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Abstract

Purpose of Review—Antibody-mediated rejection (AMR) is emerging as the leading cause of

chronic rejection and allograft failure. Traditionally, the mechanisms of graft injury mediated by

donor specific antibodies beyond complement activation were not well appreciated. However, an

evolving paradigm of Fc-independent antibody functions, along with clinical recognition of C4d

negative AMR, has increased awareness of the action of antibodies leading to endothelial

activation and dysfunction.

Recent Findings—Herein, we address current clinical trends, including the signature of

microvascular inflammation in biopsies of grafts undergoing AMR, the prevalence of antibodies to

HLA-DQ and non-HLA targets, and the functional characterization of HLA IgG subclasses and

complement fixing capacity. We also discuss recent experimental evidence revealing new

mechanisms of endothelial and smooth muscle cell activation by HLA antibodies, which may

contribute to vascular inflammation and chronic rejection. Finally, we touch upon novel

discoveries of the interplay between antibodies, the complement system and CD4 T cell-mediated

alloimmunity.

Summary—The current literature suggests that, although complement fixing antibodies may

have some prognostic value for graft outcome, complement-independent mechanisms of graft

injury are increasingly relevant. Therapeutic strategies which target endothelial activation induced

by antibodies may ameliorate vascular inflammation and mononuclear cell infiltration

characteristic of AMR.
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Introduction

Antibody-mediated rejection (AMR) is an increasingly problematic entity in solid organ

transplantation that leads to graft dysfunction and loss. AMR often occurs late (>1 year)
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after transplantation with an incidence of approximately 30% (1), and was recently

attributed to cause half of all renal allograft failures (2). An understanding of how antibodies

cause graft injury and promote acute and chronic rejection is critical for the management of

sensitized recipients and improvement of therapeutics. Studies from our group and others

have previously demonstrated that HLA I antibodies act as agonists, inducing molecular

aggregation of HLA I class I molecules to trigger intracellular signaling pathways that are

critical in the regulation of cell survival, proliferation and migration in graft vascular cells

(reviewed in (3)). Recent investigations have revealed additional functional responses of

vascular cells to antibodies, including induction of inflammatory mediators by endothelial

cells and recruitment of immune cells. Moreover, the relevance of complement fixing

capacity of donor specific antibodies has received increasing attention. Herein, we discuss

the implications of recent work in these areas.

Characteristics of AMR and Drawbacks of Current Histological Criteria

Consensus guidelines for the histological diagnosis of antibody-mediated rejection center

around circulating DSA, vascular injury, microvascular changes and complement (C4d)

deposition. However, AMR criteria have in some cases proved inadequate because of the

reliance on complement staining (1, 2), and, while C4d appears to be a specific marker in

cardiac and renal transplantation, it is estimated that half of AMR events are missed due to

the lack of sensitivity of C4d staining (4). To date, no consensus AMR diagnostic criteria

exist in lung and liver (5, 6), due to controversy over the clinical significance of DSA in

liver transplantation and a lack of specificity of C4d staining in lung allografts (5-8).

Recent efforts have aimed at discovery of superior histological indicators that can

discriminate antibody-mediated rejection from acute cellular rejection, infection, drug

toxicity and stable graft function, and identify C4d-negative AMR. Extracellular matrix

regulators matrix metalloproteinase-2 (MMP2) and TIMP1 were upregulated in renal

biopsies during AMR (9), which may play a role in fibrosis during chronic rejection. Several

groups have recently reported that glomerulitis and peritubular capillaritis (microcirculation

or microvascular inflammation) correlate with DSA and graft failure in renal transplants

(10-12). Moreover, activation of capillary endothelial cell signaling correlates closely with

AMR severity, DSA and microcirculation inflammation, and is a more sensitive AMR

marker than C4d deposition (13, 14) cardiac transplantation. A “molecular phenotyping”

approach, predominantly composed of endothelial-associated transcripts expressed in the

renal allograft, could also identify C4d negative AMR (15). A new sub-classification of

AMR with vasculitis was recently proposed, which increased predictive value for renal

allograft loss (16).

Additionally, intravascular macrophages, identified by CD68 staining, appear to be a

common feature of AMR (17), and provide a more sensitive histological marker compared

with C4d in cardiac allografts (18). Intragraft macrophages also increase the risk of renal

allograft dysfunction (11), although macrophage staining is not currently included in the

Banff criteria. Natural killer (NK) cells have also been implicated in antibody-mediated graft

injury, particularly in late AMR (19). These clinical results are paralleled by observations in

experimental models, where depletion of NK cells ameliorated MHC I antibody-induced
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chronic rejection in murine cardiac allografts (20). Taken together, these clinical

observations highlight the central role of endothelial activation and innate immune

infiltration in graft injury by donor specific antibodies.

