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ABSTRACT

Motivation: With over 9000 unique users recorded in the first half of

2013, MEME is one of the most popular motif-finding tools available.

Reliable estimates of the statistical significance of motifs can greatly

increase the usefulness of any motif finder. By analogy, it is difficult to

imagine evaluating a BLAST result without its accompanying E-value.

Currently MEME evaluates its EM-generated candidate motifs using

an extension of BLAST’s E-value to the motif-finding context. Although

we previously indicated the drawbacks of MEME’s current signifi-

cance evaluation, we did not offer a practical substitute suited for its

needs, especially because MEME also relies on the E-value internally

to rank competing candidate motifs.

Results: Here we offer a two-tiered significance analysis that can re-

place the E-value in selecting the best candidate motif and in evaluat-

ing its overall statistical significance. We show that our new approach

could substantially improve MEME’s motif-finding performance and

would also provide the user with a reliable significance analysis. In

addition, for large input sets, our new approach is in fact faster than

the currently implemented E-value analysis.
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1 INTRODUCTION

Motif finding is an essential tool for bioinformatics research. The
identification of transcription factor binding sites, and more gen-

erally of cis-regulatory elements, often serves as a stepping stone
for understanding the regulation of gene expression. Thus, it is
not surprising that for the past 20þ years many motif-finding

tools have been described that can find short sequence motifs
given only an input set of sequences (GuhaThakurta, 2006).
One such particularly popular finder is MEME (Bailey and

Elkan, 1994), which relies on expectation maximization (EM)
(Dempster et al., 1977) in its search for the ‘most significant
motif’ that is present in the input set of sequences. More specif-

ically, MEME evaluates and ranks the candidate motifs returned
by each EM run in terms of their E-value. The latter term was
initially introduced by the immensely popular BLAST similarity

search tool (Altschul et al., 1990, 1997). BLAST’s E-value is
successfully used to assess the significance of a reported align-

ment by estimating the expected number of alignments that will

score at least as high as the observed score, assuming the query is

independent of the database.
The E-value notion was later incorporated into the motif-

finding literature by Hertz and Stormo (1999) who defined it

as the expected number of alignments (motifs) of the same di-

mension and with a score at least as high as the reported one,

assuming the input set is random. More precisely, the score of a

motif here is the information content/log likelihood ratio (llr)/

relative entropy [Stormo, 2000, or Equation (1) in the

Supplementary Material], and a random input set is generated

using an independent and identically distributed (iid) process.

The latter definition of the E-value was adopted by MEME as

well, albeit using a different E-value approximation scheme than

the one originally suggested by Hertz and Stormo (1999). More

details on the E-value and how it is evaluated in MEME are

available in Supplementary Section S1.1.2.
Although relying on the BLAST approach seemed like a rea-

sonable idea, it turns out there are multiple issues with it. First,

as we pointed out, in practice MEME’s approximation of

the E-value can be overly conservative, so real motifs may

be rejected (Nagarajan et al., 2005). Moreover, ignoring the

problematic approximation, even an accurately computed

E-value can be highly conservative as explained later in the

text (Ng et al., 2006).
There are two factors that combine to explain how the latter

statement can be reconciled with the proven utility of the E-value

in the BLAST context. First, using Altschul’s own words: ‘The

BLAST programs report E-value rather than P-values because it

is easier to understand the difference between, for example,

E-value of 5 and 10 than P-values of 0.993 and 0.99995.

However, when, P-values and E-value are nearly identical’

(Altschul, 2013). This statement is valid for the pairwise alignment

problem where the number of high-scoring random alignments

has a Poisson distribution. However, it can be shown that the

number of high-scoring alignments in the motif finder context

follows a different distribution, and hence, Altschul’s statement

does not apply in MEME’s context where the E-value can be as

large as 5 or 10 while the P-value is still significant. The second

factor is the inherent algorithmic difference between the two tools:

BLAST almost invariably finds the optimal alignment, while this

is generally not the case for MEME (which is reasonable given the

differences between the underlying problems). Thus, when assign-

ing significance to BLAST’s output, we can restrict attention to

the theoretical problem of the maximally scoring local alignment

between two independently drawn sequences, whereas in the case

of MEME, or any other motif finder, we need to evaluate the* To whom correspondence should be addressed.
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output relative to its capability or the significance estimate will be

overly conservative (Ng et al., 2006).
Therefore, in spite of its immense popularity (MEME and

MEME-ChIP had 413 000 unique users in 2012 and 49000

unique users through the first half of 2013), MEME’s signifi-

cance evaluation leaves room for improvement.
In previous work, we described a computationally intensive

alternative to the E-value that takes into account the finder’s

performance and avoids the above problems with E-values (Ng

and Keich, 2008a,b). Specifically, for some motif finders includ-

ing MEME, the null distribution of the score of the reported

motif seems to be well approximated by the 3-parameter

Gamma [The distribution function of a 3-parameter Gamma

with � ¼ ða, b,�Þ is given by F�ðsÞ ¼ F�ða, bÞðs� �Þ, where

F�ða, bÞ is the Gamma distribution with it usual shape and scale

parameters, and � is the location parameter (Johnson et al.,

1994)], or 3-Gamma, family of distributions (Ng et al., 2006).

