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Abstract

Gene expression is largely regulated by DNA methylation, transcription factor (TF), and microRNA (miRNA) before, during, and after

transcription, respectively.Although theevolutionaryeffectsofTF/miRNAregulationshavebeenwidely studied, evolutionaryanalysis

of simultaneously accounting for DNA methylation, TF, and miRNA regulations and whether promoter methylation and gene body

(coding regions)methylationhavedifferenteffectson the rateof geneevolution remainuninvestigated.Here,wecomparedhuman–

macaque and human–mouse protein evolutionary rates against experimentally determined single base-resolution DNA methylation

data, revealing that promoter methylation level is positively correlated with protein evolutionary rates but negatively correlated with

TF/miRNA regulations, whereas the opposite was observed for gene body methylation level. Our results showed that the relative

importanceof these regulatory factors indetermining the rateofmammalianproteinevolution isas follows:Promotermethylation&
miRNA regulation> gene body methylation> TF regulation, and further indicated that promoter methylation and miRNA regulation

have a significant dependent effect on protein evolutionary rates. Although the mechanisms underlying cooperation between DNA

methylation and TFs/miRNAs in gene regulation remain unclear, our study helps to not only illuminate the impact of these regulatory

factors on mammalian protein evolution but also their intricate interaction within gene regulatory networks.

Key words: promoter/gene body methylation, transcription factor, microRNA, protein evolutionary rate, comparative

genomics.

Introduction

Various factors have been known to control gene expression

and form a complex regulatory network. Regulation of gene

expression is strongly associated with the maintenance of

normal cells and a variety of biological functions. The most

prominent gene regulators are DNA methylation, transcription

factor (TF), and microRNA (miRNA), which regulate gene

expression at the pretranscriptional, transcriptional, and

posttranscriptional levels, respectively. DNA methylation is a

heritable epigenetic marker that regulates gene expression

without altering DNA sequence (Egger et al. 2004). This mod-

ification is highly associated with many cellular processes,

including transcription, genomic imprinting, suppression of

transposons, X-chromosome inactivation, chromatin struc-

ture, embryonic development, and carcinogenesis (Li et al.

1993; Heard et al. 1997; Walsh et al. 1998; Reik et al.

2001; Feinberg and Tycko 2004; Laurent et al. 2010).

Several studies have indicated that promoter methylation

and gene body methylation exhibit different correlation pat-

terns with gene expression. Promoter methylation is generally

associated with transcriptional suppression, whereas gene

body methylation is associated with active transcription

(Jones and Takai 2001; Hellman and Chess 2007; Ball et al.

2009; Bogdanovic and Veenstra 2009; Lister et al. 2009; Feng

et al. 2010; Laurent et al. 2010; Maunakea et al. 2010; Xiang

et al. 2010; Zemach et al. 2010; Defossez and Stancheva

2011; Jones 2012); therefore, methylation in promoter and

gene body regions may play distinct biological roles.

As for the two trans-regulatory factors (TFs and miRNAs),

TFs are proteins that bind to specific DNA sequences (so-called

“TF binding sites” [TFBSs]) usually located within promoters,

through which they facilitate or repress the transcription

of their target genes (Elnitski et al. 2006; Vaquerizas et al.

2009); on the other hand, miRNAs are small (~22 nt)

noncoding RNAs that target mRNAs and regulate gene ex-

pression through mRNA cleavage or translation repression
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(Bartel 2004, 2009). It has been reported that miRNAs can

form intricate feedback and feed-forward loops with TFs

within the context of gene regulatory networks (Hornstein

and Shomron 2006; Shalgi et al. 2007; Tsang et al. 2007;

Su et al. 2010). Such miRNA–TF networks are important for

the stability of gene regulation mechanisms (Shalgi et al.

2007; Yu et al. 2008), and may play crucial roles in diverse

biological processes (Marson et al. 2008; Dahan et al. 2011).

In contrast, interactions between these two trans-regulatory

factors (i.e., TFs and miRNAs) and DNA methylation during

gene regulation are relatively poorly understood.

