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Abstract

Ca2+ plays a crucial role in connecting membrane excitability with contraction in myocardium.

The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective

intracellular Ca2+ homeostasis is a central cause of contractile dysfunction and arrhythmias in

failing myocardium. Defective Ca2+ homeostasis in heart failure can result from pathological

alteration in the expression and activity of an increasingly understood collection of Ca2+

homeostatic binding proteins, ion channels and enzymes. This review focuses on the molecular

mechanisms of defective Ca2+ cycling in heart failure and consider how fundamental

understanding of these pathways may translate into novel and innovative therapies.
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Among the many causes of myocardial injury that can lead to CHF, myocardial infarction is

the most common in the developed world 1. The hallmark features of heart failure include

reduced contractile function manifested as blunted, slowed, dysynchronous contraction and

impaired relaxation. The physiological positive force-frequency relationship and increased

myocardial contractile response to increased preload is compromised in heart failure 2. The

failing heart attempts to compensate for injury by various mechanisms, such as myocardial

hypertrophy, increasing filling pressure and enhanced neurohumoral signals, which together

drive a feed forward pathophysiological spiral leading to adverse ventricular remodeling and

electrical instability 3. Each of these maladaptive events is associated with loss of

myocardial Ca2+ homeostasis.
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I. Ca2+ homeostasis and mechanisms underlying excitation-contraction

coupling

Ca2+ plays a crucial role in coupling cell membrane excitation and contraction, so-called

excitation-contraction coupling (ECC) (Figure 1). Cardiac contraction depends on a transient

increase in the cytosolic Ca2+ concentration ([Ca2+]i) to activate cross bridge formation

between myofilament proteins that ultimately elicits pressure development in the cardiac

chambers and provides energy for ejection of blood. Cardiomyocytes are packed with

myofibrils enveloped in a network of Ca2+ storing sarcoplasmic reticulum (SR)4 and

mitochondria. ECC in ventricular myocytes is built around dyads, specialized membrane

ultrastructure formed by the terminal cisternae of the SR and invaginations of the cell

membrane called transverse tubules. Voltage-gated ion channels, exchangers and Na+/K+

ATPase pump proteins are enriched on the transverse tubular membranes and colocalize

with the intracellular ryanodine receptor (RyR2) Ca2+-release channels, which are clustered

on the SR membrane. ECC is initiated when the cell membrane action potential invades the

myocyte along its transverse tubules. The flow of inward current depolarizes the cell

membrane and rapidly (in 1–2 ms) opens voltage-gated Na+ channels (mostly NaV1.5) that

are responsible for a large inward Na+ current (INa). INa rapidly inactivates (1–2 ms) and

NaV1.5 channels remain inactive until the action potential is complete and the cell

membrane returns to a negative resting potential (~−90 mV). The inward INa depolarizes the

cell membrane, reaching a cell membrane potential that is permissive for opening voltage-

gated Ca2+ channels (mostly CaV1.2 in ventricular myocardium). Inward Ca2+ current (ICa)

5 triggers opening of RyR2 channels by a Ca2+-induced Ca2+ release process6, resulting in

coordinated release of SR Ca2+ that contributes the major portion of myofilament-activating

Ca2+. The ICa contributes to the long action potential plateau (200–400 ms) characteristic of

ventricular myocytes in humans 7. The Ca2+ released from the SR diffuses over a very short

distance to engage the adjacent myofibrils, binding to troponin C of the troponin-

tropomyosin complex on the actin filaments in sarcomeres, which moves tropomyosin away

from the binding sites, facilitating formation of cross bridges between actin and myosin to

enable myocardial contraction. ICa inactivates by voltage and [Ca2+]i-dependent

mechanisms 8 at the same time that voltage-gated K+ channels open to allow an outward

current that orchestrates action potential repolarization, establishing conditions required for

relaxation 7.

Cardiac relaxation depends on a decrease in [Ca2+]I that is permissive for unbinding of

myofilament crossbridges. Sequestration of cytoplasmic Ca2+ occurs mainly through active

Ca2+ uptake by the SR, through the sarcoplasmic-endoplasmic reticulum Ca2+ ATPase

(SERCA2a) 9, and to a lesser extent by extrusion to the extracellular space by the Na+/Ca2+

exchanger (NCX) 10, the sarcolemmal Ca2+ ATPase 11 and mitochondria 12. The binding of

Ca2+ rapidly activates NCX, which facilitates Ca2+ efflux into the extracellular milieu using

the energy from the cell membrane Na+ gradient established by the Na+/K+ ATPase. NCX

generates a current because it exchanges 3Na+ for 1Ca2+, a net positive charge. Depending

upon the electrochemical gradient, NCX current may be inward (forward mode), extruding

cytoplasmic Ca2+ to the extracellular space, or outward (reverse mode), importing
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extracellular Ca2+ to the cytoplasm. Thus, Ca2+ cycling between the extracellular space,

cytosol and SR allows rapid contraction and relaxation of the heart.

II. Defective ECC and alterations of Ca2+ handling proteins in heart failure

Consistently, cardiomyocytes from failing heart show defective ECC characterized by

decreased [Ca2+]i transients, enhanced diastolic SR Ca2+ ‘leak’ and diminished SR Ca2+

sequestration, events that contribute to impaired contractility and relaxation 13. These

abnormalities are due to alterations of a collection of key Ca2+ handling proteins.

Impaired SR Ca2+ release contributes to systolic heart failure

CaV1.2/NaV1.5—Voltage-dependent opening of L-type calcium channels (LTCC) enables

cellular Ca2+ entry that triggers Ca2+-induced Ca2+ release from the SR by promoting RyR2

opening, leading to myofilament cross-bridge formation and mechanical force development.

The cardiac action potential plateau in ventricular myocytes is optimized for grading CaV1.2

openings to initiate Ca2+-induced Ca2+ release and ECC. Similar to all known voltage-gated

ion channels, CaV1.2 consists of a pore forming α subunit, auxiliary subunits and

connections to various cytoskeletal proteins 14. Protein kinase A (PKA), protein kinase C

(PKC) and the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII)

are serine-threonine kinases that catalyze ATP-dependent phosphorylation of CaV1.2

proteins 15 (Figure 2). CaMKII 16 and PKA 17 increase the frequency of prolonged CaV1.2

openings, while the functional significance of PKC actions at CaV1.2 are less clear 15. These

prolonged and frequent CaV1.2 channel openings are due to mode 2 CaV1.2 gating, a

biophysical response shared with β adrenergic receptor (β–AR) agonists, CaMKII and the

dihydropyridine agonist BayK 8644 161718. Phosphorylation by CaMKII or by PKA, the

principal kinase activated by β AR (β–AR) agonists, collaborates with cell membrane

potential to enhance the probability of CaV1.2 opening. Mode 2 gating appears to underlie

ICa facilitation, a dynamic pattern of increasing peak ICa and slowed ICa inactivation 19.

Mode 2 gating and ICa facilitation are proarrhythmic, in part, by favoring early

afterdepolariazations (EADs)20, 2116.

Elevated [Na+]i is present in failing myocardium from humans 222324. 25 Changes in [Na+]i

may have a large impact on [Ca2+]i homeostasis26. Small increases in [Na+]i may increase

Ca2+ influx via reverse mode NCX during systole and limit Ca2+ extrusion via forward

mode NCX during diastole, leading to increased subsarcolemmal [Ca2+]i 2728. Hence,

Increased [Na+]I levels lead to Ca2+ overload, contributing to arrhythmias and impaired

diastolic function 22. The major pathway for Na+ influx in cardiomyocytoes is through

voltage-gated Na+ channels, primarily NaV1.5, which open and close rapidly (1–10 ms) to

trigger the upstroke of action potential depolarization in working myocardium. CaMKII

associates with and phosphorylates the NaV1.5 α subunit at a ‘hot spot’ in the cytoplasmic

I–II linker domain, an event that promotes a non-inactivating, long-lasting component of INa

(INaL) and arrhythmia-triggering EADs and delayed afterdepolarizations (DADs)29, 30.

