
Vol. 30 no. 14 2014, pages 2070–2072
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu152

Sequence analysis Advance Access publication March 18, 2014

KAnalyze: a fast versatile pipelined K-mer toolkit
Peter Audano and Fredrik Vannberg*
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: Converting nucleotide sequences into short overlapping

fragments of uniform length, k-mers, is a common step in many

bioinformatics applications. While existing software packages count

k-mers, few are optimized for speed, offer an application programming

interface (API), a graphical interface or contain features that make it

extensible and maintainable. We designed KAnalyze to compete with

the fastest k-mer counters, to produce reliable output and to support

future development efforts through well-architected, documented and

testable code. Currently, KAnalyze can output k-mer counts in a

sorted tab-delimited file or stream k-mers as they are read.

KAnalyze can process large datasets with 2 GB of memory. This pro-

ject is implemented in Java 7, and the command line interface (CLI) is

designed to integrate into pipelines written in any language.

Results: As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and

a pipeline built on Perl and Linux utilities. Through extensive unit and

system testing, we have verified that KAnalyze produces the correct

k-mer counts over multiple datasets and k-mer sizes.

Availability and implementation: KAnalyze is available on

SourceForge:

https://sourceforge.net/projects/kanalyze/

Contact: fredrik.vannberg@biology.gatech.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on December 2, 2013; revised on January 24, 2014;

accepted on March 12, 2014

1 INTRODUCTION

K-merizing sequence data is a necessary step for many bioinfor-

matics applications. K-mer-based approaches are used to assem-
ble reads, detect repeats, estimate read depth, identify protein

binding sites (Newburger and Bulyk, 2009), find mutations in

sequencing data (Nordström et al., 2013) and perform a variety

of other tasks.
As new applications are created, it is important to have re-

liable software for generating k-mers. If developers choose to

rewrite k-mer code, there is an additional risk of introducing
bugs that can affect results. This problem is compounded when

algorithms become more complex, such as counting k-mers in

large datasets with limited memory. The time required to develop

and to test a fast algorithm becomes prohibitive. Existing tools

often lack features that make them more available to new appli-
cations. Few have an API or document return codes.

We created KAnalyze as a fast reusable k-mer toolkit capable

of running on multiple platforms. It is packaged with an API for

integration into other programs as well as a CLI for manual

execution and scripted pipelines. The count module has a graph-

ical mode for desktop use.

Because it is designed for longevity, the project is organized,

documented and tested. The source code includes unit tests to

quickly verify accuracy as the code changes. We ran tests on

several datasets and compared the results with other k-mer soft-

ware, including a Perl pipeline we built for verifying results.

Throughout the design process, the best practices for scientific

computing were observed (Wilson et al., 2014). KAnalyze makes

both speed and accuracy available to k-mer applications.

2 METHODS

2.1 Pipelined components and modules

KAnalyze is organized as a set of modules and components. Modules are

pipelines where each step is implemented as a component. Components

may be shared among modules. The pipeline runs in parallel with each

component passing intermediate results to the next. Input is sent to the

first step, and output is written by the last step. Each command line mode

executes a single module.

Bounded, synchronized memory queues allow rapid exchange of data

through the pipeline. To reduce lock overhead incurred by each queue

operation, most components send batches of data elements. By passing

intermediate results through memory, disk I/O overhead is avoided.

2.2 API and CLI

The API is fully annotated with Javadoc comments for every class, meth-

od and field. No method throws any exception without declaring and

documenting the conditions under which the exception is thrown. Every

constructor and method comment states how null arguments are handled.

The web pages generated from the Javadoc comments are available to

API developers, and the KAnalyze manual describes how to extend the

API.

KAnalyze uses Java’s Reflection API to dynamically load some

classes. The CLI uses the first command-line argument to find the desired

module class. The file reader component uses the file type, such as

FASTA or FASTQ, to find the appropriate reader class. As a result,

new modules and readers can be added to KAnalyze without modifying

existing code.

The CLI is both user-friendly and easily integrated into scripted pipe-

lines. When a program completes, it sends a code back to its caller. Zero

is returned to the caller only when the program executes without error.

Different types of errors have a specific return codes, and each is docu-

mented in the KAnalyze manual. Constants for each return code are

defined in the API.

2.3 Count module algorithm

The KAnalyze count module counts k-mers in large and small datasets. It

works efficiently for datasets too large to fit into memory. Counting takes* To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://sourceforge.net/projects/kanalyze/
mailto:fredrik.vannberg@biology.gatech.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu152/-/DC1
,
 and test it
,
,
to
C
M
,
M
A

place in two steps over two components. The split component writes

sorted subsets of data to disk, and the merge component accumulates

counts from each subset. Split and merge operations can be performed in

multiple steps, which allows counting to take place in a distributed

environment.

The split component reads k-mers into a memory array until it is full.

The array is sorted using Java’s Arrays.sort() method, which implements

a dual-pivot quicksort algorithm. K-mers are counted by traversing the

sorted array. Each k-mer and its count are written to disk, and the loca-

tion of the output file is sent to the merge component. The memory array

is then filled with the next set of k-mers, and a new file of k-mer counts is

created. The process repeats until all k-mers have been written.

The merge component reads k-mers and their counts from each file

and sums the counts for each k-mer. To avoid loading entire files at once,

each file has a small buffer of k-mers. As the files are sorted by k-mer, this

module efficiently accumulates k-mer counts and writes a sorted output

file.

This modified external merge sort algorithm (Knuth, 1998) efficiently

counts all k-mers with limited memory and sorts k-mers as they are

processed.