In terms of molecular evolution, DNA methylation has been

reported to remarkably increase the rate of spontaneous

C-to-T mutations at CpG dinucleotides (Ehrlich and Wang

1981; Hwang and Green 2004; Mugal and Ellegren 2011),

resulting in enhanced sequence divergence. On the other

hand, it has been recently reported that hypermethylated

genes are subject to stronger selective constraints than hypo-

methylated genes (Hunt et al. 2010; Lyko et al. 2010; Park

et al. 2011; Sarda et al. 2012; Takuno and Gaut 2012). We

previously observed that the first exons of transcripts are more

susceptible to mutagenic effects, whereas the internal and last

exons are more affected by the regulatory effects of DNA

methylation (Chuang et al. 2012). We further indicated that

the extent of gene body methylation correlates highly with

within-gene variations (e.g., the type of exonic sequences,

relative genic position, and degeneracy of coding nucleotides)

in evolutionary rates at both the exon and nucleotide levels

(Chuang et al. 2012; Chuang and Chen 2014). On the other

hand, the evolutionary effects of TFs and miRNAs have been

carefully examined, revealing that genes targeted by more

different TFs (number of different TFs designated as “NTF”)

or miRNAs (number of different miRNAs designated as

“NmiR”) tend to evolve more slowly in diverse species

(Cheng et al. 2009; Xia et al. 2009; Wang et al. 2010;

Chen, Chuang et al. 2011; Chen et al. 2013). These results

manifested that all these regulatory factors are important in-

dicators of evolutionary rates, regardless of DNA methylation

at the pretranscriptional level, TF regulation at the transcrip-

tional level, or miRNA regulation at the posttranscriptional

level. However, to the best of our knowledge, no systematic

evolutionary analysis is currently available that simultaneously

accounts for these three regulatory factors. The following

questions still await exploration: whether promoter and

gene body methylation differentially correlated with the evo-

lutionary rates of their target genes, NTF, and NmiR; which of

these factors has a greater effect on the rate of mammalian

protein evolution; and whether DNA methylation and trans-

regulations have an interactive influence on protein evolution-

ary rates.

In this study, we collected single base-resolution DNA

methylation data and TF- and miRNA-binding data from

human, and systematically examined the correlations between

these regulatory factors (i.e., levels of promoter/gene body

methylation, NTF, and NmiR) and the evolutionary rates of

their target genes (nonsynonymous substitution rate [dN],

synonymous substitution rate [dS], and dN/dS ratio). To control

for other confounding factors that may affect the evolutionary

rates of protein-coding genes, we also considered the follow-

ing eight biological factors in our statistical analyses: 1) Protein

connectivity (Lemos et al. 2005; Plotkin and Fraser 2007; Xia

et al. 2009; Liao et al. 2010; Wang et al. 2010); 2) gene

expression level (Liao et al. 2006, 2010; Larracuente et al.

2008; Xia et al. 2009; Chen, Chuang et al. 2011; Yang and

Gaut 2011); 3) tissue-specific gene expression (Liao et al.

2006, 2010; Larracuente et al. 2008; Park and Choi 2010;

Yang and Gaut 2011); gene compactness in terms of 4)

untranslated region (UTR) length (Liao et al. 2006; Cheng

et al. 2009; Yang and Gaut 2011), 5) intron length (Marais

et al. 2005; Liao et al. 2006, 2010; Yang and Gaut 2011), and

6) intron number (Larracuente et al. 2008; Yang and Gaut

2011); and protein structure in terms of 7) solvent accessibility

(Bloom et al. 2006; Lin et al. 2007; Zhou et al. 2008; Franzosa

and Xia 2009) and 8) disorder content (Kim et al. 2008; Brown

et al. 2010; Chen, Chuang et al. 2011). In this way, we show

that the levels of DNA methylation of both promoters and

gene bodies are important indicators of protein evolutionary

rates (dN and dN/dS) when other confounding factors are con-

trolled. Interestingly, protein evolutionary rates are positively

correlated with the level of promoter methylation, but nega-

tively correlated with the level of gene body methylation.

Furthermore, promoter methylation is negatively correlated

with NTF and NmiR, whereas gene body methylation is posi-

tively correlated with the two trans-regulations. We also

report that the level of promoter methylation and NmiR have

the greatest influence on protein evolutionary rates, and they

have a dependent effect on the rate of mammalian protein

evolution. This result supports the previously hypothesized po-

tential reciprocal regulation between these two regulatory

factors (Taguchi 2013a, 2013b).