CaMKII inhibition reverses the increase of INaL in heart failure 31, suggesting that NaV1.5 is

an important target for the antiarrhythmic effect of CaMKII inhibition 32. [Na+]i is also

maintained by the Na+/K+ ATPase pump. It was reported that in failing human hearts the

tissue concentration of the Na+/K+ ATPase pumps are reduced 33. Whether the functional
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capacity of the Na+/K+ ATPase pump in heart failure is altered remains inconclusive, as

some studies show unaltered maximum transport rate and affinity for Na+ in a rabbit heart

failure model 34 whereas the Na+/K+ ATPase pump was reduced in a rat heart failure

model 35.

Reduced SR Ca2+ release and increased RyR2 opening probability—RyR2, the

largest ion channel protein (560 kDa), exists as a homotetramer (~2.2 MDa). The

predominant isoform expressed in cardiac muscle is RyR2 36. RyR2 works as a multi-

protein Ca2+ release unit where the RyR2 Ca2+ channel is composed of four membrane

spanning subunits 37 coupled to various regulatory proteins. Calsequestrin, triadin 1, and

junctin bind to RyR2 at the luminal SR membrane face where they transmit information

about SR Ca2+ content to RyR2 38. It is known that congenital mutations in RyR2,

calsequestrin and triadin can cause increased SR Ca2+ leak, disorganized diastolic Ca2+

release, arrhythmias and sudden death 3940.

Under physiological conditions RyR2 opening probability is increased by the cytoplasmic

Ca2+ trigger from ICa 41. RyR2 activity is also regulated by multiple factors, including PKA,

CaMKII, protein phosphatases 1 and 2A, calmodulin, and FKBP12.6, which are associated

with the cytoplasmic face of RyR2. The Marks group demonstrated that PKA

phosphorylates RyR2 42 which enables the ‘fight or flight’ response by increasing RyR2

opening probability and [Ca2+]i
43. They also showed that hyperphosphorylation of RyR2 by

PKA (at serine 2808) causes an FKBP12.6-RyR2 dissociation, increased RyR2 opening

probability and SR Ca2+ leak in human 4244 and animal models of CHF 45, 4647, 48. In

addition their results also suggest that improved cardiac function by β-AR antagonist drugs

in failing human heart is associated with restoration of FKBP12.6 levels and repair of RyR2

channel leak 44. However, other groups reported conflicting results that PKA does not

increase RyR2 phosphorylation 49 and that phosphorylation at the S2808 site does not

mediate β-AR agonist induced cardiac response 5051 or dysfunction after myocardial

infarction52. These highly controversial results53 indicate that alternative mechanisms may

also be important for RyR2 dysfunction in heart failure.

CaMKII is activated by β-AR agonist stimulation 54 and increased ROS 55 and can

phosphorylate RyR2 at two sites: serines 2809 and 2814 56, although the 2814 site appears

to be preferred 57. CaMKII-dependent RyR2 phosphorylation increases diastolic SR Ca2+

release 58. Mice genetically lacking serine 2814 (S2814A) have an impaired force-frequency

relationship 59 and are resistant to MI-induced heart failure and arrhythmias60,61. It was also

shown that oxidative stress generated in the failing heart could directly alter RyR2 function

by post-translational modification causing its increased sensitivity to activation by luminal

Ca2+ 62. A growing body of evidence suggests that reduced Ca2+ release in failing

cardiomyocytes is a result of increased and improperly regulated activity of multiple Ca2+

handling proteins including CaV1.2, NaV1.5 and RyR2, all of which appeared to be targets

of CaMKII.
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Impaired Ca2+ sequestration during diastole

To achieve relaxation, cytosolic Ca2+ must be sequestered, mainly to the SR by SERCA2a 9.

Diastolic [Ca2+]i is increased in human heart failure, a condition that is likely related, at

least in part, to defects in cytosolic Ca2+ removal 63. Taken together with loss of

physiological SR Ca2+ release, elevated diastolic [Ca2+]i results in reduced contractile force,

impaired relaxation, and abnormal force–frequency relationship in human heart failure. The

sarcomere is the primary functional unit of cardiac muscle that is responsible for contraction

and force generation. During diastole sarcomeres are typically quiescent and show uniform

lengthening. However, in the failing heart sarcomere uniformity is lost 64. Failing

myocardium is marked by spontaneous diastolic SR Ca2+ release, leading to spontaneous

and highly variable diastolic sarcomere contractions 64, which significantly reduces

contractile force 65 and contributes to the loss of inotropic effects in CHF 66.

SR Ca2+ uptake is impaired in the failing human heart 6768, an outcome that is due to several

mechanisms. First, there are reduced expression and activity of SERCA2a in failing human

heart 69, 70. However, in some human failing hearts SERCA2a expression or activity is

normal 7172. Over-expression of SERCA2a can restore the Ca2+ handling and the contractile

function in animal models 73 and in human heart failure 74, 75, suggesting that repairing

SERCA2a expression may be a viable therapy for CHF. Defects in SR Ca2+ release may be

due to loss of normal ‘gain’ of ECC, a condition where a given ICa trigger elicits a lesser

amount of SR Ca2+ release 76. Comparisons of ECC gain require experimental conditions

that control for SR Ca2+ content. Nevertheless, failing human cardiomyocytes may have

preserved fractional SR Ca release13 despite reduced SR Ca2+ pump activity, SR Ca2+

content and systolic [Ca2+]i transients, suggesting that defects in ECC gain are not an

obligate aspect of failing myocardiocytes.

Second, reduced SR Ca2+ uptake could be due to increased inhibitory activity of PLN 77, 78.

PLN inhibits SERCA2a in its dephosphorylated form whereas in its phosphorylated form

(by PKA at serine-16 and CaMKII at threonine-17)79 PLN assembles into a pentamer that

lacks SERCA2a inhibitory activity.

Multiple studies suggest that phosphorylation of PLN is decreased in the failing human

heart, accounting for increased inhibition of SERCA2a 78, 80. For example, phosphorylation

of PLN at threonine 17 is decreased in ventricular myocardium due to increased

dephosphorylation by protein phosphatase 2B (PP2B), also called calcineurin, despite

increased activity of CaMKII in failing myocardium 81. PLN phosphorylation at serine 16 is

decreased due to increased activity of Type 1 protein phosphatase (PP1) in the failing human

heart 78. Several mutations in the human PLN gene (such as R9L, R9H, L39stop)82 have

been identified that provide important insights into PLN regulation of SERCA2a. Two

mutations (R9C and R14del) result in enhanced inhibition of SERCA2 by PLN, partly due to

decreased PKA-mediated phosphorylation 83, 84. The phenotypes of R9C or R14del carriers

include dilated cardiomyopathy and premature death 83, 84.

Another human mutation causing loss of function of PLN (Leu 39 stop) and uninhibited

SERCA2a activity also results in dilated cardiomyopathy and premature death 85. Genetic

manipulation of PLN in mouse models yielded similar and contrasting results compared to
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human mutations. PLN-KO mice showed enhanced cardiac contractile function with

increased affinity of SERCA2a for Ca2+, consistent with the concept that PLN down-

regulates myocardial contractility by suppressing SERCA activity 86. PLN knockout

prevented heart failure in a mouse model of dilated cardiomyopathy caused by deficiency of

the muscle-specific LIM protein (MLP) 8788. Gene therapy with antisense against PLN

improved contractile and diastolic function in isolated failing human cardiomyocytes 89.

However, PLN knockout in mice with severe cardiomyopathy due to transgenic over-

expression of CaMKII improved SR Ca2+ content and myocardial contraction but

nevertheless increased mortality, mitochondrial Ca2+ and myocardial cell death 90. Taken

together, these studies in mice and humans suggest that SERCA2a/PLN activity needs to be

maintained within certain boundaries to support physiological function and prevent

cardiomyopathy.