Relying on this empirical observation, we designed a parametric

test that returns a point estimator of, as well as a conservative

confidence bound on, the significance of the reported motif

(Keich and Ng, 2007).
Having demonstrated the effectiveness of the 3-Gamma sig-

nificance evaluation scheme (Ng and Keich, 2008a), and having

bundled it with a Gibbs sampling finder (Ng and Keich, 2008b),

we considered adopting it for MEME in lieu of the E-value.

However, in addition to conveying to the user an overall measure

of the statistical significance, the E-value is also used internally in

MEME to rank competing candidate motifs of which often only

the highest scoring one is reported. Although the 3-Gamma ap-

proach can be used, for example, to choose among competing

motifs of different widths (Ng and Keich, 2008a), it then be-

comes forbiddingly computationally intensive for assigning an

overall significance as well. This motivated our design of a

two-tiered significance analysis that we introduce and explore

in the remainder of this article. The first tier consists of statistical

tests that replace the E-value in selecting the best candidate

among competing motifs. The second tier consists of applying

the 3-Gamma scheme to assign an overall statistical significance.

The results we present indicate that we will be able to improve

both motif quality and the accuracy of motif significance esti-

mates while allowing MEME to handle larger datasets in reason-

able time.

2 CHOOSING THE BEST CANDIDATE MOTIF

Although MEME relies on EM to converge on a candidate

motif, it uses multiple runs of EM (the prefix ME in MEME

stands for multiple EM) with different initial values when explor-

ing the space of possible motifs. For example, in the OOPS (one

occurrence per sequence) mode, when faced with a range of pos-

sible motif widths, MEME runs multiple EMs using several dif-

ferent widths in the specified range. Each EM run yields a

candidate motif, and MEME reports the motif with the lowest

E-value. In ZOOPS (zero or one occurrence per sequence) mode,

MEME needs to address the additional freedom of choosing the

sequences that contain an instance of the motif. Therefore, for a

given width, MEME starts multiple EMs, assuming a different

number of motif instances and the motifs obtained following

some further processing are then compared based again on

their E-values.
In seeking to replace the E-value–based selection, we were

influenced by the discriminative approach that is used to address

essentially the same problem in several tools including Amadeus

(Linhart et al., 2008) and DREME (Bailey, 2011). The idea is to

evaluate a motif by comparing the number of occurrences of the

motif in the original input set with the number of occurrences in

a background set that can be a reference genome or a randomly

drawn set of sequences modeled after the input set. The signifi-

cance of the observed difference is then essentially assessed in

those tools using the hypergeometric distribution as explained in

more detail later in the text.

2.1 The minimal hypergeometric score

DREME’s discriminative motif score first uses Fisher’s exact test

to evaluate the difference between the number of motif occur-

rences in the input set and in the background set (by default a

random shuffle of the input set). It then adjusts the result, taking

into account that the number of motifs it considers grows with

the width of the motif: the motif score is the product of the

Fisher exact test and the number of motifs tested at the given

width.
Although DREME’s selection strategy has been shown to be

effective, it cannot be applied as is in MEME’s context. DREME

models a motif using a regular expression, and therefore, an oc-

currence of the motif is well defined, as is the number of possible

motifs of a given width. MEME, however, models a motif using

a position weight matrix (PWM) so an occurrence of a motif

instance is threshold-dependent and the number of possible

motifs is infinite.
Amadeus also uses the PWM model and the solution its au-

thors adopted was the same one used in Barash et al. (2001) and

Eden et al. (2007), which is to set the site score threshold so that

the significance of the difference between the number of sites in

the input set and in the background set (a genomic reference set

in Amadeus’ case) would be maximized. As this threshold-de-

pendent significance is evaluated using the hypergeometric dis-

tribution, the resulting minimal P-value is referred to in Linhart

et al. (2008) as the hypergeometric enrichment score.
Here we adopted DREME’s strategy of using a randomly

drawn background set of sequences of the same number and

lengths as the original input set. In DREME, these sequences

are drawn using shuffling of the original input set, whereas here

we draw the sequences from genomic sequences with a similar

A-T composition (see Supplementary Section S1.1.4 for details).