3 SOFTWARE TEST RESULTS

We tested KAnalyze performance and accuracy on two public

datasets. We obtained human chromosome 1 (Chr1) from UCSC

and a randomly chosen dataset from The 1000 Genomes Project

Pilot Project 3 (gene region targeted), NA18580. The hg19 Chr1

sequence is a single fully assembled 249Mb (megabase) sequence,

and NA18580 is a set of 1.5 million sequence reads totaling 453

Mb. See Supplementary Section 3.6 for links to these datasets.

We tested KAnalyze 0.9.3, Jellyfish 1.1.10 (Marçais and

Kingsford, 2011), DSK 1.5280 (Rizk et al., 2013) and a Perl

pipeline we developed for verifying accuracy. These were the

latest versions available when testing began. We used Jellyfish

hash size 100000000 (108) because it yielded the best performance

results. Tests were run on a 12 core machine (2� Intel Xeon

E5-2620) with 32 GB of RAM (DDR3-1600), RAID-6 over

SATA drives (3 GB/s, 72K RPM) and CentOS 6.4 (minimal

install).
Each pipeline was run in triplicate over both datasets. The run

time of each step of each pipeline was recorded with the Linux

utility time. The reported time is the average (mean) over all

three runs. See Supplementary Section 3 for individual run

times. Figure 1 shows the final results.

Memory usage for the NA18580 dataset was determined by

recording the maximum RSS (non-swapped physical memory

used) in 0.1 s interval with the Linux command ps. For pipelines

with multiple steps, we recorded the maximum memory usage of

all steps. Actual memory usage was 1.58 GB (KAnalyze count),

2.18 GB (Jellyfish), 0.03 GB (DSK) and 1.96 GB (Perl pipeline).

The memory test was done separately from the performance

tests.
To test scalability, we obtained HG01889 from the Human

Genome Project. This dataset contains 71.95 Gb over 988 million

reads. For Jellyfish, we uncompressed the files, which took

1.06 h. In three attempts, we could not get Jellyfish to complete

a run on this data in 24 h (see Supplementary Section 3.5). In one

attempt, we allowed Jellyfish to use 17 threads, which we deter-

mined to be optimal on NA18580. KAnalyze counted k-mers in

14.65h using 2 GB of memory and default settings in one run.

To see how KAnalyze scales in a high-performance setting, we

allowed it to use more memory, additional threads and we read

directly from the gzipped fastq files. In two tests, KAnalyze

counted all k-mers in an average of 3.35 h with 26.01 GB of

memory.
For each test, we produced a tab delimited file of k-mers and

their counts sorted by k-mer. The KAnalyze sort module

(Section 2.3) produces this format. The Perl pipeline produces

this format using with Perl scripts with Linux utilities sort and

uniq. Jellyfish results were converted from their FASTA repre-

sentation to a tab-delimited file with a Perl script, and then

sorted with Linux sort. DSK produces an unsorted tab-delimited

file, which we sorted with Linux sort. The average time to con-

vert and sort results was 901 s for Jellyfish and 507 s for DSK.

This time is not shown in Figure 1.
The SHA1 checksum on the sorted output files was recorded.

For each dataset, KAnalyze produced results consistent with

Jellyfish and the Perl pipeline. DSK k-mer counts did not

agree with the other methods (See Supplementary Section 3.4).

We obtained the same results running KAnalyze on A Windows

computer (Windows 7) and an Apple computer (OS 10.8.5).

4 CONCLUSION

KAnalyze offers an extensible API and a complete CLI for k-mer

processing tools. These interfaces allow KAnalyze to be inte-

grated directly into Java programs via the API, or into pipelines

of any language via the CLI. For desktop users, a graphical

interface is included for the count module.
With carefully chosen algorithms and data structures,

KAnalyze can perform at a level commensurate with programs

compiled to native code. Through extensive testing, we are

confident that it produces accurate results.
KAnalyze is designed to survive years of maintenance and

feature additions. The source is distributed under the GNU

Lesser GPL to restrict its usage as little as possible. We encour-

age others to contribute to the KAnalyze project.

1000 Genomes NA18580 hg19 chr1

Runtime Performance

R
un

tim
e

(s
)

0
20

00
40

00
60

00
80

00 KAnalyze
Jellyfish
DSK
Perl

158
370

6232

5106

130 311

6994

2255

Fig. 1. 31-mer performance with KAnalyze count, Jellyfish, DSK and a

Perl script implementation over two datasets, NA18580 (1000 Genomes)

and Chr1 (hg19)

2071

KAnalyze

-
-
is
Since
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu152/-/DC1
,
x
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu152/-/DC1
econd
s
,
gigabases
ours
3
ours
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu152/-/DC1
ours
,
2
ours
e
conds
econds
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu152/-/DC1

Funding: Georgia Institute of Technology provided financial sup-
port through a startup grant to the Vannberg Lab.

Conflict of Interest: none declared.

REFERENCES

Knuth,D. (1998) The Art of Computer Programming. In: Sorting and Searching.

Vol. 3, 2nd edn. Addison-Wesley, pp. 248–379.

Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics, 27, 764–770.

Newburger,D.E. and Bulyk,M.L. (2009) UniPROBE: an online database of protein

binding microarray data on protein-DNA interactions. Nucleic Acids Res., 37,

D77–D82.

Nordström,K.J.V. et al. (2013) Mutation identification by direct comparison of

whole-genome sequencing data from mutant and wild-type individuals using

k-mers. Nat. Biotechnol., 31, 325–330.

Rizk,G. et al. (2013) DSK: k-mer counting with very low memory usage.

Bioinformatics, 29, 652–653.

Wilson,G. et al. (2014) Best practices for scientific computing. PLoS Biol., 12,

e1001745.

2072

P.Audano and F.Vannberg

 
This work was supported by