Another emerging regulator of SERCA activity is the Histidine-Rich Ca2+ Binding Protein

(HRC), a low-affinity, high- capacity Ca2+-binding protein located in the SR lumen 91. HRC

also affect RyR function through its binding to triadin and it was suggested that HRC may

mediate a cross-talk between SR Ca2+ -uptake and release. A human HRC variant (S96A)

with substitution of Ala in position 96 is associated with life-threatening ventricular

arrhythmias in dilated cardiomyopathy patients accompanied by a reduced [Ca2+]i transient

and a prolonged decay time 92. Transgenic overexpression of HRC in the heart decreases SR

Ca2+ uptake rates, suggesting that HRC inhibit SERCA2a and intracellular Ca2+ cycling and

promote progression to heart failure93. These studies suggest an important role of HRC in

maintaining Ca2+ homeostasis in the SR.

The relative contribution of NCX to cytoplasmic Ca2+ sequestration is increased in failing

myocardium, probably due to the depressed SR Ca2+ uptake 94. Expression of NCX in

human CHF has been reported to increase 10 or be unchanged 95. Because subsarcolemmal

[Na+]i is increased in failing ventricular myocytes, NCX current (INCX) current shifts from

inward to outward 96, which contributes to prolonged cytoplasmic [Ca2+]i transients, Ca2+

overload and diastolic dysfunction 229697. Thus, enhanced INCX may be adaptive to defects

in SERCA2a/PLN in CHF, while also contributing to subsarcolemmal [Na+]i and [Ca2+]i

overload in CHF.

ATP, mitochondrial Ca2+ uptake and retention

Adenosine triphosphate (ATP) is the predominant form of readily available energy in

myocardium, which consumes about 6 kg of ATP daily 98. The Ca2+ concentration gradient

between the extracellular and intracellular environments is massive, with approximately

10,000 fold higher extracellular than bulk cytoplasmic (~100 nM)99 [Ca2+]i; Maintaining

Ca2+ homeostasis constitutes a major ATP cost for cardiomyocytes. SERCA2a and the Na+-

K+ ATPase are amongst the largest energy consuming proteins 100. A proper equilibrium

between Ca2+ cycling and ATP production must be maintained to ensure proper intracellular

Ca2+ handling and a physiological range of myocardial performance 101102. Mathematical

modeling103, 104 and experiments in excised myocardial cell membrane patches using the

ATP sensitive K+ current (IKATP) as a read out for subsarcolemmal ATP103, 104 support a

view that ATP availability can be rate limiting under stress conditions, due to high local
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ATP consumption and compartmentalization. Thus, it is plausible that subcellular domains

of ATP deficiency contribute to myocardial dysfunction in CHF.

CHF is associated with abnormal energy metabolism including decreased energy production

and impaired energy utilization 105–107, which appear to adversely affect [Ca2+]i

homeostasis 107101. On one hand, reduced ATP/ADP ratio, due to mitochondrial

dysfunction, caused impaired function of SERCA2a in animal models of CHF 108. On the

other hand, Ca2+ transport regulates ATP production in mitochondria 109, 110. Some

validated clinical therapies for CHF improve myocardial energetics and normalize [Ca2+]i

homeostasis. For example, β-AR antagonists were designed by Sir James Black, in part, to

reduce myocardial O2 consumption with a goal of preventing myocardial infarction 111. β-

blockers, which decrease energy consumption, have been shown to normalize the contractile

function and Ca2+ handling in failing human hearts 112, 113. Left ventricular assist devices,

which decrease the workload of the heart, improved Ca2+ handling in CHF patients 14, 114.

Restoration of mitochondrial Ca2+ homeostasis by unloading mitochondrial Ca2+ restored

cardiac energetics including ATP synthesis 115. Thus, CHF appears to be a condition that

arises, at least in part, by interrelated defects in [Ca2+]i homeostasis and metabolism and

successful CHF therapies often restore physiological [Ca2+]i homeostasis and metabolism.

Mitochondrial Ca2+ regulates cell metabolism and cell death

Mitochondria comprise about 20–30%116 of cardiac mass where they are essential for

providing ATP to meet the heightened energy demand for cardiac function. Ca2+ appears to

be a critical second messenger for communicating cellular energy demands to mitochondria

for the purpose of matching ATP production by oxidative phosphorylation with metabolic

requirements 110. Oxidative phosphorylation is a Ca2+ regulated process, as Ca2+ increases

the activity of key tricarboxylic acid dehydrogenases involved in producing reducing

equivalents (NADH/NADPH) for electron transport 117. Metabolic regulation by

mitochondrial Ca2+ uptake, however, is not limited to the effects on dehydrogenases. The

aspartate/glutamate exchangers located at the inner mitochondrial membrane have Ca2+

binding domains, which support increased ATP production in response to local and temporal

Ca2+ signals 118, 119. Furthermore, the close physical association between mitochondria, SR

and plasma membrane Ca2+ channels ensures prompt Ca2+ transfer to the mitochondrial

matrix, which stimulates oxidative phosphorylation in response to activation of ATP-

consuming processes in the cytosol 120, 121.

Compared to the SR, mitochondria have a lower affinity but a higher capacity for taking up

Ca2+. Mitochondria constitute an important buffer for cytoplasmic Ca2+122120, but excessive

accumulation of mitochondrial Ca2+ causes mitochondrial damage and myocardial death 123

(Figure 3). Excessive mitochondrial [Ca2+] ([Ca2+]m) and ROS 124 trigger mitochondrial

permeability transition pore (mPTP) opening and subsequent dissipation of inner

mitochondrial membrane potential (ΔΨm) 125 and release of apoptotic mediators such as

cytochrome C 126, leading to cell death 127, 128. The mPTP appears to be an important but

incompletely understood target for CaMKII 129. Our group recently reported that

cardiomyocytes from mice with transgenic expression of a mitochondrial-targeted CaMKII

inhibitory protein (CaMKIIN) 130 were able to sustain higher mitochondrial Ca2+ entry prior
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to mPTP opening and were resistant to programmed cell death from ischemia/reperfusion-,

catecholamine- and myocardial infarction-related injury, suggesting that CaMKII promotes

mPTP opening and myocardial death 131(Figure 3).

Mitochondria are considered a key source for pathological increases in ROS, mainly as a

result of electron transport chain uncoupling at the level of complexes I and III124, 132. On

one hand, oxidative stress could damage mitochondrial DNA and proteins by forming

oxidative adducts, leading to mitochondrial dysfunction, impairing myocardial energetics in

heart failure. On the other hand, in heart failure impaired mitochondrial bioenergetic

function with depressed electron transport systems could cause increased oxidative

stress 133, 134. Thus, mitochondrial dysfunction and ROS are tightly linked elements of an

interdependent, feed forward circuit that promotes the pathogenesis of heart failure.

Mitochondrial Ca2+ uniporter—The mitochondrial Ca2+ uniporter 135 is a Ca2+

selective channel residing in the inner mitochondrial membrane and the major mitochondrial

Ca2+ entry pathway 136–138. MCU can be located in close proximity to the SR 139 and thus

exposed to high [Ca2+] (~20–50 μM) 140. Although the existence of the MCU was

established over 50 years ago 141, it was not until very recently that the molecular identity of

MCU was discovered. MCU consists of 2 predicted membrane-spanning domains with a

linker/pore loop to form a functional channel137, 138. Over-expression of MCU increases cell

death in response to challenge by pro-apoptotic stimuli,138 whereas suppressing MCU with

Ru360, a pharmacological antagonist related to ruthenium red, protects against ischemia-

reperfusion injury 142. We recently found that MCU is a phosphorylation substrate for

CaMKII and that CaMKII mediated increases in MCU current (IMCU) required serines 57

and 92 when MCU was expressed heterologously, while mitochondrial-targeted CaMKII

inhibition reduced IMCU in myocardium 131. The role of CaMKII signaling to MCU in heart

failure is uncertain at this time, but mitochondrial CaMKII inhibition is protective against

myocardial death in response to ischemia-reperfusion injury, myocardial infarction and toxic

doses of isoproterenol 131, suggesting protective effects of mitochondrial CaMKII inhibition

may be mediated, at least in part, by reducing IMCU.

