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Abstract

Recently, we proposed a new algorithm of accelerated barrier optimization compressed sensing

(ABOCS) for iterative CT reconstruction. The previous implementation of ABOCS uses gradient

projection (GP) with a Barzilai-Borwein (BB) step-size selection scheme (GP-BB) to search for

the optimal solution. The algorithm does not converge stably due to its non-monotonic behavior.

In this paper, we further improve the convergence of ABOCS using the unknown-parameter

Nesterov (UPN) method and investigate the ABOCS reconstruction performance on clinical

patient data. Comparison studies are carried out on reconstructions of computer simulation, a

physical phantom and a head-and-neck patient. In all of these studies, the ABOCS results using

UPN show more stable and faster convergence than those of the GPBB method and a state-of-the-

art Bregman-type method. As shown in the simulation study of the Shepp-Logan phantom, UPN

achieves the same image quality as those of GPBB and the Bregman-type method, but reduces the

iteration numbers by up to 50% and 90%, respectively. In the Catphan©600 phantom study, a

high-quality image with relative reconstruction error (RRE) less than 3% compared to the full-

view result is obtained using UPN with 17% projections (60 views). In the conventional filtered-

backprojection (FBP) reconstruction, the corresponding RRE is more than 15% on the same

projection data. The superior performance of ABOCS with the UPN implementation is further

demonstrated on the head-and-neck patient. Using 25% projections (91 views), the proposed

method reduces the RRE from 21% as in the FBP results to 7.3%. In conclusion, we propose UPN

for ABOCS implementation. As compared to GPBB and the Bregman-type methods, the new

method significantly improves the convergence with higher stability and less iterations.
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I. Introduction

Iterative reconstruction algorithms have been increasingly used in different CT imaging

applications.(Xia et al., 2011; Han et al., 2011; Nett et al., 2010; Sidky et al., 2011; Ouyang
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et al., 2011; Choi et al., 2010; Ye et al., 2011) As compared to the conventional filtered-

backprojection (FBP) algorithms, iterative reconstruction shows advantages on image

artifact reduction when projection data are heavily undersampled or highly noisy (Han et al.,

2012; Bian et al., 2010). In this paper, we propose an improved implementation of an

iterative CT reconstruction algorithm that was recently developed in our group (Niu and

Zhu, 2012).

With a linear model, x-ray projections can be approximated as the production of the object

linear attenuation coefficient distribution with the system projection matrix. As the

measurement data become fewer, the image solution to the linear equation is

underdetermined. Recent studies have shown that artifacts from reduced data measurements

(such as view aliasing in few-view reconstruction) are effectively suppressed by searching

for the solution that has the minimum total variation (TV) and complies with the data

fidelity constraints (Tian et al., 2011; Bian et al., 2010; Sidky and Pan, 2008; Chen et al.,

2010). The success of these TV minimization approaches can be justified by the compressed

sensing (CS) theory (Candes et al., 2006). CS indicates that sparse signals can be well

recovered from reduced data measurements by L-1 norm minimization. As the gradient

operation sparsifies CT images (Sidky et al., 2006; Chen et al., 2010), one embodiment of

CS in CT reconstruction is to minimize the L-1 norm of the image gradient, i.e. the TV of

the image.

Despite the superior reconstruction performance, TV minimization with data fidelity

constraints requires intense computation. A more efficient approach is to convert the

problem into a TV-regularization based optimization and to solve using a standard non-

negative programming method (Park et al., 2012). In TV minimization, the image quality is

controlled by the data fidelity tolerance ε, while in TV regularization, the main algorithm

parameter is the penalty weight λ on the TV term. With proper settings of ε and λ values,

these two approaches are equivalent to each other and obtain the same mathematically

optimal solution (Pan et al., 2009). A main disadvantage of TV regularization is that the

parameter λ needs to be carefully tuned for different scans, as the optimal λ value is

dependent on both the projection noise level and the TV of the true image. On the contrary,

the optimal ε value in TV minimization can be accurately estimated directly from the

projection data, if noise is dominant in projection errors and the statistics is known (Niu and

Zhu, 2012; Lauzier and Chen, 2012).

