities

reads L nð Þ
N Pð Þ~n LN P=nð Þwhere LN Pð Þ*‘

ffiffiffi
P
p P

c

� �d

is the total lane

for one city. The total congestion delay for n cities is dtn 5 ndt(P/n)
and we thus obtain the total cost CT (P, n) for n cities

CT P,nð Þ~n{d ‘ EI

ffiffiffi
n
P

r
zt ECDt

� �
ð38Þ

The number of cities nmin which minimises the total cost is obtained

when
dC
dn

~0, leading to (for Dt?1)

nmin~P
2d

1zd

� �
EC

EM

t

‘

� �2

ð39Þ

(the actual number of cities is of course an integer, and can be taken
as the nearest integer from nmin for instance). It is then economically
advantageous to divide the population in several cities if nmin . 2. To

illustrate this point, we compute the number of cities which would
minimise the cost for a world population P < 109. The World Bank
estimates the maintenance cost of roads to be of the order of
EM<105$=km=year, and the average hourly wage to be of the order
of EC<10$=h, the value of d is taken from the measures on US data,
d < 0.27, and t/, < 10 km/h. We then obtain

nmin<180 ð40Þ

which gives an average city size of P/n < 5, 500, 000. This result is to
put in perspective with the fact that the world hosts 40 or so cities
with over 5, 500, 000 inhabitants and that this number is still
increasing.

The most economical population distribution. The previous
results assume that we split a large city into many cities of the
same size. The cities are however organized in various sizes
distributed according to something that can be approximated by a
Pareto distribution, as known since Zipf’s work29. It is still unclear
why we observe such a convergence30,31. We propose here a new
perspective to this debate by asking: Assuming cities are
distributed according to a Pareto distribution, what value of the
exponent minimises the overall cost? Indeed from above the total
cost for a population size x is given at large times by

CT xð Þ~EMDt LN xð ÞzEC Dt dt xð Þ ð41Þ

We assume that the population is distributed according to

P xð Þ~ c{1ð Þx{c for x [ 1, L½ � ð42Þ

with c . 1 and a cut-off population L?1 (which is at most equal to
the world’s population). The average cost is then given by

CT~

ðL
1
P xð ÞCT xð Þ dx ð43Þ

Figure 3 | Variation of CO2 emissions due to transport with city size. In blue, excess CO2 (in tons) due to congestion, as given by the Urban Mobility

Report (2010) for 101 metropolitan areas in the US39. In green, we show the estimated CO2 emissions (in tons) due to transports, as given by the OECD for

268 metropolitan areas in 28 different countries (Data about the total CO2 emissions due to transportation in major metropolitan area in the OECD can

be found online41). The dashed yellow lines represent the least-square fit assuming a power-law dependency with multiplicative noise, which gives

respectively QCO2*P1:262+0:089 r2~0:94

 �

for the US data and QCO2*P1:212+0:098 r2~0:83

 �

for the OECD data.
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leading to

CT~
Dt‘
cd

c{1ð Þ EM
L{czdz3

2{1
{czdz 3

2

z
EC

v
L{czdz2{1
{czdz2

" #
ð44Þ

The only consistent solution is obtained for c , d 1 2. The dominant
term for L?1 is given by

CT^
DtEC‘

cd
c{1ð Þ L{czdz2

{czdz2

" #
ð45Þ

The optimal power law distribution minimizes the average cost and

is such that
dCT

dc
~0. We obtain the following equation

1zd

dz2{c
~ c{1ð ÞlnL ð46Þ

and in the limit L?1 we obtain the optimal value for c

c�~2zd{
1

lnL
ð47Þ

Numerically, d < 0.32 and L < 109, leading to c* < 2.27. It is
interesting to note that this value would lead to a rank-plot
exponent (<0.78) not far from those measured on different
countries around the world32. Although we do not pretend that the
above reasoning provides a definitive answer to the Zipf puzzle, it
nevertheless suggests that the broad diversity of population might
derive from economical considerations, and that there may be a
connection between the Zipf law exponent and optimality
considerations.