The MICU1 is a MCU binding partner that has a single membrane spanning domain and 2

Ca2+ binding EF hand domains 137, 143. Some recent data suggest that MICU1 is essential

for setting the Ca2+ dependence of IMCU 138, 143 and preserving normal [Ca2+]m by acting as

a gatekeeper for Ca2+ uptake and preventing mitochondrial Ca2+ overload and excessive

oxidative stress. 144 In addition, MCUR1 (mitochondrial calcium uniporter regulator 1) was

also recently shown to be required for MCU-dependent mitochondrial Ca2+ uptake and

maintenance of normal cellular bioenergetics 145. Thus, MCU appears to be a Ca2+ and

CaMKII-regulated ion channel associated with various accessory protein subunits.

Very few studies have investigated whether or how mitochondrial Ca2+ uptake, transport

and homeostasis are altered in heart failure. Limited indirect evidence suggests that

mitochondrial Ca2+ uptake is reduced in failing cardiac myocytes because there is reduced

open probability of Ca2+ conductance pathways in mitoplasts isolated from failing

myocardium and decreased ΔΨm146, the electrical driving force for mitochondrial Ca2+

uptake 107. There is an emerging view that defective cytosolic Na+ and Ca2+ homeostasis
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affects mitochondrial Ca2+ transport in heart failure. Mitochondrial Ca2+ efflux is mainly

enabled by the mitochondrial Na+/Ca2+ exchanger (mNCE) 102. Elevated [Na+]i stimulates

mNCE and mitochondrial Ca2+ efflux and reduces steady-state [Ca2+]m 147. Thus,

mitochondria are a critical interface between Ca2+, metabolism and are key determinants of

myocardial survival in response to clinically relevant forms of pathological stress. A

growing body of evidence suggests that mitochondria play a central role in heart failure.

Transverse tubules

Transverse tubules are deep invaginations of the ventricular myocyte cell membrane

(sarcolemma) where voltage-gated Ca2+ channels are richly expressed and tightly coupled

with SR RyR2, forming dyads to enable Ca2+-induced Ca2+ release. There is emerging

evidence that normal transverse tubular ultrastructure is disrupted in heart failure 148149.

Transverse tubules can become spatially dispersed, leaving RyRs “orphaned” from their

dyadic association with CaV1.2 150, which impairs Ca2+-induced Ca2+ release. In addition,

Ca2+ transients in these regions will depend on Ca2+ diffusion and propagated Ca2+ release,

thus contributing to dysynchronous Ca2+ sparks, inefficient ECC and a propensity toward

arrhythmias. Recent studies suggest that junctophilin 2 may play a crucial role in

maintenance of normal transverse tubular ultrastructure151, 148 and association of CaV1.2

with RyR2151, 152, while targeted suppression of microRNA, which inhibits junctophilin,

prevents disruption of T tubule structure and transition to heart failure from hypertrophy 153.

β-AR antagonists 154 and sildenafil 155 can defend against transverse tubular disruption in

animal models of heart failure. Thus, improved understanding of the interface between

membrane and regulatory cytoskeletal proteins may lead to new therapeutic targets to

preserve cellular architecture that is required for physiological Ca2+ homeostasis.

Myofilament and cytoskeletal proteins

Abnormal Ca2+ homeostasis and myofilament function impairs cardiac contractile function

and triggers ventricular arrhythmias in heart failure 156. Ankyrins are adapter proteins that

attach membrane proteins to the spectrin-actin based membrane skeleton and thus intimately

involved in ion channel and transporter signaling complexes in the cardiovascular

system 157. Ankyrin dysfunction has been linked with abnormal ion channel and transporter

membrane organization and human arrhythmias 158, 159. Genetic defects in ankyrins cause

altered Na+ and Ca2+ transport and enhanced RyR2 openings contributing to loss of [Ca2+]i

homeostasis 160, activation of CaMKII and arrhythmias161. It was recently reported that

ankyrin B plays a cardioprotective role against ischemia induced cardiac dysfunction and

ankyrin-B levels are decreased in human heart failure 162.

Titin is a large myofilament protein that spans half of the sarcomere and functions as a

molecular spring that provides passive stiffness to cardiac myocytes 163. Titin isoform

composition and phosphorylation regulates myocardial diastolic function 163. Titin

expression was reported to be increased in pressure-overload hypertrophy but decreased in

decompensated CHF 164, 165, suggesting that titin could contribute to the loss of compliance

and decreased contractile function featured in heart failure. Titin knockout mice

demonstrated reduced SR Ca2+ uptake accompanied by reduced levels of PLN and

SERCA2a and developed cardiac hypertrophy and heart failure 166. CaMKII phosphorylates
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titin and modulates passive force generation in normal and failing myocardium 167.

Deranged CaMKII-dependent titin phosphorylation occurs in heart failure and contributes to

altered diastolic stress 167. These findings suggest that titin is a participant in Ca2+-related

defects in heart failure and suggest that titin could emerge as a target for future heart failure

therapies.

Dystrophin is a cytoplasmic protein and a crucial part of the dystroglycan complex, which

consists of tightly associated transmembrane and cytoskeletal proteins that serve to connect

the cytoskeleton to the extracellular matrix 168. Mutation of the dystrophin gene and absence

of dystrophin causes Duchnne muscular dystrophy (DMD), a fatal X-linked disease169,

which results in a skeletal as well as a dilated cardiomyopathy. Heart failure accounts for

30% of the mortality in DMD patients170. An MDX mouse, which is a model of DMD and

lacks the protein dystrophin, has decreased levels of SR luminal Ca2+ -binding proteins 171,

decreased SERCA2a expression 172, and an increase in resting [Ca2+]i
173. Patients with

DMD are at increased risk for fatal cardiac arrhythmias 170, 174. MDX mice were shown to

have “leaky” RyR2 due to S-nitrosylation of the channel and calstabin2 depletion 175.

Suppressing the RyR2-mediated diastolic SR Ca2+ leak by inhibiting calstabin2 depletion

prevented and fatal sudden cardiac arrhythmias in DMD mice, suggesting that leaky RyR2

trigger ventricular arrhythmia in DMD 175. Recent studies show that CaMKII inhibition or

interbreeding in to a genetic background with a knock in RyR2 S2814A mutation that is

resistant to CaMKII prevents arrhythmogenic Ca2+ waves and ventricular tachycardia in

MDX mice 176, suggesting that CaMKII phosphorylation at S2814A of RyR2 contributes to

the arrhythmia in MDX mice and possibly in DMD patients. Combined together, these

studies suggest that myofilament and cytoskeletal proteins are intimately involved in Ca2+

homeostasis and contribute to pathogenesis of heart failure and arrhythmias.

III: Alterations in regulatory mechanisms in heart failure

CaMKII

CaMKII is a multifunctional serine-threonine protein kinase that is abundant in nerve and

muscle. There are 4 different CaMKII encoding genes with each encoding a distinct

CaMKII isoform (α, β, γ, δ). CaMKIIδ appears to be the main isoform expressed in the heart

but CaMKIIγ is also present 177. Whether these two main isoforms have selective roles in

cardiac pathophysiology is unclear at this point, as there are very few studies investigating

the role of CaMKIIγ. Transaortic banding induced increased expression of both CaMKIIδ

and CaMKIIγ isoforms178 and conditional double knockout of CaMKIIδ and CaMKIIγ in

caused decreased phosphorylation of target proteins167. A recent study suggests that

CaMKIIγ is enriched in mitochondria179. CaMKII connects intracellular Ca2+ signaling to

ECC and regulates both SR Ca2+ uptake and release (Figure 2). CaMKII acts on multiple

Ca2+ homeostatic proteins involved in ECC 32 including voltage-gated Ca2+ channels16,

RyR2 180 and PLN 181. In general, CaMKII-mediated phosphorylation of Ca2+ homeostatic

proteins enhances their activity and promotes performance of physiological events such as

ECC and fight/flight mechanical and heart rate responses.