We refer to Amadeus’ discriminative hypergeometric enrichment

score in our context as the minimal hypergeometric score, or

MHG score for short. The term MHG score was introduced in

Eden et al. (2007) and later used in Steinfeld et al. (2008) and

Eden et al. (2009) in a more general context. However, as we

show in Supplementary Section S1.1.8, our specific usage here is

consistent with the more general framework.
We stress that although the MHG score is defined in terms of

some P-value, it should be viewed as a discriminative score rather

than a P-value per se. As the evaluated PWM is optimized rela-

tive to the input set of sequences and is truly independent of the
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randomly drawn set of sequences, the null hypothesis of the

hypergeometric/Fisher exact test is blatantly violated.

As our discriminative score is supposed to help us, among

other things, pick the best among competing motifs of varying

widths, it is desirable that it be unbiased. That is, the score better

not have a tendency to prefer, for example, longer motifs over

shorter ones. Unfortunately, longer motifs tend to be more dis-

criminative than shorter ones, and hence, it is not surprising that

we found that the MHG score exhibits a fairly strong bias

toward longer motifs (Fig. 1a). However, this bias is measured

when the input set itself is randomly drawn, and in this context it
is harmless: we do not care which random motif MEME will
select when there are no ‘real’ motifs to be found. An arguably

more important issue is how well our discriminative score does at
picking up the right motif when the data does contain one.
We therefore designed a set of experiments to test the ‘power’

of a motif score, or its ability to select the correct motif. In the
experiments described in detail in the Supplementary Section S1.
3, we looked at the number of times each score is able to select a
motif that is ‘sufficiently similar’ to the implanted one. The input

sequences were randomly drawn from a set of intergenic genomic
sequences and instances of one of 100 motifs were implanted into
these otherwise unrelated genomic sequences. Those 100 motifs

(of width 6–23) were selected so as to form a ‘minimal spanning
set’ of a much larger set of 510 motifs: they were chosen so as to
cover the motif space while minimizing the similarities between

them as much as possible (Supplementary Section S1.3.1).
Special care was also given so that the motif-finding problem
presented to MEME would be at the right difficulty level: not

too easy nor too difficult. This was accomplished by iteratively
modifying the dimensions of the randomly drawn input sets re-
sulting in sets with varying length and number of sequences:

sequence length ranged from 100 to a maximum of 10 000
(median of set-average length � 550), and the number of se-
quences ranged from a minimum of 5 to a maximum of 100

(median � 22) (see Supplementary Section S1.3.2 for details).
MEME was then applied several times to each input set using

the same set of several parameter settings. Each application pro-

duced a competing putative motif representing a different section
of the candidate motifs space. This was done in such a way that
MEME’s E-value did not affect the final motif. For example, in

the OOPS mode, each MEME run was given a different motif
width in the range 6–13, whereas in ZOOPS mode, we varied the
specified number of sites MEME looks for (-nsites) as well as

covarying this number of sites and the width of the motif. The
scoring function, in this case either the E-value or the MHG
score, was used to select the best candidate motif suggested by

MEME. Finally, Tomtom (Gupta et al., 2007; Tanaka et al.,
2011) was used to determine whether the selected motif was
sufficiently similar to the implanted motif (specifically a

Tomtom P-value cutoff of 0.05 was used), in which case the
motif was considered correctly discovered. See Supplementary
Section S1.3.4 for more details.

We found that in the OOPS mode, the MHG-based selection
yields �10% more correct motif identifications than the
E-value–based selection. This difference is deemed statistically

significant using a sign test (Supplementary Table S1b and
Supplementary Sections S1.3.5). In the ZOOPS mode, when
varying both the width and the number of sites MEME looks

for (-nsites), we notice an even more substantial improvement of
32% additional correct identifications, which is again statistically
significant (Fig. 2). Fixing the width and varying only MEME’s -

nsites parameter in ZOOPS mode, the MHG score shows con-
sistent improvement over the E-value, albeit the number of add-
itional motifs discovered varies from a substantial 42% (width 6)

to a modest 6.8% (width 13, see Supplementary Table S4). Thus,
in spite of the strong bias it exhibits on null sets, the MHG score
is more powerful than the E-value at selecting the correct motif

when such a motif is present.

(a)

(b)

Fig. 1. Null distribution of motif scores. The figure shows the boxplots

constructed from 10000 observations of non-selective (a) and selective (b)

versions of the MHG scores for each motif width (ranged from 6 to 13).