Outlook. The superlinear increase of congestion delay with
population, and thereby of gasoline consumption and of CO2

emissions, has terrible consequences on the economy, the
environment, health and well-being. The outlook is nothing short
of grim in our ever-urbanising world. As the proportion of human
beings living in cities dramatically increases –the UN expects the
world population to be 67% urban in 205033– wages are likely to
increase7 but not enough to compensate for the negative effects of
congestion. As a result, if the individual car stays the dominant
transportation mode, cities will put more strain on people’s life,
while acting as catalysts for the production of CO2 greenhouse gas,
responsible for an overall increase of the planet’s temperature34. It is
currently believed that advantages associated with living in a large
city outweigh the costs. Our results reveal however the existence of
very rapidly growing problems such as congestion and CO2

emissions, which inevitably begs the question of the sustainability
of large cities. It might be time to cut down considerably the use of
individual vehicles, or to consider the possibility of living in smaller
or medium sized cities: the infrastructure costs (LN) may be larger,
but the impact on the environment (CO2 emissions) and on the well-
being of people (delays in congestion) would be beneficial (see
Figure 3).

The most striking fact about the above results is that despite the
apparence of complexity that is conveyed by cities, most of their
structure can be explained by the very simple and universal desire
for the best achievable balance between income and commuting
costs. Our model unifies mobility patterns, spatial structure of cities
and allometric scalings in a framework that can be built upon. More
work is needed in order to integrate information about firm loca-
tions, the influence of public transportation on mobility patterns35,

Figure 4 | Scaling down. We consider a population P and see how indicators change when we compare it with a system with many cities and the same total

population. (a) Variation of the yearly delay per capita due to congestion with the number of cities (normalised by the value dt(1) corresponding to the

single city case). (b) Evolution of the infrastructure length with the number of cities (normalised by the value LN(1) corresponding to the single city case).

Relative gains in terms of commuting time per person decrease faster than infrastructure costs increase, suggesting that life in cities could be

improved at a relatively low cost by decentralisation.
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the effect of the integration of cities into urban systems36, to under-
stand the fluctuations around the average trends, and to test the
validity of the model on different sets of data. We believe however
that the results presented here represent a crucial step towards a
scientific understanding of cities.

Methods
Data. As recently stressed in37, when trying to identify patterns accross cities, one
must be careful and consistent in the definition of city boundaries. These authors
indeed found out that the scaling exponents measures for several quantities are
usually sensitive to the definition chosen for the city. In order to make our results
reproducible, we detail in the following the data source and the corresponding city
definition.

Total distance driven and lane miles. The daily commuting vehicle-miles as well as the
total lane miles data were obtained for the year 2011 from the Federal Highway
Administration for 441 Urban Areas (as defined by the Census Bureau) in the US.

Area. The surface area data were obtained for the year 2010 from the Census Bureau
for 3540 Urban Areas (as defined by the Census Bureau) in the US. It is interesting to
note that the dependence of the surface area of Metropolitan Statistical Areas with
population is a lot less clear-cut, implying that, with respect to surface area, the
definition of UAs delineates more coherent systems than the definition of MSAs.

Values of ,. In order to compute a value for ‘~
s
t

, we use for s the average wage at the

county level, provided by the Bureau of Labor Statistics. For t, the transportation cost
per unit distance, we use the average gas price per state as given by the U.S. Energy
Information Administration, and assume that all vehicles burn the same quantity of
gas per unit distance on average. Interestingly, while we have assumed a constant ,
throughout this paper, we have noticed that its effect on the different scalings was not
negligible (Compare the results for LN and A between Table 1 and Table 2 for
instance), implying that , has a small, yet non-zero dependence on the population.
This probably comes from the dependence of the average wage on population7. We
leave the investigation of this dependence for further studies.

Total delay and CO2 emissions. The excess CO2 and the total delay due to traffic
congestion were obtained for the year 2012 from the Urban Mobility Report for 97
Urban Areas in the US. Also, the quantity of CO2 emissions due to transportation was
obtained from the OECD for 268 metropolitan areas accross 28 countries for the year
2008. It is worth noting here that the US definition of Urban Area and the OECD
definition of Metropolitan Area are qualitatively different, added to the fact that
OECD data cover many different countries. Yet, the measured values of the exponent
are compatible with each other.

As far as the United States are concerned, we present results for Urban Areas only.
Indeed, when data were available for both MSA and Urban Area, we found out that
the MSA data did not exhibit as clear-cut regularities as the Urban Area data did. We
believe that this effect is due to the lack of a unique, quantitative definition of a city
which makes In this work, we assumed that Urban Areas designate areas which are
coherent with respect to the quantities we are measuring, and leave the crucial issue of
city definition for further studies.
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