CaMKII consists of stacked hexamers and each monomer consists of an N-terminus

catalytic domain and a C-terminus association domain that flank a core regulatory
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domain 182. The “hypervariable” region located between the association and regulatory

domains is likely responsible for tuning the Ca2+ sensitivity of CaMKII activation. 182

CaMKII is activated when [Ca2+]i binds to calmodulin (CaM) causing conformational

changes that release the catalytic domain from the negative regulation by the autoinhibitory

region of the regulatory domain 183.

Under diastolic, resting [Ca2+]i in the presence of low ROS, CaMKII is enzymatically

inactive due to the binding of catalytic domain to an autoinhibitory region. Sustained

activation of CaMKII by binding to calcified calmodulin (Ca2+/CaM) leads to threonine 287

autophosphorylation (the numbering varies slightly between isoforms), CaM trapping and

CaMKII activation that is autonomous from Ca2+/CaM (Figure 4) 184. Ca2+/CaM

autonomous (constitutively active) CaMKII is also generated by oxidation of paired

regulatory domain methionines (281/282) 55. In this setting, oxidized CaMKII resets its

Ca2+ sensitivity so that lower levels of intracellular Ca2+ are required for initial

activation 185. Thus, both threonine 287 autophosphoryation and methionine 281/282

oxidation can convert CaMKII into a constitutively active enzyme. The constitutively active

forms of CaMKII appear to be particularly effective at driving myocardial disease

phenotypes 2118618721, 188; Thus, CaMKII is a highly regulated signal but under pathological

stress CaMKII undergoes post-translational modifications that convert it into a Ca2+/CaM

autonomous enzyme with the potential to promote heart failure and arrhythmias..

Chronic and excessive neurohormonal activation contributing to the progression of CHF

causes increased [Ca2+]i and ROS 189, 190, which causes sustained activation of CaMKII.

Increased myocardial CaMKII activity and expression have been found in various animal

models 191, 192 and in patients with heart failure 193. Mice with myocardial transgenic

CaMKII over-expression develop heart failure and premature sudden death 194; CaMKII

activation by β–AR stimulation causes fetal gene induction, pathological hypertrophy 54, 195,

myocardial apoptosis 196, arrhythmia 197 and worsening heart failure after myocardial

infarction (MI) 55. Angiotensin II activates CaMKII by methionine oxidation and promotes

cardiomyocyte death 18555 that contributes to sinus node dysfunction 187, a frequent

counterpart to heart failure 198. Aldosterone activates CaMKII by methionine oxidation and

CaMKII activation by aldosterone leads to increased death after MI by increasing the

propensity to myocardial rupture. Intriguingly, excessive oxidized CaMKII activates a

myocyte enhancer factor 2 transcriptional signaling pathway to increase myocardial

expression of matrix metalloproteinase 9 that contributes to myocardial matrix instability

and sudden death due to post-myocardial infarction cardiac rupture 186.

We recently found that hyperglycemia also leads to increased methionine 281/282 oxidized

CaMKII in diabetic patients and in mice and increased oxidized CaMKII is a necessary

signal for diabetes-associated excess mortality in a mouse model of MI188. We found that

mitochondrial ROS was increased in cardiac myocytes exposed to hyperglycemia and that

mitochondrial-targeted antioxidant therapy or a knockin mutation of CaMKIIδ to prevent

oxidative activation (M281/281V) were both effective at preventing excess, diabetes-

attributable mortality after MI. Importantly, CaMKII inhibitors significantly improved the

force frequency relationship in failing human cardiomyocytes 199. CaMKIIδ−/minus;

knockout mice are resistant to myocardial hypertrophy and pressure overload-induced heart
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failure200, 201 and mice with transgenic myocardial CaMKII inhibition are resistant to heart

failure from MI. 57 Taken together, this evidence indicates that CaMKII plays an important

role in connecting upstream signals, such as neurohumoral activation, hyperglycemia,

ischemic injury and infarction with defective Ca2+ signaling and downstream pathological

outcomes important for CHF.

PKA

PKA is the principal upstream kinase activated by β-AR agonists. There are multiple β-AR

subtypes, including β1-, β2-, and β3-ARs 202, 203. β-ARs belong to the large family of G

protein-coupled receptors with seven transmembrane domains 204 and contain

phosphorylation sites 205, which serve as targets for protein kinases including PKA and

PKC 206. The binding of circulating adrenergic amine agonists to β-ARs activates adenylate

cyclase and simulates cyclic adenosine monophosphate (cAMP) production to release the

catalytically active subunit of PKA.

PKA, in turn, catalyzes phosphorylation of multiple Ca2+ regulatory proteins including PLN,

L-type Ca2+ channels, and RYR2. Under physiological conditions activation of the β–AR

signaling pathway through PKA stimulates Ca2+ influx and increases SR Ca2+ uptake and

storage by the SR, leading to increased systolic [Ca2+]i transients and thus increased

contractile function and lusitropy 4. However, in the failing heart, chronically elevated

adrenergic agonist activity leads to down-regulation of β1-AR signaling with decreased β2-

AR density 207208 and uncoupling of β2 AR from downstream effector molecules, including

Ca2+ regulatory target proteins such as PLN 209, leading to inefficient ECC and decreased

contractile function. These changes impair the ability of the failing heart to increase

contractility to meet hemodynamic demands.

Widely established benefits of β-AR antagonist drugs in treating heart failure 44 strongly

support that altered β-AR signaling is maladaptive and promotes heart failure progression.

However, the mechanisms of therapeutic benefit for β-AR antagonist drugs are likely to be

diverse. β-AR antagonists preserve transverse tubular ultrastructure 154, reverse RyR2

hyperphosphorylation 44, 210, and decrease SR Ca2+ leak 44, 210, leading to increased

contractility in heart failure. In addition, excessive β-AR agonist stimulation causes

apoptosis via activation of a mitochondrial death pathway 211 while β-AR antagonists such

as carvedilol can protect mitochondria from oxidative stress-induced mitochondrial

permeability transition pore (mPTP) opening 212213.

PKA-dependent β-AR signaling desensitizes after sustained β1-AR agonist stimulation 214.

In contrast, CaMKII signaling in ECC is persistent and may be necessary to sustain positive

inotropic actions of prolonged catecholamine signaling 215. Epac is a guanine nucleotide

exchange protein that directly binds to and is activated by cAMP in parallel to the classical

PKA signaling pathway. Epac was shown to mediate β-AR induced cardiomyocyte

hypertrophy 216, 217 and arrhythmias218, modulate cardiac nuclear Ca2+ signaling by

increasing nuclear Ca2+ through phospholipase C, inositol trisphosphate and CaMKII, and

activate the transcription factor MEF2 219. A recent study demonstrated that Epac may

mediate cardioprotection from cell death induced by β-AR activation 220. Thus, β-AR

stimulation activates multiple signaling pathways including cAMP/PKA, cAMP/Epac and
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the CaMKII pathway. In our view, it is not yet clear how much of the therapeutic benefit of

β-AR antagonist drugs is due to reduced PKA activity and what portion is attributable to

reduction in the activity of other downstream signals, such as CaMKII.