New Trends

There is a wealth of literature regarding the incidence and deleterious impact of donor

specific HLA antibodies, and this topic has been thoroughly reviewed elsewhere (21, 22).

HLA-DQ Antibodies

HLA I antibodies appear early, while HLA II DSA tends to prevail late after transplantation

and associates with chronic graft dysfunction (23, 24). An emerging trend is the intriguing

but little understood phenomenon of predominant DSA to HLA-DQ in lung (25), cardiac

(26), renal (27) and liver transplant recipients (28), particularly during chronic rejection

(28). The possible pathogenic mechanisms of antibodies to HLA-DQ are not yet clear,

although recipients tend to have worse outcome than when anti-DQ antibodies are absent

(29). Interestingly, DQ mismatch increases the risk of de novo DSA development (27). It is

yet unknown whether antibodies to HLA-DQ are a marker of end-stage graft injury and/or

nonadherence; whether they are increased in circulation due to low HLA-DQ expression in

the graft; or whether they represent an independent pathogenic actor.

Non-HLA Antibodies

There is growing evidence to suggest that antibodies against non-HLA antigens may

contribute to AMR in solid organ transplantation. Reports show that 10-23% of recipients

are pre-sensitized to non-HLA antigens (30, 31), while 22% form non-HLA antibodies after

transplant (32). Endothelial reactive antibodies have been used clinically to identify cases of

AMR (33) and the nature of these targets is starting to be elucidated. Non-HLA antibodies

are found in renal, lung and cardiac transplant recipients, but the targets appear to be unique

to each solid organ. A recent study revealed that endothelial-reactive antibodies may

recognize nonpolymorphic and polymorphic antigens on the endothelial surface (34).

However, conflicting reports suggest either that non-HLA antibodies independently reduce

graft outcome (35-37) or that they have no significant impact (38). The issue is complicated

by observations that autoantibodies can occur independently of or concurrently with donor

specific HLA and MICA antibodies. In lung transplants, non-HLA antibodies against K-α

tubulin and collagen are associated with rejection, but these antibodies were preceded by

HLA DSA and persisted after elevated HLA antibody levels subsided (39), suggesting that

non-HLA antibodies are markers of alloimmune damage. Anti-endothelial cell antibody

subclasses are reportedly IgG2 and IgG4 predominant, which are non-complement fixing,

suggesting a complement-independent mechanism of action (30). However, antibodies

against vimentin, K-α tubulin, and collagen have been associated with C4d deposition on

erythrocytes, suggesting they could contribute to classical complement activation (40). It is

also likely that the pathogenic potential of non-HLA antibodies depends upon the target. For

example, anti-angiotensin II type 1 receptor (AT1R) antibodies contribute to hypertension

and vasculopathy in renal and cardiac transplantation (41) and increase the risk of graft

failure (42). In summary, the targets of antibodies to non-HLA endothelial proteins are only
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beginning to be identified, and, for the most part, their mechanism of action beyond Fc-

mediated functions remain to be further elucidated.

The Mechanisms of Antibody-Mediated Graft Injury

Antibody-mediated acute rejection is primarily driven by the effector functions of the Fc

fragment of HLA antibodies, while experimental evidence indicates that the Fc-independent

effects of antibodies promote chronic inflammation and proliferation.

The Significance of Complement

IgG1 and IgG3 are efficient activators of the classical complement cascade, as well as high

affinity ligands for Fc gamma receptors expressed on myeloid cells including macrophages

and NK cells (reviewed in (43)). In recent years, new assays have been developed to

characterize the functional deposition of complement components, including C1q, C3d and

C4d, by HLA antibody in solid phase assays or cell-based protocols (1, 44-46). However,

contradictory conclusions have been reached regarding the predictive significance of

complement fixing DSA detected by these assays (47, 48), and the results often do not

correlate with lymphocytotoxicity (CDC-XM) results (46). Moreover, despite the

predominance of complement-fixing IgG1 DSA in recipients (28, 49), only certain

specificities exhibit cytotoxicity or C1q deposition. Antigen density or synergism of

multiple low-level allele-specific antibodies may explain the differences (reviewed in (50)).