The scores were generated by applying MEME to randomly drawn input

set of sequences of a fixed dimension (number of sequences and their

lengths). See Supplementary Section S1.2 for details
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Interestingly, although the E-value shows little bias on null sets

(Supplementary Fig. S1c), in real terms, not only is it less accur-

ate than the biased MHG score, in the OOPS mode it is slightly

less accurate at choosing the best motif than a strategy of always

choosing the shortest motif (width 6) would be: 495 versus 503

correctly discovered motifs (out of 1000, Supplementary Table

S1). Be that as it may, it stands to reason that if we can somehow

adjust the MHG score so it will be less biased, then its power will

increase even further. We next propose a heuristic that in practice

reduced the bias significantly.

2.2 The selective MHG score

It is intuitively clear that the bias exhibited by the MHG score

will be reduced if we truncate the longer motifs when evaluating

them. At the same time, it is clear that such a procrustean ap-

proach would diminish the power of the score to identify real

longer motifs. We therefore adopted a compromise: first, rather

than truncating, we choose the best columns of each candidate

motif, or, more precisely, we replace the lowest entropy columns

with rigid gaps. Second, the number of columns we choose in-

creases with the width of the motif according to the intuitively

derived formula

n ¼
6þ w�6

3

� �
if w46

w otherwise,

�
ð1Þ

where w is the width of the motif and xb c denotes the floor

function. So, for example, for w � 6 the motif is taken as is,

whereas in a motif of width 7, we substitute the lowest entropy

column of the PWM with a (rigid) gap. Similarly, for motif of

width 9, we replace the two weakest columns by two rigid

gaps, etc.
The rest of the procedure, which we refer to as the ‘selective

MHG’ score because we select the motif columns, remains the

same as the non-selective MHG procedure outlined above.

Specifically, the gapped PWM is used to assign scores to each

site in the input as well as in the randomly drawn sequences, and

the best site score in each sequence is noted. Each observed score

is then considered as a site if it is greater than or equal to a

predetermined threshold, and we compute the hypergeometric

P-value of observing that many more sites in the input set than

in the null set. The minimal P-value overall possible thresholds is

the selective MHG score.
Looking at Figure 1b we see that the above heuristic has con-

siderably diminished the bias exhibited by the non-selective

MHG score. More importantly, the selective MHG is consist-

ently more accurate at choosing the correct (most similar) motif

from among the candidates (Supplementary Tables S1a and

S3a). In the OOPS mode, we see 11% more correct identifica-

tions (608 versus 546) when using the selective version, giving

23% more correct identifications (608 versus 495) than when

using the E-value. Both of these improvements are statistically

significant using a sign test (Supplementary Table S1a and b).

In the ZOOPS mode, when varying both the width and the

number of sites MEME looks for, we see 27% more correct

identifications using the selective version (615 versus 486),

giving 67% more correct identifications than when using the

E-value (615 versus 368, Fig. 2). Again, both improvements are

statistically significant (Supplementary Table S3a and b).
By fixing the motif width that MEME searches for and vary-

ing only its -nsites parameter in ZOOPS mode, the selective

MHG score is consistently more accurate at selecting the

best motif candidate (Supplementary Table S4), albeit the per-

centage of additional candidate motifs correctly selected varies

from an insignificant increase of51% (536 versus 535, searched

motif width 7) to a statistically significant increase of 32%

(416 versus 314, searched motif width 13). In the same experi-

ments, the selective MHG has 33–52% more correct identifica-

tions than the E-value has, and the relative improvement is

particularly pronounced for wider motifs (536 versus 402 and

519 versus 342 for implanted motifs of widths 7 and 11,

respectively).
Thus, our selective MHG score improves MEME by allowing

a more judicious selection of the best among several EM gener-

ated candidate motifs. The cost of computing this score is linear

in the size of the input set (with a small constant) and therefore

should not be considered a computational burden.

2.3 Alternative motif scores

Using the same setup that we used above to compare the E-value

with the non-selective and the selective MHG scores, we studied

the power of several other motif scores to discern between

random and real motifs:

� The ‘‘Mann–Whitney’’ (MW) score is defined by applying

the MW test to compare the set of motif scores from the

input set of sequences with the set of scores from the null

generated set of sequences (see Supplementary Section S1

for details). As with the MHG score, we consider the MW

P-value as a discriminative score rather than carrying a

(false) probabilistic interpretation, as the null assumption

of the original statistical test is again clearly violated.

� A selective version of the MW score, which, like the selective

MHG score, replaces a few of the low entropy scoring col-

umns in the PWM with rigid gaps.

Fig. 2. Relative improvement over the E-value. For each scoring method

(defined in Section 2 and in Supplementary Section S1), we give the per-

centage of improvement in its success rate in the ZOOPS mode relative

to the E-value’s success rate in the same mode (Supplementary

Section S1.3.4). Data are taken from Supplementary Table S3a
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� A thresholded version of the MW (tMW) score applies the

MW test to the same lists as originally, only with all low

scoring sites removed. Similarly, we looked at a selective

version of the thresholded MW. These two scores depend

on a site-threshold, that is, the site is only considered if its

PWM score exceeds a per-dataset threshold.