To achieve a high computational efficiency while retaining the feature of consistent

algorithm parameter settings, we recently proposed a new optimization framework of

accelerated barrier optimization compressed sensing (ABOCS) reconstruction for cone-

beam CT (CBCT) (Niu and Zhu, 2012). In ABOCS, the TV minimization formulation is

first converted into a TV regularization based framework with an automatically tuned

penalty weight on the data fidelity term. The problem is then efficiently solved using a

gradient method. In the published ABOCS implementation, we used gradient projection

(GP) with an adaptive Barzilai-Borwein (BB) step-size selection scheme (GP-BB) (Niu and

Zhu, 2012). Although a high computational efficiency has been demonstrated on preliminary

studies, the GP-BB algorithm is empirical and its convergence is not guaranteed (Barzilai

and Borwein, 1988). In this work, we further improve the ABOCS implementation using a
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modified Nesterov method (Nesterov, 1983). The monotone convergence behavior of

Nesterov method, which has been proven in the literature (Jensen et al., 2011), leads to

reduced iterative numbers as well as more reliable stopping criteria. A faster computational

speed is also achieved due to the more stable convergence. The method is evaluated on both

simulation and phantom studies. We finally present the first results of patient studies using

ABOCS reconstruction.

II. Method

II.A. The ABOCS framework

The derivation of ABOCS starts from the TV minimization framework with a data fidelity

constraint (Sidky and Pan, 2008; Chen et al., 2008), as shown below:

(1)

where the vector b⃗ with a length of Nd (i.e., number of detector pixels) represents the line

integral measurements (i.e., after the logarithmic operation on the raw projections), M is the

system matrix modeling the forward projection, f⃗ is the vectorized patient image to be

reconstructed with a length of Ni (i.e., number of image voxels), ||•||2 calculates the L2-norm

in the projection space and ||•||TV is the TV term defined as the L1-norm of the spatial

gradient image. The user-defined parameter ε is an estimate of total measurement errors.

When statistical noise is dominant in the projection after data correction for deterministic

errors, it is possible to estimate ε based on the properties of a known statistical distribution.

For example, ε can be accurately estimated from the measured projections, if the measured

raw projection obeys Poisson statistics (Zhu et al., 2009a; Choi et al., 2010; Wu et al., 2003;

Lauzier and Chen, 2012). Effective scatter correction changes the noise variance of the

projections, but a precise estimation of ε is still feasible based on the raw data and the

scatter-to-primary ratio (SPR) (Zhu et al., 2009a). As such, the algorithm parameters of Eq.

(1) are consistent for different datasets. Nevertheless, the practical use of TV minimization

is hindered by its intense computation due to the fidelity constraint. To accelerate the

reconstruction, in ABOCS, we convert Eq. (1) into a form similar to that of the conventional

TV-regularization based algorithm using a logarithmic barrier method: (Lobo et al., 1998)

(2)

Eq. (2) is convex (Boyd and Vandenberghe, 2004) and therefore can be minimized

efficiently using gradient-based algorithms. Note that, Eq. (2) is equivalent to an

optimization problem with the combined TV and data fidelity objective and an automatically

adjusted penalty weight on the data fidelity term. Though requiring a slightly longer

reconstruction time than the conventional least-square form with a fixed penalty weight,

ABOCS uses consistent algorithm parameter values and is therefore more convenient for

practical use. More details of the method derivation and its features can be found in Ref.

(Niu and Zhu, 2012).
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II.B. The Unknown-parameter Nesterov (UPN) algorithm

In Ref. (Niu and Zhu, 2012), we solve Eq. (2) using the gradient projection (GP) with an

adaptive Barzilai-Borwein (BB) step-size selection scheme (Barzilai and Borwein, 1988;

Zhou et al., 2006; Park et al., 2012). In spite of the high computational efficiency at each

iteration, the empirical GP-BB method has a non-monotone convergence behavior, resulting

in a sub-optimal performance on reconstruction time (Jensen et al., 2011). In search of an

updating scheme with an improved convergence rate, the Nesterov algorithm becomes a

viable option (Nesterov, 1983). Among all the first-order approaches, the Nesterov

algorithm has been proven to monotonically converge at the optimal rate if the objective

function has an Lipschitz continuous gradient (which implies a continuously differentiable

function) and is strongly convex (Nesterov, 1983).