Materials and Methods

Collection of Single Base-Resolution DNA Methylation,
TFBS, and miRNA Target Data

The human gene annotations, gene orthology assignments,

and human–mouse/human–rhesus macaque evolutionary

rates (dN, dS, and dN/dS) were downloaded from the

Ensembl database at http://www.ensembl.org/ (last accessed

November 2013) (version 73). We considered only 1:1

human–mouse and human–rhesus macaque orthologs to

avoid the confounding factor of gene duplication; further-

more, we considered only the longest isoforms of alternatively

spliced genes. The promoter region of a gene was defined as

the intergenic region from 8 kb upstream to 2 kb downstream

of the Ensemble-annotated gene start position. Genes with

genic regions (including exons and introns) �2 kb in length
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were not considered. For accuracy, a gene whose promoter

region overlaps with other gene(s) was not considered. The

base-resolution DNA methylation data from 12 human cell

types (including cultured cells, cells from healthy individuals

[S1–S11, table 1], and breast cancer cells [supplementary

table S1, Supplementary material online]) were downloaded

from NGSmethDB v2 (Geisen et al. 2014) at http://bioinfo2.

ugr.es/NGSmethDB/ (last accessed October 2013). These data

sets were generated with bisulfite or MethylC sequencing.

CpG dinucleotides with single nucleotide variants were not

considered in this study to avoid potential sequencing errors.

To ensure the accuracy of the methylome data, only CpG

dinucleotides covered by �5 bisulfite/MethylC reads were

considered (such CpG dinucleotides were designated as

“sampled CpGs”). A sampled CpG site is regarded as meth-

ylated (designated as “mCG”) if �80% of the mapped reads

support the methylation status at the CpG site (Meissner et al.

2008; Laurent et al. 2010). We only considered the genes

whose promoter and gene body regions both contained

�10 sampled CpGs to ensure that the examined regions

contained sufficient information for estimating the methyla-

tion level. Of note, the gene body region of a gene represents

the coding sequence, with the exception of regions overlap-

ping with the promoter of the gene (e.g., 2 kb downstream of

the Ensemble-annotated gene start position).

TFBS data were obtained by downloading chromatin im-

munoprecipitation (ChIP) data (which includes 162 human TF

ChIP-seq data sets) from the ENCODE project (Bernstein et al.

2012). A given TF was considered to regulate a gene if at least

one of its ChIP-seq peaks was located within the promoter

region of the gene. Human miRNA target prediction data

(which include 1,267 miRNAs) were downloaded from

TargetScan release 6.2 (April 2013) (Ruby et al. 2007;

Friedman et al. 2009). For accuracy, we only considered

the human miRNA families in which the corresponding

target sites were determined to be conserved across mam-

mals using TargetScan (Friedman et al. 2009). The human,

rhesus macaque, and mouse genes examined in this study

(together with the related information) are available at

http://idv.sinica.edu.tw/trees/DM_TF_miRNA/DM_TF_miRNA.

html (last accessed June 25, 2014).

Measurement of CpG Dinucleotide Depletion (CpGO/E)
and the Methylation Level in Promoter and Gene Body
Regions

Since a low ratio of observed-to-expected CpG dinucleotides

(CpGO/E) represents a large fraction of mutated CpG dinucle-

otides, CpGO/E is a measurement of CpG dinucleotide deple-

tion (Bird and Taggart 1980; Park et al. 2011, 2012). CpGO/E

was defined as follows:

CpGO=E ¼
PCpG

PC � PG
¼

number of CpGs� length of the examined region

number of Cs� number of Gs
;

where PCpG, PC, and PG represent the frequency of CpG

dinucleotides, C nucleotides, and G nucleotides, respectively,

in the examined promoter/gene body regions. The methyla-

tion level of an examined region was measured by calculating

the density of mCG per 100 CpG dinucleotides (mCG density).

mCG density was defined as

Table 1

Experimentally Determined Single Base-Resolution DNA Methylation Data Used in this Study

Sample Description (Ref.) No. of Genes

(Sampled #CG� 10)

Average CpG

Coveragea

(Promoter) (%)

Average CpG

Coveragea

(Gene Body) (%)

S1 Peripheral blood B lymphocytes

(Hodges et al. 2011)

10,627 76.04 86.69

S2 Peripheral blood hematopoietic stem/progenitor cells

(CD133+CD34+CD38�Lin�) (Hodges et al. 2011)

10,451 78.03 89.10

S3 Newborn foreskin fibroblasts (Laurent et al. 2010) 10,388 89.34 93.56

S4 H1 embryonic stem cells (Lister et al. 2009) 10,751 68.54 89.41

S5 Breast cells from adult female (Hon et al. 2012) 10,916 96.78 98.75

S6 Peripheral blood hematopoietic stem/progenitor cells

(CD34+CD38�Lin�) (Hodges et al. 2011)