� The Fisher exact test (Fisher) compares the number of site-

bearing sequences in the input set with the same number in

the null generated set as does the selective version of the

Fisher exact test (removing a few of the low-entropy scoring

columns from the PWM). These two scores also depend on a

per-dataset threshold on sites.

� The ‘sign score’ (Sign) is defined by applying the sign test to

compare the number of input sequences whose best site

score is higher than the best scoring site in the corresponding

null generated sequence with the number of sequences for

which the reversed statement held (the best null-sequence

score is higher than the best input-sequence score). Again,

a selective version of this score was also considered.

� The ‘minimal sign score’ (MSign) is defined similarly to the

sign score except we applied the sign test only to pairs of

input-null sequences for which the maximal score exceeded a

site-threshold. We then varied the threshold so that the score

would be most significant (minimal sign test p-value). A se-

lective variant of this score was also looked at.

None of the site-threshold–dependent variants (the Fisher

exact test and the thresholded MW variants) outperformed the

selective MHG score in a statistically significant way, and all

performed significantly worse in at least some of the tests

(Supplementary Tables S1–S3). In light of these results and be-

cause finding the per-data threshold increases the computational

cost of the score, we see no reason to prefer any of the site-de-

pendent scores over the selective MHG score.

The selective versions of all the motif scores performed better

than their non-selective counterparts, which confirms the benefit

of reducing the motif width bias. The benefit of using the select-

ive variants increases with the searched motif width

(Supplementary Table S4), but we suspect this phenomenon is

only partially explained by the reduction of bias. Real motifs

often contain short stretches of uninformative columns (Xing

and Karp, 2004), and hence, we are potentially adding noise

when these uninformative columns form an integral part of the

PWM. In contrast, the selective versions of our scores filter out

some of the uninformative columns, thereby increasing the signal

to noise ratio. This side effect of the heuristic used by the select-

ive versions of the motif scores may be partially responsible for

their higher accuracies.

The selective MW score performed slightly better than the

selective MHG score in the OOPS set of experiments

(Supplementary Table S1), suggesting that the optimal motif

score could be different when running MEME in ZOOPS versus

OOPS mode. Although this is possible, it is not clear that the

added design complexity is merited by the performance differ-

ence, which was not deemed statistically significant in our experi-

ments. At the same time, the advantage of the selective MHG

score over the selective MW score in the ZOOPS setting was also

not deemed statistically significant (Supplementary Table S3b),

and so in terms of their power, these two discriminative scores

are fairly comparable in our experimental setup.
The selective sign-test variants are simple to calculate and per-

form similarly to the selective MHG and MW scores but lose to

both scores in a statistically significant way in the OOPS setting

(Supplementary Table S1).
Finally, we were curious to find out how well the 3-Gamma–

estimated P-value would do in selecting the most promising

motif (Supplementary Section S1.1.12). Because of the intensive

computational nature of the 3-Gamma score, we only looked at

the OOPS test set, and the 3-Gamma motif score was slightly less

accurate than the selective MHG score at choosing the best can-

didate motif (599 versus 608, Supplementary Table S1a), but this

difference is not statistically significant (Supplementary Table

S1b). So, again, we see that inherent calibration (as the

3-Gamma score has by definition, see Supplementary Fig. S1d)

does not necessarily mean superior performance in picking the

best motif. Regardless, note that using the 3-Gamma approach

for selecting the best motif is not a practical option if the latter is

also to be used to assign an overall significance: the resulting

procedure is computationally forbiddingly demanding. Rather

this experiment should be taken as further validating the power

of the selective MW and MHG scores.

3 ASSESSING THE STATISTICAL SIGNIFICANCE
OF THE REPORTED MOTIF

As we pointed out above, the selective MHG and MW scores are

discriminative ones and cannot be used to directly assign an

overall statistical significance to the selected motif. For that,

we suggest using our computationally intensive 3-Gamma para-

metric scheme. The protocol we adopted here is essentially the

same as described in Ng and Keich (2008a, b): the input set is

used as a template to generate n independently drawn null sets

(we suggest n¼ 50), and MEME is applied to the null sets in

exactly the same way as it is applied to the original set of se-

quences. In particular, our protocol uses the selective MHG (or

MW) score to select the best motif in each of the null drawn sets,

i.e. an additional random (background) set is generated for every

one of the n null sets and the discriminative score is computed

relative to these two null sets.
The score assigned to the input set of sequences, as well as to