PKC

Protein kinase C is a family of serine-threonine protein kinases that are present in a wide

variety of tissues, including myocardium. PKCα is the most abundantly expressed isoform

of the myocardial PKC family. RACKs (receptor for activated c kinase) are isoform

selective anchoring proteins for PKCs 221. RACKs are important for determining the

subcellular localization of PKC isoenzymes upon their activation and modulate their

function 221. PKCα plays an important role in regulating myocardial contractility. For

example, mice with PKCα deletion demonstrate an increase in [Ca2+]i transients and

contractility, while overexpression of PKCα diminishes contractility 222. PKCα knockout

mice are protected from pressure overload induced heart failure and from dilated

cardiomyopathy induced by deleting the gene encoding muscle LIM protein (Csrp3), and

from cardiomyopathy associated with overexpression of PP1222. One experimentally

validated pathway for PKCα action to decrease [Ca2+]i transients is that PKCα suppresses

SERCA2a activity by phosphorylating inhibitor 1 (I-1) resulting in increased PP1 activity

and dephosphorylation of PLN 222. Decreased SERCA2a activity thus reduces SR Ca2+ load

leading to reduced Ca2+ release during systole, hence reducing contractility. Other PKC

isoforms (delta) and (epsilon) may play a significant role in promoting hypertrophy 223, 224.

Taken together, these results from animal models support a potential role for PKC in

promoting heart failure progression.

S100A1

S100A1 belongs to the S100 protein family, a group of EF-hand containing Ca2+-binding

proteins. S100A1 shows highest expression in human cardiac muscle and is preferentially

expressed in the left ventricle. S100A1 has a molecular weight of 10.4 kDa and contains two

functional EF-hand Ca2+-binding motifs. Upon Ca2+ binding S100A1 undergoes a

conformational change to expose a hydrophobic pocket for binding to target proteins 225.

The Ca2+ binding affinity of S100A1 is tightly regulated by post-translational modifications,

including S-nitrosylation and S-glutathionylation of a cysteine residue in the C-terminal

region 226227, 228. Either modification enhances Ca2+ affinity by several orders of

magnitude, which augments the ability of S100A1 to sense Ca2+ oscillations over a wide

dynamic range 226227, 228. S100A1 has emerged as a key regulator of Ca2+ cycling and

cardiac contractile function 226229. S100A1 enhances SR Ca2+ uptake and increases SR Ca2+

content 110229. S100A1 also directly regulates RyR2 function 229, 230. More recently,

S100A1 was found to reside in mitochondria where it stimulates ATP synthase (complex V)

activity and promotes the adenosine nucleotide translocator function to increase ATP

synthesis and mitochondrial ATP efflux in cardiomyocytes 110, 231.

S100A1 knockout mice have impaired contractility and show enhanced proarrhythmogenic

susceptibility to acute β-AR agonist stimulation and pressure overload induced by chronic

transaortic constriction 232233. There is impaired SR Ca2+ uptake, increased SR Ca2+

leakage and a reduced SR Ca2+ load in heart tissues from the S100A1 knockout mice 234235.
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The S100A1 knockout mice also demonstrated excessive mortality and accelerated CHF

after MI as well as increased post-MI cardiac remodeling 234235. In contrast, mice with

myocardial S100A1 over-expression showed enhanced contractile responses to β-AR

stimulation, improved [Ca2+]i homeostasis, survival and preserved left ventricular function

after MI 235. In human heart samples with dilated and ischemic cardiomyopathy, S100A1

mRNA and protein expression was found to be down regulated 236237. Decreased S100A1

expression levels were also shown in experimental HF animal models and correlate with the

severity of heart failure and mortality 238235. These results suggest that S100A1 plays an

important role in regulating Ca2+ cycling and contractile function while loss of S100A1 may

contribute to heart failure in the setting of pathological stress.

Calcineurin

Calcineurin, also known as protein phosphatase 2B (PP2B), is a Ca2+/CaM-activated, serine-

threonine phosphatase and the first Ca2+ dependent signaling molecule explicitly linked to

myocardial hypertrophy and heart failure239240. Calcineurin signaling stimulates cardiac

hypertrophy 241242242 and remodeling through activation of the nuclear factor of activated T

cells (NFAT) transcription factor. Upon calcineurin-mediated dephosphorylation NFAT

translocates to the nucleus and activates cardiac transcription 243. The calcineurin- NFAT

signaling pathway in myocardium appears to be activated only when there are pathological

increases in [Ca2+]I, whereas it is not activated during physiologic hypertrophy induced by

exercise or pregnancy 244, suggesting that calcineurin signaling is tightly coupled with

pathological defects in Ca2+ homeostasis.

There is increased calcineurin activity and/or expression in animal models 241 and patients

with myocardial hypertrophy and heart failure 245239, 246. Over-expression of calcineurin

causes myocardial hypertrophy, heart failure and premature death 240, 244. Calcineurin

inhibition by cyclosporin prevented hypertrophy in mice genetically predisposed to develop

hypertrophic cardiomyopathy and in a rat model of pressure overload-induced

hypertrophy 247. Calcineurin Aβ-knockout mice, with a 80% decrease in calcineurin

enzymatic activity in the heart, show decreased hypertrophic responses induced by pressure

overload or agonists infusion including angiotensin II and isoproterenol 248. Intriguingly,

CaMKII expression and activity are increased in calcineurin transgenic mice 197. CaMKII

inhibition improved contractile function, reduced arrhythmias and decreased mortality in

mice with myocardial transgenic over-expression of a constitutively active form of

calcineurin without substantially reducing calcineurin-evoked myocardial

hypertrophy 197, 244. We interpret these findings to suggest that myocardial dysfunction and

high mortality in calcineurin transgenic mice are at least in part attributable to downstream

activation of CaMKII and independent of myocardial hypertrophy. The interactions between

calcineurin and CaMKII are complex, as highlighted by the finding that CaMKII catalyzed

phosphorylation of calcineurin prevents full activation of calcineurin by inhibiting

Ca2+/CaM binding. Thus, CaMKII may act as an antihypertrophic agent in the context of the

calcineurin/NFAT pathway 249. Overall, these findings support a view that calcineurin is an

important regulator of cardiac hypertrophy and heart failure but leave open the question of

which downstream events are critical for the cardiomyopathic actions of calcineurin.
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IV. Arrhythmias as a common cause of death in heart failure

Heart failure, especially in patients with left ventricular ejection fractions less than 30%, is

associated with a high rate of arrhythmia- induced sudden death 250. Various factors appear

to enhance the probability of arrhythmias, including defective [Ca2+]i homeostasis. Many

ion channels respond to loss of normal [Ca2+]i homeostasis by contributing to cell

membrane hyperexcitability. However, as exemplified by the Cardiac Arrhythmia

Suppression Trial (CAST) 251 and The Survival With Oral d-Sotalol (SWORD) 252, ion

channel antagonist therapies are not effective in preventing sudden death in high risk

patients. In contrast, neurohumoral antagonist drugs that serve as mainstay therapeutics for

heart failure, such as β-adrenergic 253, angiotensin II 254, and mineralocorticoid receptor

antagonists 255, are effective in reducing sudden death. These findings suggest that signals

that modulate ionic currents are better therapeutic targets than ion channels.

Electrical remodeling

Proarrhythmic electrical remodeling is a term used to describe multiple changes in ionic

currents that collectively lead to action potential and QT interval prolongation and favor

arrhythmias in failing ventricular myocardium. Prolongation of the action potential plateau,

in particular, contributes to a proarrhythmic substrate for non-inactivating components of

NaV1.5 current 30256 and CaV1.2 channels in a high activity gating mode 16. A

comprehensive review of electrical remodeling in heart failure is beyond the scope of this

review but has been recently published elsewhere 257. Voltage-gated K currents (IK) are the

major driving force for myocardial membrane repolarization 258 and failing myocardium is

consistently reported to show reduced repolarizing IK that contributes to proarrhythmic

action potential and QT interval prolongation 259. Interestingly, excessive CaMKII activity

also contributes to reduced IK in failing myocardium by phosphorylation of the pore-

forming α-subunit of the voltage-dependent K+ channel 4.3 (Kv4.3) at Ser550, which

encodes a class of rapidly inactivating IK including the transient outward current in the

heart 260.