10,722 80.04 89.41

S7 Fetal lung fibroblasts (Lister et al. 2009) 10,848 78.13 93.62

S8 Peripheral blood granulocytic neutrophils

(Hodges et al. 2011)

10,081 71.27 82.91

S9 Prefrontal cortex (Zeng et al. 2012) 10,556 80.58 90.38

S10 H9 embryonic stem cells (Laurent et al. 2010) 10,522 91.81 95.31

S11 Fibroblasts derived from H9 embryonic stem cells

(Laurent et al. 2010)

10,436 90.01 93.65

aCoverage of CpG dinucleotides for each promoter/gene body (protein-coding) region=(number of sampled CpG dinucleotides)/(number of
sampled CpG dinucleotides+ number of nonsampled CpG dinucleotides).
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mCG density ¼
number of mCGs� 100

number of all CpGs sampled
:

Data Retrieval of Protein Connectivity, Gene Expression,
Gene Compactness, and Protein Structural Features

Protein connectivity (PPI) data were downloaded from STRING

9.0 (Szklarczyk et al. 2011). Gene expression data were

obtained by downloading normalized expression data sets

for 78 nonpathogenic human tissues from BioGPS (Wu

et al. 2009). If more than one probe set referred to the

same gene, the signals from the relevant probe sets were

averaged. The gene expression level was defined as the aver-

age signal intensity across the 78 examined tissues. The tissue

specificity (�) of a gene was defined as follows:

t ¼

Xn

i¼1
1�

log SðiÞ

log Smax

� �

n� 1
;

where n, S(i), and Smax denote the number of examined tissues

(i.e., n = 78), the signal intensity, and the highest signal across

all examined tissues, respectively (Yanai et al. 2005). A large

� value indicates high tissue specificity for a gene. To minimize

potential noise that might be caused by low signal intensities,

values of S(i) less than 100 were set to 100 (Liao and Zhang

2006; Liao et al. 2006; Chen et al. 2010). Gene compactness

was described based on intron number and average length of

UTR/intron for a given gene. Protein structure was described

based on solvent accessibility and disorder content. The sol-

vent accessibility of a protein was calculated from the maxi-

mum number of exposed residues interacting with solvent

molecules over the protein’s length; the exposed residues

were determined using ACCPro release 4.1 with the default

parameters (Cheng et al. 2005). Only proteins <8,000 amino

acids in length were considered due to limitations of ACCPro

(Cheng et al. 2005). The disorder content of a protein was

defined as the percentage of intrinsically disordered regions,

estimated by dividing the number of disordered residues by

protein length. The disordered residues were predicted using

DISOPRED2 version 2.4 with default parameters (Akgul et al.

2004). To minimize the standard error when calculating

disorder content, we only considered proteins �100 amino

acids in length (Chen, Chuang et al. 2011).

Calculation of the Relative Contribution to Variability
Explained

The relative contribution to variability explained (RCVE) is used

to assess the relative importance of each tested factor, which

is defined as follows:

RCVE ¼
R2

full � R2
reduced

R2
full

;

where R2
full and R2

reduced denote the R2 value (share of variability

explained) of the full model (including all of the tested factors)

and that of the reduced model (excluding the factor of inter-

est), respectively. R2 is the square of the coefficient of corre-

lation between the observations and their predicted values in a

multiple linear regression model, which is a measure of the

proportion of total variation of observed outcomes explained

by the model. Accordingly, the RCVE coefficient represents

the relative contribution of a factor in the context of all

other factors included in the full model, which ranges from

0 to 1 with a higher value indicating a more important con-

tribution of the factor of interest to the regression model

(Kvikstad et al. 2007).

Results and Discussion

Promoter and Gene Body Methylation Exhibit Opposite
Correlation Patterns with the Protein Evolutionary Rates
of Their Target Genes

To investigate the levels of DNA methylation in human

promoter and gene body regions, we retrieved single base-

resolution DNA methylation data from 11 human cell lines

(see Materials and Methods; table 1). It should be noted

that the gene body regions examined were coding sequences,

with the exception of regions overlapping with the promoter

regions. Table 1 shows the number of genes examined in each

data set. The level of DNA methylation was measured by the

density of mCG (see Materials and Methods). For each gene

considered, both the examined promoter and gene body

regions contained at least 10 sampled CpGs (see Materials

and Methods). On average, over 68% of CpGs were sampled

for both examined promoters and gene bodies (table 1), indi-

cating that sufficient CpG dinucleotides were sampled in the

examined regions.