The Nesterov’s method is guaranteed to converge for a continuous and strongly convex

objective function (Nesterov, 1983). A direct use of the Nesterov algorithm to solve Eq.(2),

however, is hindered by two issues. First, the classic Nesterov algorithm explicitly requires

the Lipschitz constant (L) and the strong convex constants (σ), which are used to quantify

the continuity and convexity of the objective function, as the input parameters. In iterative

CT reconstruction, these two parameter values are difficult to compute due to the large-size

and ill-posed system matrix, as well as the singularities in the TV calculation. To circumvent

the difficulty in finding the two unknown parameters, we implement the unknown parameter

Nesterov (UPN) method as recently proposed by Jensen et al (Jensen et al., 2011). At each

Nesterov iteration, we estimate the L value using a backtracking line search scheme and

adjust the σ value using a heuristic formula (Jensen et al., 2011). The backtracking strategy

approximates the Lipschitz constant by iteratively increasing the estimate until the

continuity of the objective function is satisfied. The heuristic formula chooses the

decremental σvalue that satisfies the convexity condition of the objective function in each

iteration. Details of the UPN algorithm derivation can be found in Ref. (Jensen et al., 2011).

Secondly, the logarithmic term in the objective in Eq.(2), Fdata, is not differentiable at the

location where . Therefore, we need to modify the objective function

around and outside the singular point of Fdata without affecting the solution of the

optimization framework. In this paper, we use a linear function with a large and finite

positive slope to replace the segment of the logarithmic function that has infinite values.

Figure 1 shows the linear function (dashed line) and the logarithmic function (solid line). To

make the objective continuously differentiable, we design the linear function to be tangent to

the log-barrier function at the connection (i.e, the same slope and function value at the

tangent point). The modified logarithmic term is thus written as:

(3)

where  and Δ is a user-defined parameter that controls the slope of the

linear function.

The resultant objective function becomes:
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(4)

and the optimization problem (Eq.(2)) is re-written as:

(5)

Eq.(5) is then solved using the UPN algorithm.

Note that, as seen in Fig. 1, the linear function is used for solutions outside of the solution

pool (i.e. when ). The purpose of the modification is to ensure the

objective is differentiable such that the algorithm can rapidly converge to the solution pool.

Once the estimated solution satisfies the data fidelity condition (i.e.

), the linear function does not affect the value of the objective.

The objective function essentially becomes the original log-barrier function. As such, the

proposed modification improves the convergence without affecting the result of ABOCS

reconstruction using the original log-barrier objective.

II.C. Pseudo code for ABOCS with the UPN implementation

In summary, we present the pseudo-code of the UPN approach for ABOCS as below. The

following list summarizes the variables in our code:

Nmax: maximum number of iterations;

L and σ: estimated Lipschitz constant and strong convex constant;

L0 and σ0: initial estimates of the Lipschitz constant and strong convex constant;

sL: magnification factor on L in each step of backtracking;

θ: square root of the ratio between σ and L;

β: intermediate variable in the Nesterov method;

i: index of the detector pixel;

I0(i): intensity of the flat field at pixel i;

stop: stopping criteria, a constant designated by the user;

μ: user-defined parameter to account for the data error other than Poisson noise;

ε: estimated total noise variance of the line integrals;

Δ: user-defined parameter that controls the slope of the linear function (see Fig. 1).

The symbol := means assignment. Both image and data space variables are denoted by a

vector sign, e.g., f⃗ and b⃗.
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1:

  ; Nmax: = 1000; L0 = 103, σ0 = 20, stop :=−0.999, , sL:=
1.3, Δ:=0.02ε control parameters

2:  h⃗
0 : = f⃗0: = FDK or ART initial image

3:  for k=1, Nmax do main loop

4:

  ;

5:

  ; (• denotes element-wise
multiplication between two vectors)

6:

 f⃗old:= f⃗, 

7:  if δh >ε − Δ, λ: = 1/Δ; else λ: = 1/(ε − δh); end if; calculate the regularization weight outside and inside the
feasible solution set, respectively.