Cardiac ATP-sensitive K+ (KATP) channels are metabolic sensors activated in response to

various forms of cardiac stress, including ischemia and neurohormonal activation, leading to

membrane hyperpolarization, decreased action potential duration and contractility261. Hence

KATP channels play an important role in improving cellular energy efficiency and stress

resistance. Association of KATP with Ankyrin B via the C-terminus of Kir6.2, the pore

forming unit, was shown to be important for KATP channel trafficking and membrane

metabolic regulation 262. One recent study suggests that CaMKII couples the surface

expression of cardiac KATP channels with Ca2+ signaling to regulate energy efficiency and

stress resistance, as Ca2+- dependent activation of CaMKII results in phosphorylation of

Kir6.2, the pore forming subunit and promotes internalization of KATP channels 263.

CaMKII also affects trafficking of a variety of voltage-gated K+ currents with the net effect

of reducing repolarizing K+ current and prolonging the action potential 264. These findings

suggest that [Ca2+]i may feedback to control multiple ionic currents through activation of

CaMKII and that excessive CaMKII activity in CHF contributes to the proarrhythmic
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substrate and enhanced risk for sudden death in structural heart disease by altering ion

channel function and membrane expression.

CaMKII and arrhythmia

Heart failure is a condition of increased oxidant stress, loss of [Ca2+]i homeostasis and

activation of CaMKII. CaMKII exerts proarrhythmic effects through actions at multiple

protein targets that are key components of Ca2+ homeostasis including CaV1.2 26516,

NaV1.5 31, 256, and RyRs 57 (Figure 5). CaMKII increases phosphorylation of a CaV1.2 β

subunit (β2a) at Thr498 265 leading to high activity mode 2 gating, intracellular Ca2+

overload and EADs 16. Phosphorylation of RyR2 at Ser2814 by CaMKII increases diastolic

SR Ca2+ leak 57, which is proarrhythmic 266 by triggering DADs. CaMKII acts on Nav1.5,

the predominant cardiac voltage-gated Na+ channel, and increases INaL 25630, 31, which

prolongs action potential and triggers early EADs 25631. CaMKII inhibition has been shown

to prevent or suppress ventricular arrhythmias in myocardial tissues and animal

models 266, 267. This evidence consistently suggests that CaMKII can promote arrhythmias

and sudden death and that CaMKII inhibition can reduce or prevent arrhythmias.

Reverse Excitation-Contraction Coupling

Diseased myocardium is non-uniform in ECC with damaged and non-damaged regions as

well as inhomogeneous border zone areas bridging damaged and healthy tissue.

Arrhythmogenic contractile waves were observed in non-uniform failing myocardium 268. A

potential mechanism underlying this phenomenon is reverse ECC 269, a process during

which abnormal contractions of damaged regions causes regional rise of [Ca2+]i leading to

arrhythmogenic contractile waves. Aftercontractions appear to be initiated by the weak and

damaged region during regular contractions and propagate into neighboring

myocardium 270. These contractile waves are likely due to mechanical effects of damaged

myocardium, such as stretching and release, and regional elevation of [Ca2+]i as a result of

damage 271. When cardiac muscle is damaged, intracellular Ca2+ waves are initiated locally,

but propagate into adjacent tissues 272. Diffusing Ca2+ ions activate neighboring SR, which

in turn triggers further Ca2+ release from SR. These Ca2+ waves may give rise to premature

contractions and triggered arrhythmias 273. Purkinje fibers are particularly prone to

proarrhythmic [Ca2+]i waves and may serve as an arrhythmia focus for injured

myocardium 274. Another potential mechanism underling arrhythmogenic Ca2+ waves are

the activation of stretch-activated channels (SACs), which are nonselective cation channels

activated by mechanical stress 275. In the MDX mouse, lack of dystrophin results in

increased activity of SACs and increased resting intracellular [Ca2+]i in skeletal muscles 276.

SACs have also been reported in ventricular cardiomyocytes 277 and are proposed to play a

role in tachycardia-induced chronic heart failure 278. Thus, the role of Ca2+ in maladaptive

contractions may be proarrhythmic.

V. Therapeutic targets for heart failure

Current drug therapies for CHF are mainly designed to counteract over-activation of the

sympathetic and renin angiotensin–aldosterone systems, which is known to prolong

survival 253254255. Advanced CHF associated with increased risk of fatal arrhythmias can

Luo and Anderson Page 16

Circ Res. Author manuscript; available in PMC 2014 August 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



also be managed by surgically implantable cardioverter defibrillator, cardiac

resynchronization therapy (CRT) and mechanical ventricular assist devices. However,

currently available pharmacological and device therapies are far from ideal as they fail to

fully correct underlying molecular abnormalities involved in systolic and diastolic

dysfunction as well as adverse structural and proarrhythmic electrical remodeling. Given the

central role of Ca2+ signaling in the progression of CHF, restoration of normal [Ca2+]i

homeostasis is a promising strategy to forestall progression and improve function of failing

cardiomyocytes.

RyR2

CHF is a condition of leaky RyR2, decreased SR Ca2+ content and reduced [Ca2+]i

transients. Thus, leaky RyR2 can contribute to myocardial dysfunction and

arrhythmias 58, 244. Over-expression of the RyR2 regulatory protein FKBP12.6 caused

increased SR Ca2+ content and improved myocyte shortening in isolated

cardiomyocytes 244. RyR2 leak can also potentially be directly targeted by pharmacologic

agents shown to improve cardiac function 244 and prevent arrhythmias 283. For example,

K201, a benzothiazepine derivative and inhibitor of RyR2 was shown to stabilize RyR2s and

decrease SR Ca2+ leak 284. So-called Rycals, K201-congeners, have emerged as promising

agents for targeting RyR2 and reducing arrhythmias and heart failure 36. Another Rycal

compound, ARM036, also a benzothiazepine derivative, is in Phase II trials for Heart

Failure and catecholaminergic polymorphic ventricular tachycardia. It is anticipated that

information on the potential clinical benefits of pharmacologic therapy aiming to modulate

RyR2 function will soon become available.

CaMKII

CaMKII links Ca2+ homeostasis and cardiac function in myocardium under physiological

conditions. Under pathological conditions such as heart failure characterized by excessive

neurohormonal activation and oxidative stress, CaMKII activation is sustained, which

promotes diastolic Ca2+ leak and arrhythmias. Animal studies consistently demonstrate that

CaMKII inhibition reduces heart failure and arrhythmias, reducing or preventing sudden

death. In our view, CaMKII is a highly validated target that connects to most or all aspects

of defective [Ca2+]i homeostasis in heart failure. However, to determine whether the

experimentally observed benefits of CaMKII inhibition are applicable to human heart

failure, CaMKII inhibitory drugs with drug-like properties and adequate specificity and

safety will need to be developed.