To probe the impact of promoter and gene body methyl-

ation on evolution, we first examined the correlation between

CpGO/E (i.e., the ratio of the observed-to-expected number of

CpG dinucleotides, see Materials and Methods) and pro-

moter/gene body mCG density. Low CpGO/E ratios (indicating

a high level of C-to-T mutations) have been reported to be

caused primarily by DNA methylation (Bird and Taggart 1980;

Park et al. 2011, 2012); therefore, an inverse correlation

is observed between CpGO/E and DNA methylation (Bird

and Taggart 1980; Zemach et al. 2010; Park et al. 2011).

As such, the coefficient of correlation between these two

measurements can be used to estimate the proportion of

methylated CpGs that have undergone mutation (Chuang

et al. 2012). As shown in figure 1, both promoter and

gene body mCG densities were generally negatively correlated

with CpGO/E. Meanwhile, the absolute values of the

Spearman’s rank correlation coefficient (�) between CpGO/E

and mCG densities were observed to be generally higher

in promoters than in gene bodies (fig. 1), suggesting that
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promoter regions are more susceptible to the mutagenic

effect of DNA methylation than gene bodies. This result

also echoes our earlier report that DNA methylation tends to

more easily induce C-to-T mutations in the first exons than in

internal/last exons (Chuang et al. 2012), and implies dif-

ferential evolutionary effects of promoter and gene body

methylation.

We next examined whether promoter and gene body

methylation levels are differentially correlated with the evolu-

tionary rates (dN, dS, and dN/dS) of their target genes. Here, we

examined the level of methylation using the average mCG

density across the 11 methylomes in table 1. As shown in

table 2, the dN, dS, and dN/dS values of target genes are all

positively correlated with average mCG density in promoters,

but negatively correlated with that in gene bodies, for both

human–macaque and human–mouse comparisons (all P

values <10�7). This result reveals that DNA methylation

levels of promoters and gene bodies have opposite effects

on the evolutionary rates of their target genes. To control

for other confounding factors that may affect the evolutionary

rates of protein-coding genes, we used partial correlation

analyses (Kim and Yi 2007) to simultaneously control for

gene body (or promoter) mCG density, trans-regulation (NTF

and NmiR), and eight other confounding factors as stated in

Introduction section: Protein connectivity, gene expression

(level and tissue specificity), gene compactness (UTR length,

intron length, and intron number), and protein structure (sol-

vent accessibility and disorder content). We found that protein

evolutionary rates (dN and dN/dS values) remain positively cor-

related with promoter methylation level and negatively corre-

lated with gene body methylation level (table 2). The results

thus indicate that both promoter and gene body methylation

levels are important indicators of protein evolutionary rates,

even though the evolutionary effect of gene body methylation

is more influenced by the aforementioned confounding fac-

tors than that of promoter methylation. Of interest, the partial

correlation between gene body methylation level and dS dis-

appears or even becomes positive after the control (table 2),

suggesting that highly methylated regions are subject to

strong selective pressure at the protein level despite the en-

hanced mutation rate (resulting in elevated dS) in gene bodies.

Moreover, the absolute correlation coefficient value for pro-

moter mCG density is greater than that for gene body mCG

density after the control (table 2). This indicates that dN and

dN/dS are more strongly correlated with promoter mCG den-

sity than with gene body mCG density. We thus suggest that

the rate of mammalian protein evolution may be influenced

more by promoter methylation than by gene body methyla-

tion. Furthermore, we also examined the correlation between

protein evolutionary rates and gene promoter/gene body

mCG density in turn by controlling for each of the abovemen-

tioned confounding factors. The trends that protein evolution-

ary rates are positively correlated with promoter methylation

level and negatively correlated with gene body methylation

level are generally maintained (supplementary table S2,

Supplementary Material online). The absolute correlation co-

efficient values also indicate that the correlations between

protein evolutionary rates and promoter/gene body methyla-

tion levels are greatly influenced by NTF and NmiR, although all

the correlations remain significant (supplementary table S2,

Supplementary Material online).
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FIG. 1.—Spearman’s rank correlation coefficient (�) between CpGO/E

and mCG density for the promoter and gene body regions in the 11

analyzed methylomes. *P< 0.05 and ***P< 0.001.
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ling for 10 other confounding factors (see text). The analyses were based

on 5,418 genes containing all confounding factors examined.
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Promoter and Gene Body Methylation Levels Exhibit
Different Correlation Patterns with TF/miRNA Regulations

We proceeded to investigate the relationships between DNA

methylation in promoter/gene body regions and the two

trans-regulations (NTF and NmiR); Spearman’s correlation

analyses revealed that NTF and NmiR both exhibit a negative

correlation with promoter mCG density, but a positive correla-

tion with gene body mCG density (all P values<10�8; fig. 2A).