each of the n null drawn sets, is minus the log of the selective

MHG (MW) P-value of the chosen motif, i.e. it is minus the log

of the smallest selective MHG (MW) P-value among all candi-

date motifs.
The 3-Gamma P-value of the motif selected from the input set

of sequences is estimated using the scores from the null drawn

sets as described in Supplementary Section S1.1.12 except that

the current score is used instead of the MEME-reported llr score:

the maximum likelihood estimate is estimated from the n null

scores and then plugged into the 3-Gamma distribution function

to yield the 3-Gamma P-value.
We found support to the assumption that the null distribution

of the motif score can be approximated to a 3-Gamma distribu-

tion empirically by considering the probability plot of 100 000

null selective MHG scores and the fitted 3-Gamma curve in

Figure 3 (see Supplementary Fig. S4 for the probability plot of
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null selective MW scores). Linhart et al. (2008) used a similar

approach to assign the significance of the motif to their hyper-

geometric enrichment score, but they fit a normal distribution. In

Figure 3, we show that the fit to the normal distribution sub-

stantially deviates from the observed null MHG scores at the

tails, highlighting the advantage of our choice of the 3-Gamma

distribution. Further empirical support for the validity of the

3-Gamma approximation comes from the fact that it seems to

produce a well-calibrated score (Section 5).

4 TWO-TIERED SIGNIFICANCE ANALYSIS

Our two-tiered significance analysis offers an alternative to

MEME’s current motif selection and significance analysis pro-

cedures, both of which are currently based on the E-value. The

proposed motif selection step uses our selective MHG or MW

scores, and the significance is provided through our 3-Gamma

estimation scheme.
We compared our two-tiered analysis with the E-value–based

analysis currently implemented in MEME by examining how

well they do in correctly discovering the implanted motif.

Again, our test set consists of sets of sequences that are randomly

sampled from a genome and then implanted with instances of

our spanning set of real motifs. The motif is selected from a pool

of candidate motifs generated by applying MEME with different

settings varying either the width in OOPS mode or the width and

the -nsites parameter in ZOOPS mode. The selection is guided by

either the E-value or the selective MW or MHG scores. The

motif is considered correctly discovered (P or positive) if the

Tomtom assigned P-value to the match between the reported

motif and the implanted one is � 0:05. Otherwise, the motif is

assigned the label N (for negative, or failure, see Supplementary

Section S1.3.4 for more details).
We plot the number of true positives (TPs) versus the number

of false positives (FPs) at any given significance threshold. In this

case, the P/N labels of a given dataset might differ, as they are

assigned to different motifs: the motif selected by E-value would

often differ from the one selected by the selective MHG or the

MW score. Had the P/N labels been the same, the curve would

have been equivalent to the ROC curve, which plots the true-

positive rate versus the false-positive rate.
Figure 4 shows that in the ZOOPS mode, our two-tiered ana-

lysis, based on either the selective MHG or MW scores, com-

pletely dominates the E-value: there are considerably more TPs

(correctly identified motifs) for any given number of FPs (incor-

rectly identified motifs). The differences are particularly striking

in the arguably more important section of the graph where the

FP count is low. See Supplementary Figure S5 for the corres-

ponding OOPS mode figure.
The same overall picture is shown from a slightly different

perspective in Supplementary Table S5, which gives the

number of TPs and FPs for a few commonly used significance

thresholds. It is particularly striking how poorly the E-value is

performing as a measure of motif significance in the ZOOPS

case: for a significance threshold of 0.05, the E-value–derived

motifs have �7 times more FPs and less than half the number

of TPs compared with our two-tiered analysis based on either the

MHG or the MW scores.
The poor performance of the E-value in the above analysis is

mostly an indictment against the E-value’s utility as a calibrated

measurement of the statistical significance. To show this, in an

additional analysis we used the E-value to choose the best can-

didate motif, but then sorted the selected motifs according to

Fig. 4. ROC-like plots of two-tiered versus E-value motif scores in

ZOOPS mode. An optimal motif is selected in each set using the

E-value, selective MHG (3GMHG) or selective MW (3GMW). If the

Tomtom assigned P-value to the match between each selected motif

and the implanted one is � 0:05, we label the selected motif as positive

otherwise as negative. Varying the significance threshold, we plot the

number of positive motifs that are deemed significant (TP) versus the

number of negative motifs that are called significant at that level (FP).