Additionally, complement fixation appears to be closely dependent upon antibody titer (51)

and confounded by the presence of IgM (52). Indeed, poorer outcomes associated with

complement fixing antibodies in some studies may be in fact reflective of high donor

specific antibody levels (48). Duquesnoy et al. proposed the theory that complement fixation

is a function of the epitope itself, which induces conformational changes in the antibody to

confer binding to the C1 complex (53). Additionally, it is possible that differences in Fc

glycan composition may lead to increased cytotoxicity of certain HLA DSA (reviewed in

(54)). While interesting, experimental evidence addressing these putative mechanisms

remains to be reported.

The utility of C4d staining has recently been questioned (16), particularly late in

transplantation (23). Antibody-mediated chronic injury does not always correlate with or

require complement activation in clinical studies (55) or experimental models (20). Whereas

HLA antibodies trigger complement-dependent cytotoxicity of target lymphocytes,

endothelial cells—the primary target of antibody-mediated alloimmunity—are generally

resistant to complement-mediated cell lysis in response to HLA antibodies. Despite evidence

of terminal complement activation at the endothelial cell surface (44, 56), endothelial cells

may upregulate cytoprotective factors and survival signaling to prevent HLA antibody-

induced cytotoxicity (57, 58). Therefore, the physiological relevance of complement

activating antibodies detected by C1q or C3d-fixing assays remains unclear, and the

mechanisms of antibody-mediated graft injury in C4d negative AMR have yet to be fully

elucidated.
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Complement-Independent Antibody-Mediated Endothelial and Smooth Muscle Cell
Activation

HLA antibodies also act as agonists to induce intracellular signaling in endothelial and

smooth muscle cells. Notably, these effects are independent of the Fc fragment, and may

therefore be elicited by any IgG subclass. HLA I antibodies promote focal adhesion kinase

(FAK)-dependent proliferation and migration of smooth muscle cells (59), which may

contribute to the neointimal changes seen in chronic rejection. Recent evidence has also

implicated matrix metalloproteinase-2 (MMP2) and neutral sphingomyelinase-2 (nSMase2)

in HLA I antibody-induced smooth muscle cell proliferation in vitro and in vivo (60), which

is interesting in light of clinical observations of increased intragraft expression of MMP2

during AMR (9). Active MMP2 acts on nSMase2 to stimulate, among other effects,

production of ceramide. Ceramide is itself a proinflammatory stimulus, and can be

converted to sphingosine-1-phosphate (S1P), which is mitogenic through MAPK/ERK

pathways (61). In this study, the authors speculated that nSMase2 activation generates S1P,

but as yet no evidence has linked HLA I antibodies with ceramide and/or S1P production.

Further studies are needed in this novel area to dissect the proximal signaling leading to

MMP2 and nSMase2 activation, to confirm the role of S1P in smooth muscle cell

proliferation. If S1P is indeed produced in response to HLA I crosslinking, it would be of

interest to examine other phenotypic changes triggered by this mediator, such as regulation

of cell motility, control of barrier function, and modulation of endothelial inflammatory

activation.

Cell proliferation and migration are dependent upon reorganization of the cytoskeleton.

Recently, our group characterized HLA I-induced cytoskeletal rearrangement in greater

detail, demonstrating that HLA I crosslinking activated Rho kinase, myosin light chain

kinase and ERK1/2 in a calcium-independent manner to stimulate stress fiber formation.

This study also revealed a novel molecular association of ERK1/2 with mTORC2, and

showed that Rictor and ERK relocalize to the plasma membrane after HLA I antibody

stimulation. These results suggest that ERK1/2 is a critical regulator of endothelial

cytoskeletal changes, migration and motility (62).

In addition to cell motility, the intact cytoskeleton is required for activation of critical

kinases downstream of HLA I crosslinking. Proteomic analysis demonstrated that HLA I

crosslinking induced the association of many phosphorylated proteins, including eukaryotic

initiation factor 4A1 (eIF4A1), with the actin cytoskeletal fraction (63). eIF4A1 is a target of

mTORC1 and is required for protein translation and cell proliferation. The cytoskeleton is

actively involved in and required for translation, through spatial organization of the protein

synthesis machinery, delivery of tRNAs to polysomes, and support of compartment-

restricted localized translation of specific RNA (64). Taken together, these studies highlight

the central role of cytoskeleton in mediating the cell signaling process and raise fascinating

questions regarding the functional link between the cytoskeleton and protein synthesis

machinery in HLA I signaling.