8:

  ; gradient of the objective as a function of f⃗

9:  f⃗ := (h⃗ − L−1∇F)+ ; update image and set non-negativity

10:

 while 

11:   L = sL · L;

12:   f⃗:= (h⃗ − L−∇F)+ ;

13:  end; backtracking to find the Lipschitz constant L

14:

  

15:

  

16:  β: = θ(1 − θ)/(θ2 + θnew)

17:

  , θ: = θnew, σold: =σ;

18:

 if  stopping criteria

19:   return f⃗;

20:   break;

21:  end if;

22: end for;

The parameters in line 1 control the whole algorithm. Their typical values or ranges are

shown in the code, which are used to acquire the results in this paper. The initial guess

image is generated using the standard FBP-based Feldkamp-Davis-Kress (FDK)
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reconstruction (Feldkamp et al., 1984) or the algebraic reconstruction technique (ART),

shown in line 2. A zero initial image leads to the same optimal solution but increases the

computation time. The main loop, line 3–21, solves the Eq. (2) using the UPN method with

an improved convergence rate. Line 4 and 5 calculate the gradients of TV and data fidelity

terms as well as the stopping metric (cos(α)). The formulae of numerical calculations of TV

and its gradient can be found in Ref. (Niu and Zhu, 2012). To obtain the gradient of the

objective function, we first evaluate the automatic regularization weight based on whether

the iteration enters the solution pool or not, shown in line 6 and 7. After computing the

gradient of the objective function (line 8), line 9 updates the solution (image) using the

reciprocal of L as the step size and sets the non-negativity of the solution (denoted as (•)+ ).

Line 10–13 is a backtracking scheme to find an appropriate L value for the objective

function. Line 14 updates the strong convex parameter (σ). Line 15–17 is the standard

Nesterov optimal first order method to update the intermediate variable (f⃗). If the stopping

criteria are satisfied, the iteration stops and returns an optimal image h⃗ (line 19).

Different choices of stopping criteria can be used in our algorithm. In our implementation,

we find that the cosine of the angle between the gradient vectors of the data fidelity term and

the TV term, cos(α), accurately indicates the optimality of the solution. According to the

Karush Kuhn-Tuchker (KKT) conditions, at the optimum, the above two vectors must point

in exactly opposite directions, i.e., cos(α)= −1 (Sidky and Pan, 2008). Specifically, cos(α) is

calculated as:

(6)

where  is the gradient of TV term and  is the gradient of data fidelity.  is an

indicator function with the same dimension of the reconstructed image h⃗, defined as: (Sidky

and Pan, 2008)

(7)

In the studies presented in this paper, we used cos(α)< −0.999 as the stopping criterion. Note

that, in our previous GP-BB implementation of ABOCS reconstruction, cos(α) is not used as

the stopping criterion due to the instability of the convergence (see the result section for

detailed comparisons).

II.D. Evaluation

The performance of the proposed algorithm has been evaluated on a digital Shepp-Logan

phantom, the physical Catphan©600 phantom and a head-and-neck patient. The physical

phantom data were acquired on our tabletop CBCT system at Georgia Institute of

Technology. The geometry of this system exactly matches that of a Varian On-Board Imager

(OBI) CBCT system on the True-beam radiation therapy machine. The details of system

geometry and hardware parameters can be found in Ref. (Niu and Zhu, 2011). In this study,
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a fan-beam CT scan, with an illumination width of 1 cm in the vertical direction on the

detector, was used to inherently suppress scatter signals. The system was operated in the

short-scan mode, with 362 projections covering about 200 degrees of rotation. The same

fan-beam geometry was also simulated in the digital phantom study. The reconstructed

images have a size of 512×512 pixels with 0.5 mm resolution. The projection data on the

head-and-neck patient were acquired on the on-board CBCT system installed on the Varian

Clinac 23IX radiation therapy machine (Varian Medical System, Palo Alto, CA). The

system was operated in the short-scan mode with a bow-tie filter mounted on the outside of

the x-ray collimator. 362 projections were acquired in a 195-degree scan. The reconstructed

images have a size of 512×512 pixels with 0.684 mm resolution. We limit our investigations

on reducing the artifacts from few-view reconstruction. No pre-processing procedures,

including scatter and beam-hardening corrections, were applied on the patient projection

data. In all the three studies, the detector has 1024 pixels with 0.388 mm resolution and was

down-sampled to 512 pixels with 0.776 mm resolution in the reconstruction to avoid large

memory consumption.