The significance is determined either by the E-value or by the 3-Gamma

point estimate of the P-value (3GMW, 3GMHG). As the optimal motif

might vary with the method, we plot FP versus TP counts rather than the

usual ROC curve

Fig. 3. Probability plot of the null selective MHG score with normal and

3-Gamma parametric fits. This probability plot compares the empirical

null distribution of the minimum selective MHG score with the optimal

normal as well as 3-Gamma parametric fits. The empirical distribution

was generated using 100 000 observations, and the parametric fits were

estimated using maximum likelihood (see Supplementary Section S1.4 for

details)
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either the E-value or the significance assigned by applying the 3-

Gamma procedure to the selective MW (3GMW) or MHG

(3GMHG) scores of the E-value–selected motif. Unlike in the

previously described experiments, here the same motif is selected

by all the methods, and thus, we can compare them using the

standard ROC curve (TP rate versus FP rate). The area under

the ROC curve (aROC) of the 3GMW or 3GMHG (0.839 and

0.821, respectively) is much larger than that of the E-value

(0.530), which is about what you expect from a random classifier

(Supplementary Table S7). Thus, the E-value is markedly less

accurate as a measure of statistical significance than our two-

tiered method. However, for small datasets, the E-value compu-

tation is �50 times faster than the 3-Gamma significance

evaluation.

5 SCORE CALIBRATION

The main goal of the 3-Gamma analysis is to provide the user

with a usable significance analysis. Such analysis should, by def-

inition, be calibrated. That is, the more significant the score is,

the more likely the motif is not an artifact. On the other hand, a

score can be well calibrated even if it fails to convey statistical

significance.
We compared the calibration level of the selective MHG and

MW scores by comparing their classification power against that

of the two-tiered scheme. Specifically we asked whether the ROC

curve obtained by using each of these two discriminative scores

on their own is improved by using the 3-Gamma–assigned

P-value instead of the discriminative score (Supplementary

Fig. S6).
It was rather surprising to see that, in terms of calibration, the

3-Gamma–derived analysis adds little to the fairly well-calibrated

selective MHG and MW scores. Still, it was reassuring to find

that the aROC is slightly higher when we further calibrate those

scores using the 3-Gamma–estimated P-values (see

Supplementary Table S6).
It remains to be seen whether our selective discriminative

scores are well calibrated in a larger setting, where, for example,

we might have thousands of input sequences. However, if they

are well calibrated, then we could assign the 3-Gamma signifi-

cance at no additional computational cost. If the score is per-

fectly calibrated, then a unique universal 3-Gamma distribution

applies to all input sets. While it is clear that some accuracy will

be lost this way—the discriminative scores are not perfectly cali-

brated as we see from the fact that the aROC is slightly lower

than when using the 3-Gamma P-value—the trade-off in terms

of significantly reduced runtime might be deemed favorable to

some of the users.

In contrast with the well-calibrated discriminative scores, we

noted that the E-value is poorly calibrated. This is further illu-

strated in Supplementary Figure S7, where the actual motif se-

lection is guided by the E-value but the overall significance is

assessed by either the E-value or by our two-tiered analysis

applied to the motif selected by the E-value. We note that even

though the motif of each input set is selected by the E-value, our

two-tiered analysis is doing a much better job in ranking the

selected motifs.

6 ANALYSIS OF REAL DATA

The results presented so far were derived from datasets that were

synthesized using real motifs implanted in real, though unrelated,

sequences. The advantage of using synthetic data is that you

have control over the degree of difficulty of the motif-finding

problem as well as a well-defined ‘correct’ outcome. As such

we find it optimal for comparison between methods. Still, one

might ask whether the differences we observe in our synthetic sets

are at all relevant to ‘real’ biological data.
To address this question, we analyzed a dataset curated by

Narlikar et al. (2007), which consists of 156 sequence sets derived

from the Harbison ChIP-chip experiments using 80 transcription

factors (Harbison et al., 2004). We found that, as in the case of

the synthetic data, MEME performs significantly better when the

motif selection is guided by either our selective MHG or MW

scores than when guided by MEME’s E-value: 26–29% more

correct identification, and both improvements are statistically

significant (Supplementary Section S8). Both non-selective ver-

sions of the MW and MHG scores give a more modest 14%

improvement over the E-value; however, this improvement is

not deemed statistically significant.
Similarly, our complete two-tiered analysis is doing a much

better job than the E-value in discerning between correct and

incorrect motif identifications. For example, using 3GMHG,

which is the 3-Gamma analysis based on the selective MHG

score, we find 40 correct identifications and 15 incorrect ones

at the traditional 0.05 significance threshold. In contrast, using

MEME’s E-value, we find 30 correct and 41 incorrect identifica-

tions at the same nominal level of 0.05 (Supplementary Table

S9). More generally, comparing the FP versus TP counts, we see

a similar picture to the one we saw with the synthetic data: the

two-tiered analysis completely dominates the E-value–based ana-

lysis with a particularly striking difference in the critical region of

low-FP count (Supplementary Fig. S8).
Given that we analyzed 156 sequence sets, even the 15 incor-

rect identifications that our 3GMHG score reports are more

than what we would like to see at the 0.05 significance level.