Because NTF and NmiR may also be correlated with other con-

founding factors as stated in the last section, we in turn per-

formed partial correlation between one of the promoter/gene

body mCG densities and one of the two trans-regulations (NTF

or NmiR) by simultaneously controlling for two other factors

and the eight abovementioned confounding factors (fig. 2B).

After the control, we found that NTF and NmiR still exhibit a

negative correlation with promoter mCG density, and NTF

remains positively correlated with gene body mCG density,

whereas the partial correlation between NmiR and gene

body mCG density disappears (fig. 2B). This suggests that

the correlation between NmiR and gene body methylation is

greatly influenced by other confounding factors. In addition,

the absolute correlation coefficient values also suggest that

both promoter and gene body mCG densities are more

strongly correlated with NTF than with NmiR.

Regarding promoter methylation, it was previously

reported that the interactions between TFBSs and their corre-

sponding TFs are sensitive to DNA methylation (Chen, Feng

et al. 2011), and TFBSs tend to be hypomethylated to prevent

destabilization of TF–DNA interactions (Siegfried et al. 1999;

Lister et al. 2009; Straussman et al. 2009). In addition, it has

been suggested that promoter methylation and miRNA regu-

lation may complement each other’s function, and thus the

promoters of genes regulated by more miRNAs tend to have a

lower level of DNA methylation (Su et al 2011). These inter-

connections between biological features may lead to such a

negative correlation between promoter mCG density and

theses two trans-regulations.

Regarding gene body methylation, body-methylated genes

have been suggested to be functional important and repre-

sent housekeeping functions (Sarda et al. 2012; Takuno and

Gaut 2012). Densely methylated genes tend to evolve more

slowly than sparsely methylated genes (Hunt et al. 2010; Lyko

et al. 2010; Park et al. 2011; Sarda et al. 2012; Takuno and

Gaut 2012). These observations indicate a negative correlation

between gene body methylation and protein evolutionary

rates (dN and dN/dS). As for TF/miRNA regulations, genes

targeted by more TFs or miRNAs tend to be under stronger

selective constraints (Cheng et al. 2009; Xia et al. 2009; Wang

et al. 2010; Chen, Chuang et al. 2011). Such a trend is broadly

maintained throughout metazoa (Chen et al. 2013). Thus,

both NTF and NmiR are negatively correlated with protein evo-

lutionary rates. In addition, a positive correlation was observed

between NTF and NmiR (Cui et al. 2007; Chen et al. 2013).

These findings thus reveal that these three factors (gene body

mCG density, NTF, and NmiR) are all negatively correlated with

dN and dN/dS, implying a positive correlation between gene

body mCG density and trans-regulations.

Taken together, the trend that promoter and gene body

methylation levels have different correlation patterns with the

two trans-regulations (NTF and NmiR) also reflects the different

effects of promoter and gene body methylation on the protein

evolutionary rates of target genes (table 2). This also implies

the existence of a complicated interaction between these two

trans-regulations and DNA methylation in different regions.

Promoter Methylation and miRNA Regulation Are Major
Factors of Protein Evolutionary Rates

The above analyses indicated that both promoter and gene

body methylation levels are important indicators of protein

evolutionary rates (dN and dN/dS). We next set out to

Table 2

Spearman’s Rank Correlation Coefficient (�) between Promoter (or Gene Body) mCG Density and the Evolutionary Rates (dN, dS, and

dN/dS) for Human–Macaque and Human–Mouse Comparisons Before and After Controlling for Gene Body (or Promoter) mCG

Density and Ten Other Confounding Factors

Before Control After Control

dN dS dN/dS dN dS dN/dS

Human–macaquea

Promoter methylation 0.2052*** 0.0798*** 0.1928*** 0.1434*** 0.0009 0.1601***

Gene body methylation �0.0975*** �0.0872*** �0.0803*** �0.0607*** �0.0121 �0.0718***

Human–mouseb

Promoter methylation 0.268*** 0.1453*** 0.2304*** 0.1907*** 0.0329* 0.1827***

Gene body methylation �0.096*** �0.0768*** �0.0793*** �0.0289* 0.025 �0.0452***

NOTE.—The ten confounding factors are NTF, NmiR, protein connectivity, expression level, tissue specificity, UTR length, intron length, intron number,
solvent accessibility, and disorder content.

aThe analysis was based on 5,128 human genes and their macaque orthologs.
bThe analysis was based on 5,357 human genes and their mouse orthologs.