We compared the performances of UPN, GP-BB and the Bregman Operator Splitting (BOS)

methods (Zhang et al., 2010; Zhang et al., 2011) in the reconstruction of the Shepp-Logan

phantom with respect to the image quality and the convergence behavior. BOS is a state-of-

the-art optimization algorithm that approximates the solution of a least-square problem and

hence eliminates inner iterations required in the classical split Bregman method (Zhang et

al., 2010; Zhang et al., 2011). Different noise levels were simulated to test the stability of

the proposed algorithm. We then evaluated the ABOCS reconstruction using UPN on the

physical phantom and the head-and-neck patient by comparing the results with those of the

conventional FBP algorithm.

In the image comparisons, the relative reconstruction error (RRE) of the images compared to

the reference, similar to that in Ref. (Zhu et al., 2006), was used as the image quality metric:

(8)

where xi is i-th pixel the reconstructed image, and xi0 is the corresponding pixel in the

reference image. The FBP and the iterative reconstruction have different noise levels and

artifact patterns even if the projection data are sufficient. Therefore, in the phantom and

patient studies, we used the ABOCS reconstruction with full views as the reference, instead

of the full-view FBP reconstruction.

III. Result

III. A. Digital phantom study

Besides those used by the classic Nesterov method, the main user-controlled parameter of

our algorithm is the Δ which controls the slope of the linear function. Δ depends on the value
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of data fidelity tolerance ε. A very small Δ value significantly increases the sharpness of the

objective function and therefore the number of iterations since the step size is greatly

reduced due to the enlarged Lipschitz constant. On the other hand, a large Δ applies a strong

weight on the TV regularization term, which makes the algorithm fail to enter the pre-

defined solution set. In this paper, we correlate Δ as the percentage of ε and use Δ=0.02ε in

the presented studies. We find that, in general, a Δ value in the range of 0.01ε ~ 0.03ε

achieves superior computation performances.

The results on the Shepp-Logan phantom are shown in Fig. 2. Each iteration takes about 0.3

seconds using GPBB and 0.4 seconds using UPN in MATLAB on a Linux workstation with

6 GB memory and a Eight-core Intel Xeon 2.66GHz CPU. Similar computation time is also

found in the physical phantom and patient studies. Two different noise levels (i.e. 5×105 and

5×104 photons per ray) are simulated to test the algorithm stability. 5×105 photons per ray is

approximately equivalent to a tube current of 80 mA with a 13 ms pulse width, a standard

setting of on-board CBCT systems (Niu and Zhu, 2012, 2011). Figs. 2(a) and 2(b) show the

ABOCS reconstruction using UPN from 66 projection views and their errors. The algorithm

stops at around 200 iterations or less and the RREs for the reconstructed images are 2.0% for

Fig. 2(a1) and 2.3% for Fig. 2(a2). Note that, the ABOCS reconstruction using GP-BB has a

similar image quality at the same objective function value.

Figs. 2(c) and 2(d) show the objective function values and the stopping metric (i.e. cos(α))

at different iterations. The results of UPN are compared with those of GP-BB on the same

plot. F* denotes the optimal objective value obtained by long iterations (i.e. using a more

stringent stopping criterion of cos(α)< −0.999999). It is seen that the UPN algorithm

convergences monotonically towards the optimum, a feature missing in the GP-BB

implementation. The convergence of UPN is more stable, especially on the stopping metric,

which also results in fewer iterations to reach the same objective function value than GP-

BB. After about 130 iterations, the relative difference of objective value of UPN drops

below 0.4% and the changes in the reconstructed image are no longer visible at a practical

gray scale. In both cases, UPN requires about 50% less iterations than GP-BB to obtain the

optimal solution.