However, in classifying a reported motif as an incorrectly identi-

fied one, we are not necessarily claiming that the found motif is

insignificant. These are real datasets that might contain binding

sites of auxiliary motifs. If such motifs are reported, they would

be classified as incorrect identifications; yet, they are not insig-

nificant random motifs. Thus, it is not surprising that we find

more incorrect identifications than we expect assuming those

motifs are truly random. The latter can only be guaranteed

using synthetic data.

7 DISCUSSION

We propose a two-tiered significance analysis to replace the

E-value currently used in MEME to select the best among com-

peting EM-generated motifs as well as to assign an overall stat-

istical significance. We showed that our selective MHG or MW

discriminative scores substantially increase the percentage of cor-

rect motif identifications by simply applying a more judicious

selection criterion to choose the best of MEME’s several EM

generated PWMs—no change in the search strategy is involved.
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As the complexity of our selection procedure is linear in the
size of the input set (with a small constant), it can be integrated
into MEME at a marginal computational cost. As the currently

implemented computation of the E-value in MEME is cubic in
the number of sequences, our selective MHG and MW schemes
compare favorably against the E-value on that account as well,

especially with ChIP-seq data with thousands of sequences in
mind.
The second part of our two-tiered analysis is associated with a

substantial computational cost, as it requires running MEME on
n randomly generated images of the input set (we recommend
n¼ 50). Our 3-Gamma significance analysis then uses these n

runs to provide a parametric approximation to the P-value of
the observed motif. Again we note that although a factor of 50 is
a substantial runtime penalty, the current computation of the E-

value in MEME incurs an even greater penalty when studying
thousands of sequences.
In summary, our two-tiered analysis offers a substantial im-

provement in finding the correct motif without requiring any
change to MEME’s underlying EM motif search strategy. The
difference between the signal to noise ratio (TP to FP) of the

two-tiered approach and of the E-value approach is particularly
striking in the more important region of low noise.
We also showed that the E-value as currently implemented in

MEME is not particularly well suited for selecting motifs of
competing width: it did worse than the single best width. Also,
it is not a good measurement of an overall significance: as a

classifier comparing motifs from multiple datasets, it performed
about as good as a random one. Taken together, we expect our
two-tiered analysis will significantly improve the performance of

MEME. Given MEME’s popularity, this improvement can make
a substantial practical impact on bioinformatics research.
MEME assumes its input set is uniformly weighted. In cases

where one can assign different weights to the input sequences, for

example, the binding intensity of a probe, other methods that use
such data might yield even better results (Leibovich and Yakhini,
2013).

We stress that although our two-tiered analysis was demon-
strated in the context of MEME, it should be applicable more
broadly. Certainly, the selective MHG or MW scores could in

principle be applied to selecting one of several candidate motifs.
Moreover, the associated computational cost is only linear in the
size of the input set. The wider applicability of our 3-Gamma

scheme is more tentative. It is important to understand that it is
an approximation, and so, at the end of the day the question is
whether there are better alternatives. Our experience shows that

the 3-Gamma family is better than the normal and even the ex-
treme value distributions at approximating the null distribution
of the optimal motif score in the examples we considered (Ng

and Keich, 2008a, b, and Fig. 3). Whether this applies to the
user’s choice of scoring function, motif finder and null model is
something that can be looked at empirically.

Although, Amadeus (Linhart et al., 2008) also allows the user
to apply an essentially two-tiered analysis through its bootstrap
option, there are several differences between it and our proposed

solution. First, Amadeus uses the MHG score to choose the best
motif, which, as we saw, can be substantially inferior to the se-
lective MHG score we propose. Second, when using the boot-

strap option, Amadeus reports an overall significance using a

normal approximation, which as we showed can substantially
overestimate the true significance of the motif (Fig. 3 and

Supplementary Fig. S4).
Whether one should choose to use the selective MW or the

selective MHG score seems to depend on the problem: in the
OOPS context, the MW had the advantage, while in the ZOOPS

experiments, the MHG did better. None of these advantages was
deemed statistically significant. The MHG score has one advan-

tage over the MW score: in the ZOOPS mode, it can be used to

determine which sequences contain a site, whereas with the MW
score, some other method should be used for that purpose.

Our future plans are to determine whether we can estimate a
universal 3-Gamma distributions for DNA and protein motifs

before incorporating our two-tiered approach into MEME. If
this is not possible, we will incorporate the proposed two-tier

approach as is, which is how we will incorporate it into

GIMSAN (Ng and Keich, 2008b).
Finally we note that the formula for the number of selected

columns [Equation (1)] in the selective variants of the scores was
not optimized, leaving the door open for potential improvement

through optimization of this selection criterion.
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