*P< 0.05 and ***P< 0.001.
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determine which biological factor(s) is/are the major factor(s)

of protein evolutionary rates. We previously reported that of

the ten biological factors associated with evolutionary rates of

proteins (NTF, NmiR, protein connectivity, expression level,

tissue specificity, UTR length, intron length, intron number,

solvent accessibility, and disorder content), NmiR tends to be

the most important factor of dN and dN/dS in mammals (Chen

et al. 2013). We therefore estimated the relative importance

of these ten factors and promoter/gene body methylation

levels in determining the rate of mammalian protein evolution.

Using partial correlation analysis, we examined the correla-

tions between protein evolutionary rates and each of these

12 factors in turn by simultaneously controlling for the other

11 factors. As shown in figure 3, we found that promoter

mCG density and NmiR had the greatest influence on dN and

dN/dS for both human–macaque and human–mouse compar-

isons. Gene body mCG density has a relatively lower effect on

dN and dN/dS than promoter mCG density and NmiR, but a

relatively greater effect than NTF (fig. 3). We also performed

a linear repression model, RCVE (see Materials and Methods),

to measure the relative effect of these 12 factors in determin-

ing dN and dN/dS, and showed the similar trends (supplemen-

tary fig. S1, Supplementary Material online).

As discussed above, promoter mCG density and NmiR have

opposite effects on dN and dN/dS. The finding that they are

both the major factors of protein evolutionary rates thus raises

the question of whether these two rate determinants have an

interaction impact (especially mutual impact) on protein evo-

lutionary rates. This will be discussed in the next section.

Promoter Methylation and miRNA Regulation Exhibit
Dependent Effects on Protein Evolutionary Rates in
Mammals

Recent studies reported that promoter methylation and

miRNA may coregulate their target genes. Changes in pro-

moter methylation may affect miRNA targeting, suggesting a

mutual correlation between miRNA-mediated regulation of

target genes and miRNA-targeting-specific promoter methyl-

ation in brain (Taguchi 2013a, 2013b). Promoter methylation

of miRNA-targeted genes has also been suggested to be

highly correlated with miRNA seed region features (Taguchi

2013b). For example, the promoters of genes targeted by

miR-548 tend to be significantly hypomethylated (Taguchi

2013b). Figure 2 also reveals a significantly negative correla-

tion between mCG density and NmiR. Therefore, we are curi-

ous about whether there is a dependent effect of promoter

mCG density and NmiR on protein evolutionary rates. To this

end, we conducted a stepwise multiple regression analysis

including promoter and gene body mCG densities and the

aforementioned ten biological factors to examine the interac-

tion of the effects of these factors on dN/dS. The stepwise

model selection showed that the coefficient of promoter

mCG density–NmiR interaction terms significantly deviate

from zero in both human–macaque and human–mouse com-

parisons (supplementary table S3, Supplementary Material

online), suggesting the dependence between promoter meth-

ylation and miRNA regulations in determining dN/dS.

To further probe the interaction impact of promoter

methylation and miRNA regulations on mammalian protein

evolution, we divided the human protein-coding genes

into five groups of similar size, according to the magnitudes

of dN or dN/dS, and calculated the median values of promoter

mCG density and NmiR for each group of genes. As shown in

figure 4, the lower the promoter mCG density, the lower the

dN and dN/dS values for both human–macaque and human–

mouse comparisons; on the other hand, an opposite correla-

tion was observed between NmiR and protein evolutionary

rates. In other words, genes with hypomethylated promoters

and strong miRNA regulation are subject to stringent selec-

tive constraints; in contrast, genes with hypermethylated

promoters and weak miRNA regulation are subject to relaxed

selective constraints. This result indicates that these two

factors have a mutual impact on protein evolutionary rates,

also reflecting the above observations that dN and dN/dS values

are negatively correlated with NmiR but positively correlated

with promoter mCG density (table 2).