To further demonstrate the scientific significance, we also compare the proposed algorithm

to a recently developed BOS algorithm (Zhang et al., 2010; Zhang et al., 2011). BOS

approximates the solution of a least-square problem and hence eliminates inner iterations

required in the classical split Bregman method (Goldstein and Osher, 2009). We implement

the BOS algorithm for CT reconstruction as a standard least-square problem with a TV

regularization term and a carefully-tuned penalty weight. Fig. 3 shows the results obtained

by the parameter setting that best compromises efficiency and accuracy of the BOS

algorithm. Compared to UPN, BOS requires more iterations to converge (see Fig. 3(c)). On

the images reconstructed using the same computation time (Fig. 3), it is seen that UPN

achieves smaller reconstruction errors than BOS. Alternatively, BOS takes more iterations to

achieve the same optimal solution of UPN. The higher efficiency of UPN compared to BOS

is mainly due to the fact that BOS requires restrictive bound on step sizes according to

Lipschitz constant of data fidelity term, i.e. the matrix norm of MTM (Zhang et al., 2010). In

CT reconstruction, such a step size is too small and causes slow convergence of BOS. On
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the other hand, UPN adopts Neterov’s optimal gradient technique and uses combination of

previous two iterations which yields fast convergence (Nesterov, 1983). As shown in the

simulation study of the Shepp-Logan phantom, UPN achieves the same image quality as

those of GPBB and the Bregman-type method, but reduces the iteration numbers by up to

50% and 90%, respectively.

The reduction of iteration number leads to improvement of computation time. Table 1

compares the computation time for reconstructed images shown in Figs. 2–5 using UPN,

BOS and GPBB methods. Note that, we terminate the reconstruction of UPN and GPBB

using the same stopping criteria. It is seen that UPN requires less computation time as

compared to GPBB. For a better comparison of UPN and BOS on image qualities, we

generate the results of BOS reconstruction using the same computation time as that of UPN.

As shown in Fig. 3, UPN obtains more accurate reconstruction than BOS with the same

computation time. Similar performances of computation time are observed in the following

physical phantom and patient studies as well.

III.B. Catphan © 600 phantom study

We further evaluate the proposed algorithm on the physical phantom. Figure 4 shows the

results on the Catphan © 600 phantom. With 60 projection views (about 17% of the total

362 projections from a short scan), the FBP reconstruction has severe view-aliasing artifacts

and the RRE compared to the full-view reconstruction is about 15% (see Figs. 4(a) and

4(b)). The ABOCS reconstruction using UPN achieves a comparable full-view image

quality (Fig. 4(c)) as that of FBP, and also effectively suppresses the view-aliasing artifacts

when the projection views are reduced to 60 (see Fig. 4(d)). The RRE of the few-view

reconstruction is 2.4%.

III.C. Head-and-neck patient study

This head-and-neck patient study well presents the challenges of iterative CT reconstruction

in clinical environments. Besides statistical noise, the projections contain considerable errors

from non-ideal effects, including photon scatter, beam hardening and patient motion.

Nevertheless, the proposed algorithm still significantly improves the FBP reconstruction.

The comparison of reconstructed images is shown in Fig. 5. With 91 views, the FBP

reconstruction has an RRE of over 21%. Our algorithm suppresses the streaks from view

aliasing and reduces the RRE to 7.3%.

IV. Discussion

In this paper, we propose the UPN algorithm for iterative CT reconstruction using the

ABOCS optimization framework. As compared to the previous GP-BB algorithm, the new

method significantly improves the convergence stability and reduces the iteration number.

The fundamental reason for the improvement is that the GP method converges at a rate

inversely proportional to the number of iterations (1/k, where k is iteration number (Jensen et

al., 2011)), while the Nesterov approach achieves an optimal convergence rate of (1/k2)

(Jensen et al., 2011; Nesterov, 1983).
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We modify the objective function to make the UPN algorithm implementable on ABOCS.