PKC

PKCα has been identified to have critical roles in the pathogenesis of heart failure. Deletion

of the PKCα gene 222285 or inhibition with drugs 286287135 have shown dramatic protective

effects against the development of heart failure of various etiologies including ischemia,

pressure overload or dilated cardiomyopathy induced by deleting LIM protein in animal

models. However, clinical trials with PKC inhibitors or RACK inhibitor peptides were

largely disappointing for improving heart failure 288 or reducing myocardial injury in MI

patients 289290.
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Transfer of genes encoding S100A1 and SERCA2a are discussed elsewhere in this

compendium (MOST)

OVERALL CONCLUSION

It is now clear that impaired [Ca2+]i homeostasis is a key feature of heart failure that

contributes to contractile dysfunction and arrhythmias. Defective Ca2+ homeostasis in heart

failure is most often the result of altered expression and function of a group of [Ca2+]i

handling proteins, ion channels and enzymes.. Numerous laboratories have contributed to

the improved understanding of these pathways and this new knowledge has bolstered the

quest to develop novel and improved therapeutics. We expect that the next several years will

witness the initial results of several promising heart failure therapies designed to correct

defects in myocardial [Ca2+]i homeostasis.
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Nonstandard Abbreviations and Acronyms

CHF Congestive heart failure

ECC Excitation-contraction coupling

SR Sarcoplasmic reticulum

RyR2 Ryanodine receptor

INa Inward Na+ current

SERCA2a Sarcoplasmic-endoplasmic reticulum Ca2+ ATPase

NCX Na+/Ca2+ exchanger

LTCC L-type calcium channels

PKA Protein kinase A

PKC Protein kinase C

CaMKII Ca2+ and calmodulin-dependent protein kinase II

βAR B adrenergic receptor

EADs Early afterdepolariazations

DADs Delayed afterdepolarizations

PP2B Protein phosphatase 2B

PP1 Type 1 protein phosphatase
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MLP Muscle-specific LIM protein

HRC Histidine-Rich Ca2+ Binding Protein

INCX NCX current

ATP Adenosine triphosphate

IKATP ATP sensitive K+ current

NADH/NADPH Nicotinamide Adenine Dinucleotide/Nicotinamide Adenine

Dinucleotide Phosphate Hydrogen

mPTP Mitochondrial permeability transition pore

CaMKIIN CaMKII inhibitory protein

MCU Mitochondrial Ca2+ uniporter

mNCE Mitochondrial Na+/Ca2+ exchanger

DMD Duchnne muscular dystrophy

cAMP Cyclic adenosine monophosphate

NFAT Nuclear factor of activated T cells

IK Voltage-gated K currents

Ito Transient outward current in the heart

KATP Cardiac ATP-sensitive K+

AAV Adeno-associated virus

ANT Adenosine nucleotide translocator
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Fig 1. Ca2+ homeostasis and Excitation Coupling (ECC)
The ECC process is initiated when an action potential (AP) excites the myocyte cell

membrane (sarcolemma) along its transverse tubules. This depolarization rapidly opens

voltage-gated Na+ channels (mostly NaV1.5) that further depolarize the cell membrane,

allowing opening of voltage-gated Ca2+ channels (mostly CaV1.2). Inward Ca2+ current

triggers opening of ryanodine receptor (RyR2) channels by a Ca2+-induced Ca2+ release

process, resulting in coordinated release of sarcoplasmic reticulum (SR) Ca2+ that

contributes the major portion of the myofilament-activating increase in [Ca2+]i. The Ca2+

released from the SR binds to troponin C of the troponin-tropomyosin complex on the actin

filaments in sarcomeres, facilitating formation of cross bridges between actin and myosin

and myocardial contraction. Voltage-gated K+ channels open to allow an outward current

that favors action potential repolarization, establishing conditions required for relaxation.

Relaxation occurs when Ca2+ is taken back up into the SR through the action of the SR Ca2+

adenosine triphosphatase SERCA2a and is extruded from the cell by the sarcolemmal Na+

and Ca2+ exchanger (NCX). SERCA2a is constrained by phospholamban (PLN) under

resting conditions.
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Figure 2. Regulation of [Ca2+]i homeostasis by Ca2+ binding proteins and kinases
Regulation of Ca2+ homeostasis involves a multitude of Ca2+ binding proteins and enzymes,

including CaMKII, PKC, PKA and S100A1: (1). CaMKII catalyzes phosphorylation of

voltage-gated Ca2+ channels (mostly CaV1.2 in ventricle) to increase Ca2+ entry, RyR2 to

increase Ca2+ release, voltage-gated Na+ channels (mostly NaV1.5 in ventricle) to increase

subsarcolemmal [Na+]i,, which decreases the driving force for Ca2+ extrusion by the Na+/

Ca2+ exchanger (NCX), and PLN to reduce the inhibitory activity of PLN on SERCA2a. In

general, the increased phosphorylation of these proteins by CaMKII increases Ca2+ influx,

and storage by the SR, which leads to increased systolic [Ca2+]i and increased rate and

magnitude of force (pressure) generation and improved lusitropy. (2) PKA is activated by β–

AR agonists and catalyzes phosphorylation of the same Ca2+ regulatory proteins modified

by CaMKII, but at different amino acids. (3) Classical PKC isoforms are activated

downstream to a variety of G protein coupled receptors and are activated by increased

[Ca2+]i, leading to decreased activity SERCA2 by phosphorylating inhibitor 1 (I-1) resulting

in PLN dephosphorylation, reducing SR Ca2+ load and Ca2+ release, causing reduced

contractility. (4) S100A1 interacts with the SERCA2a/PLN complex in a Ca2+-dependent

manner to augment SR Ca2+ uptake and increase SR Ca2+ content. S100A1 also directly

regulates RyR2 function, stimulates ATP synthase activity and promotes the adenosine

nucleotide translocator (ANT) function to increase ATP synthesis and mitochondrial ATP

efflux in cardiomyocytes.
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Figure 3. A scenario for mitochondrial Ca2+ overload, impaired metabolism and cell death in
heart failure
The mitochondrial Ca2+ uniporter 135 is a Ca2+ selective channel residing in the inner

mitochondrial membrane. MCU is a phosphorylation substrate for CaMKII. Mitochondrial

CaMKII inhibition reduces MCU current, increases mitochondrial Ca2+ retention capacity

and is protective against myocardial death in response to ischemia-reperfusion injury,

myocardial infarction and toxic doses of isoproterenol. Excessive mitochondrial Ca2+ and

ROS trigger mitochondrial permeability transition pore (mPTP) opening, leading to cell

death. Mitochondria Ca2+ overload also promotes ROS generation, which could oxidize

CaMKII (ox-CaMKII) and cause sustained activation of CaMKII. ox-CaMKII could

enhance MCU activity and further increase mitochondrial Ca2+ overload, promoting mPTP

opening and impairing energy metabolism in heart failure. At the same time, myocardial

energy deficiency could adversely affect [Ca2+]i homeostasis.
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Figure 4. Structure and activation of CaMKII
CaMKII consists of stacked hexamers and each monomer consists of an N-terminus

catalytic domain and a C-terminus association domain that flank a core regulatory domain.

CaMKII is activated when [Ca2+]i binds to calmodulin causing CaMKII to assume an active,

extended conformation. Sustained binding to calcified calmodulin (Ca2+/CaM) leads to

threonine 287 autophosphorylation and sustained CaMKII activation. Oxidation of paired

regulatory domain methionines (281/282) also causes sustained activation of CaMKII as

oxidized CaMKII resets its Ca2+ sensitivity so that lower levels of intracellular Ca2+ are

required for initial activation. Thus, both threonine 287 autophosphoryation and methionine

281/282 oxidation can convert CaMKII into a constitutively active enzyme to drive

myocardial disease phenotypes.
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Fig 5. CaMKII and Mechanisms of arrhythmia
Sustained activation of CaMKII by oxidative stress and elevated [Ca2+]i contributes to

arrhythmia in heart failure by several mechanisms: 1) CaMKII phosphorylates L-type Ca

channels (CaV1.2) to increase its open probability, causing early afterdepolarizations

(EADs). Increased ICa also contributes to action potential prolongation, augmented [Ca2+]i

and DADs. 2) CaMKII phosphorylates Na+ channels (NaV1.5) and enhances the long-lasting

late INa (gain of function) promoting EADs and increasing subsarcolemmal [Na+]i to favor

delayed afterdepolarizations (DADs). 3) CaMKII favors phosphorylation of RyR2 to

increase SR Ca2+ leak, which shifts Na+/Ca2+ exchanger (NCX) to a forward mode, causing

DADs. CaMKII contributes to arrhythmogenic structural features of injured myocardium by

promoting myocyte death and collagen deposition.
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