Potential Caveats

In this study, the single base-resolution methylome data were

derived from cultured cells or cells from healthy individuals

(table 1). It is possible that methylome data from cancerous

cell lines may have introduced bias in the trends we observed.

To examine this possibility, we extracted single base-resolution

methylome data from breast cancer cells (supplementary table

S1, Supplementary Material online) (Hon et al. 2012), and

performed the same analyses as described above. We found

the similar trends as described above: promoter methylation is

positively correlated with protein evolutionary rates but neg-

atively correlated with NTF and NmiR, whereas the opposite

was observed for gene body methylation (supplementary

tables S4 and S5 and fig. S2, Supplementary Material

online); the relative importance of these regulatory factors in

determining the rate of mammalian protein evolution is as

follows: promoter methylation & miRNA regulation>gene

body methylation> TF regulation (supplementary fig. S3,

Supplementary Material online); and promoter methylation

and miRNA regulation have a significant dependent effect

on protein evolutionary rates (supplementary fig. S4 and

table S6, Supplementary Material online). In addition, because

rodents have a faster molecular clock than primates (Li 1997;

Nekrutenko et al. 2003), it is possible that the observed trends

may be biased toward the compared species with different

molecular clocks. In this study, we performed all statistical

analyses on both comparisons between primate and rodent

(i.e., human vs. mouse) and those between primates (i.e.,

human vs. rhesus macaque), and showed that they had the
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same tendencies. We thus suggest that the observed trends

are not biased toward different molecular clocks.

Conclusions

In this study, we examined the impacts of promoter/gene

body methylation, TF regulation, and miRNA regulation

(which act before, during, and after transcription, respectively)

on the evolutionary rates of the target protein-coding genes.

We made several findings. First, promoter and gene body

methylation levels exhibit opposite correlation patterns with

protein evolutionary rates (dN and dN/dS): the former exhibits a

positive correlation with dN and dN/dS, whereas the latter

exhibits an inverse correlation with these two evolutionary

rates (table 2). On the basis of partial correlation analysis,

we emphasize that these correlations are maintained after
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FIG. 3.—Absolute values of Spearman’s rank correlation coefficients (�) between protein evolutionary rates (dN and dN/dS) and one of the indicated

factors (promoter/gene body mCG density [mCGp and mCGg], NTF, NmiR, protein connectivity [PPI], expression level [ExpLvl], tissue specificity [�], UTR length

[UTR_L], intron length [In_L], intron number [InNum], solvent accessibility [SolAcc], or disorder content [DisCont]), while simultaneously controlling for the

other 11 factors, for both human–macaque (5,128 genes) and human–mouse (5,357 genes) orthologs.
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excluding the effect of other confounding factors (table 2),

indicating that both promoter and gene body methylation

levels are important indicators of protein evolutionary rates

of their target genes. We also demonstrated that protein evo-

lutionary rates are more strongly correlated with promoter

methylation level than with gene body methylation level.

Second, promoter and gene body methylation levels also

exhibit different correlation patterns with the two trans-

regulations (NTF and NmiR); the former is negatively correlated

with NTF and NmiR, whereas the latter is positively correlated
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FIG. 4.—The median values of promoter mCG density (mCGp) and NmiR in five groups of human protein-coding genes of similar size (divided according

to the magnitudes of dN and dN/dS, from low to high) for both human–macaque (5,128 genes) and human–mouse (5,357 genes) comparisons.
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with these trans-regulations (fig. 2). Because NTF and NmiR

have been previously reported to be positively correlated

with each other but inversely correlated with protein evolu-

tionary rates (Chen et al. 2013), the correlations between

promoter/gene body mCG density, NTF, NmiR, and protein

evolutionary rates can be summarized in figure 5. Third, we

established that the relative importance of these regulatory

factors in determining the protein evolutionary rates is as

follows: promoter mCG density & NmiR> gene body mCG

density>NTF. We further determined that, among the 12

biological factors considered, promoter methylation and

miRNA regulation are generally the major factors in determin-

ing dN and dN/dS. Finally, we demonstrated that these two

factors have a dependent effect on protein evolutionary

rates, and they have a mutual impact on protein evolutionary

rates. In summary, our results indicate the complicated effects

of natural selection on protein evolution, and the intricate

relationships between regulatory systems acting before,

during, and after transcription. This study thus increases our

understanding of DNA methylation, TF, and miRNA regula-

tions in evolutionary biology.

Supplementary Material

Supplementary figures S1–S4 and tables S1–S6 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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