The main parameter of the modified objective is Δ, which specifies the starting point of the

linear function to avoid the singularity of the original logarithmic function. A smallΔresults

in a large Lypschitz constant and a small step size (1/L), leading to a slow convergence. On

the other hand, a largeΔgives larger step size and but may cause instability during the

iteration. In our study, we find that the algorithm is not very sensitive to this parameter in a

practical range.

Though demonstrated on 2D reconstructions, the proposed method is readily extendable to

3D cone-beam CT reconstruction. To overcome the impediments of large memory use and

intensive computation in 3D reconstruction, we will implement the UPN algorithm based on

the hardware acceleration techniques including graphics-processing-unit (GPU) (Jia et al.,

2010) or cloud computing (Meng et al., 2011). The feasibility of the GPU implementation of

ABOCS reconstruction has been demonstrated in our previous study (Niu and Zhu, 2012).

We will further evaluate the performance of the ABOCS reconstruction using UPN on more

patient studies. Data correction procedures, such as scatter correction (Niu et al., 2012; Niu

et al., 2010; Zhu et al., 2009b) and noise suppression (Zhu et al., 2009a; Wang et al., 2006;

Tang and Tang, 2012), will be applied to make our method more valuable in clinical

applications. Dose evaluations are important to make studies of iterative reconstruction more

complete. We will perform future studies to investigate the relationship between the image

quality and imaging dose in a similar way as in Refs. (Yan et al., 2012), (Leipsic et al.,

2010) and (Marin et al., 2010).

V. Conclusion

We propose UPN for the ABOCS iterative CT reconstruction. The algorithm has been

evaluated on both simulated and physical phantoms. As compared to the previous GPBB

and the state-of-the-art BOS algorithm, the new method significantly improves the

convergence with higher stability and reduces the total iterations by more than 50% and

90%, respectively. As demonstrated in both phantom and patient studies, the proposed

algorithm effectively suppresses view-aliasing artifacts in few-view reconstruction.
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Fig. 1.
Illustration of the modified logarithmic term (Eq.(3)).
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FIG. 2.
Reconstructed images and plots of the objective function and stopping metric values for

GPBB and UPN on the digital Shepp-Logan phantom. A total of 66 projections are used in

the study. Row (1): using a simulated noise level of I0=5×105 photons per ray; (2): using

I0=5×104. Column (a) reconstructed CT image using ABOCS with the UPN

implementation, display window: [−500 500] HU; (b) difference image compared with the

ground truth, display window: [−100 100] HU; (c) 1d plot of the objective function values

versus the iteration number; (d) 1d plot of the stopping metric versus the iteration number.
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FIG. 3.
Comparison between BOS and UPN algorithms on the digital Shepp-Logan phantom. A

total of 66 projections are used in the study. Row (1): using a simulated noise level of

I0=5×105 photons per ray; (2): using I0=5×104. Column (a): reconstructed CT image using

BOS with the same computation time as those required to obtain the UPN results shown in

Fig. 2(a) (100 seconds for the 1st row and 57 seconds for the 2nd row), display window:

[−500 500] HU; (b) difference image compared with the ground truth, display window:

[−100 100] HU; (c) 1d plot of the objective function values versus the iteration number.
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FIG. 4.
Reconstructed Catphan © 600 images from a 200-deg short-scan mode. (a) FBP: using 362

views; (b)FBP: using 60 views (~17% of the total 362); (c) ABOCS UPN: using 362 views;

(d) ABOCS UPN: using 60 views. Window level: [−600 400] HU.
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FIG. 5.
Reconstructed head patient images from a 195-deg short-scan mode. (a) FBP: using 362

views; (b)FBP: using 91 views (~25% of the total 362); (c) ABOCS UPN: using 362 views;

(d) ABOCS UPN: using 91 views. Window level: [−550 450] HU.
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Table 1

Comparison of the computation time (in seconds) for reconstructions shown in Figs. 2–5 using UPN, BOS and

GPBB algorithms.

m
Data

Algorith UPN/BOS GPBB

Shepp-Logan
I0 = 5 × 105

69 84

Shepp-Logan
I0 = 5 × 104

62 110

Catphan © 600 38 47

Head patient 74 125

Phys Med Biol. Author manuscript; available in PMC 2015 April 07.