Intracapillary macrophages are an important hallmark of AMR in cardiac allografts (17), and

macrophages are key immune mediators of graft injury. Endothelial cells actively regulate
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infiltration of leukocytes from the bloodstream into the tissue. Type 1 endothelial cell

activation involves rapid and transient induction of adhesion molecules and

chemoattractants, while type 2 activation requires protein synthesis resulting in chemokine

and adhesion molecule expression over the course of hours or days. Emerging evidence

indicates that HLA crosslinking can trigger both type 1 and type 2 endothelial cell

activation, providing some insight into the mechanisms of macrophage recruitment to the

allograft during HLA antibody-mediated injury. We and others reported that HLA I

crosslinking by antibodies triggers rapid endothelial exocytosis (<30min, type 1 activation)

leading to cell surface presentation of the adhesion molecule P-selectin and release of vWF

(65, 66) from aortic, venous and microvascular endothelial cells (67). This induction did not

require the Fc portion of the antibody, suggesting that all IgG subclasses can elicit

pathogenic effects by direct endothelial cell activation. P-selectin was indispensable for

increased adhesion of monocytes in vitro and for accumulation of macrophages in murine

cardiac allografts in vivo in response to MHC I antibodies (65). Interestingly, we observed

that complement fixing HLA I antibody dramatically augmented basal P-selectin-mediated

monocyte adhesion through engagement of monocyte Fc gamma receptors (FcγRs) (67),

indicating that DSA subclasses that interact efficiently with FcγRs elicit enhanced

recruitment of monocytes through dual activation of endothelium and monocytes.

In addition to early endothelial activation, HLA I antibodies induce late phase adhesion

molecules and synthesis of chemoattractants and inflammatory cytokines that promote

inflammation. For example, HLA I crosslinking activated the transcription factor cAMP

response element binding protein (CREB), which lead to increased adhesion molecule and

chemokine expression by microvascular endothelium, and monocyte adhesion (68). Similar

studies found increased synthesis of cytokines and chemokines by endothelial cells from

other vascular beds (69) upon exposure to HLA antibodies (Table 1).

The Relationship between Donor Specific Antibodies and T Cell-Mediated Alloimmunity

Most recently, a novel paradigm has emerged in which antibody-mediated graft injury may

potentiate cell-mediated alloimmune responses. Jordan Pober’s group demonstrated that

complement activation can augment HLA I and II antibody activation of endothelium, which

increased endothelial immunogenicity to T cells. Sublytic MAC deposition on endothelial

cells in response to HLA antibodies exacerbated proinflammatory signaling through non-

canonical NFκB, which in turn triggered CD4 T cell capture under shear stress. Moreover,

allogeneic CD4 T cell activation was increased upon coculture with HLA antibody-activated

endothelium (56). In another study, complement split products augmented costimulation of

alloreactive CD4 T cell by dendritic cells (70). Taken together, these findings provoke

interesting questions about the interplay between antibodies and alloreactive T cells, and

highlight a role for complement in graft injury beyond lytic vascular damage. Indeed, a

complete appreciation of the multifaceted mechanisms of antibody-mediated graft injury

should consider the relationships between the humoral, cell-mediated and innate immune

systems, which do not act in isolation under physiological conditions.
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Concluding Remarks

In summary, vasculitis and microvascular inflammation have emerged as promising

histological markers, underscoring the central role of endothelial injury in AMR.

Experimental evidence suggests that HLA antibody-induced endothelial cell inflammatory

activation may promote the microcirculation inflammation and innate immune infiltration

characteristic of AMR. Moreover, Fc-mediated functions such as complement activation and

engagement of Fc receptors act synergistically with endothelial activation to enhance

inflammation and alloimmune damage. Many questions remain, including the physiological

relevance of prevalent anti-DQ antibodies, non-HLA antibodies, and antibodies that fix

complement in vitro; and the effects of HLA II antibodies on vascular cells.
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Key Points

• HLA antibodies may be pre-existing or develop at any time after transplant;

however, most de novo antibodies form 6 months or later post-transplant. HLA I

antibodies appear earlier, while HLA II antibodies (particularly anti-HLA-DQ

antibodies) develop in the late post-transplant period.

• Donor specific HLA antibodies stimulate endothelial cell signaling, including

rapid exocytosis of P-selectin and production of chemokines, leading to

inflammatory activation and leukocyte recruitment.

• Engagement of Fc receptors on monocytes by certain subclasses of HLA I

antibodies enhances monocyte recruitment by activated endothelial cells.

• It is yet unclear whether antibodies that fix complement in in vitro deposition

assays have definitive clinical relevance. However, activation of complement by

HLA antibodies in experimental models triggers production of complement split

products that boost T cell-mediated alloimmune responses.
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