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Abstract

We investigated the power to detect variances and covariances in rates of change in the context of

existing longitudinal studies using linear bivariate growth curve models. Power was estimated by

means of Monte Carlo simulations. Our findings show that typical longitudinal study designs have

substantial power to detect both variances and covariances among rates of change in a variety of

cognitive, physical functioning, and mental health outcomes. We performed simulations to

investigate the interplay among number and spacing of occasions, total duration of the study,

effect size, and error variance on power and required sample size. The relation between growth

rate reliability (GRR) and effect size to the sample size required to detect power ≥ .80 was non-

linear, with rapidly decreasing sample sizes needed as GRR increases. The results presented here

stand in contrast to previous simulation results and recommendations (Hertzog, Lindenberger,

Ghisletta, & von Oertzen, 2006; Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008; von

Oertzen, Ghisletta, & Lindenberger, 2010), which are limited due to confounds between study

length and number of waves, error variance with GCR, and parameter values which are largely out

of bounds of actual study values. Power to detect change is generally low in the early phases (i.e.

first years) of longitudinal studies but can substantially increase if the design is optimized. We

recommend additional assessments, including embedded intensive measurement designs, to

improve power in the early phases of long-term longitudinal studies.
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Most questions in the study of developmental and aging-related processes pertain to

“change” in systems of variables and across different time scales. Typical longitudinal

studies focus on change processes over months and years while “intensive measurement”

studies examine change and variation across much shorter periods of time (e.g. Walls, Barta,

Stawski, Collyer, & Hofer, 2011). While the design of particular longitudinal studies relies

on both theoretical rationale and previous empirical results, there is general agreement that

longitudinal data are necessary in order to approach questions regarding developmental and
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aging-related change within individuals (e.g. Bauer, 2011; Hofer & Sliwinski, 2006; Schaie

& Hofer, 2001). Optimally, the design of the longitudinal study will provide estimates of

reliable within-person change and variation in the processes of interest.

In order to model individual differences in change in longitudinal settings, multilevel models

are a frequent choice (Laird & Ware, 1982; Raudenbush & Bryk, 2002) because they allow

the flexible specification of both fixed (i.e., average) and random effects (i.e., individual

departures from the average effect). The degree to which individuals change differently over

time is in the variance of a time-based slope, which can be expanded to covariances in the

multivariate case involving two or more processes over time (e.g. MacCallum, Kim,

Malarkey, & Kiecolt-Glaser, 1997; McArdle, 1988). The covariance among the random

slopes provides information whether, and how strongly, these processes are associated. For

example, Hofer et al. (2009) report associations among individual differences in level, rate

of change, and occasion-specific variation across subscales of the Developmental Behavior

Checklist (DBC) in a sample (N = 506) aged 5–19 years and at four occasions over an 11-

year period. Correlations among the five DBC subscales ranged from .43 to .66 for level, .43

to .88 for linear rates of change, and .31 to .61 for occasion-specific residuals, with the

highest correlations observed consistently between Disruptive, Self-Absorbed, and

Communication Disturbance behaviors. In addition to the mean trends (Einfeld et al., 2006),

the pattern of these interdependencies among dimensions of emotional and behavioral

disturbance provide insight into the developmental dynamics of psychopathology from

childhood through young adulthood.

The power to detect the variance and covariance of variables over time is a fundamental

issue in associative and predictive models of change. While a number of authors have dealt

with questions of sample size planning and power in the context of longitudinal studies (e.g.

Hedeker, Gibbons, & Waternaux, 1999; Kelley & Rausch, 2011; Maxwell, 1998; Maxwell,

Kelley, & Rausch, 2008; B. O. Muthén & Curran, 1997), relatively few have specifically

addressed the power to estimate individual differences in change and associations among

rates of change (but see Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006; Hertzog,

von Oertzen, Ghisletta, & Lindenberger, 2008; von Oertzen, Ghisletta, & Lindenberger,

2010).

The estimation of power to detect change and correlated change in longitudinal designs

requires consideration of a number of critical parameters, each having potential differential

effects on the results. Briey, following early work by Willett (1989), we differentiate

between parameters which are not typically under control of the researcher, such as the

variability of change over time (i.e., individual differences in slope ), the correlation

between changes over time (i.e., covariance of slopes σSySx), the measurement error variance

( ), and features of the study design that are modifiable such as the sample size (N), the

spacing and number of measurement assessments, and the total span or duration of the

study. These parameters and design features are directly linked to the reliability to detect

individual growth curves (cf. Willett, 1989), which is partly given by the reliability of the

measures but can be considerably altered by the study design.
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Hence, the purpose of this work is to cast light on the interplay among different factors

which contribute to the detection of individual differences in and among rates of change. It

is important to know how our decisions regarding longitudinal designs impact power to

detect certain effects. In this regard it is of special interest to identify features of the study

design that are modifiable and which can be used to optimize power and with it sample size

requirements. An important tool to identify the relevant parameters and their interplay is the

reliability of the growth rate as proposed by Willett (1989).

Growth Rate Reliability (GRR)

The reliability of the growth rate is central to the analysis of change. In the context of

longitudinal multilevel models, the first step usually involves the estimation of an intraclass

correlation coefficient (ICC), an index of the ratio of between-subject variance ( ) to

total variance. This is done by estimating an unconditional means model whereby the

variance due to differences between persons in a repeated-measures setting is expressed as a

proportion of the total variance  (cf. Raudenbush & Bryk, 2002). If the

number of measurement occasions is the same for all participants in a study, the ICC can be

expanded to obtain a measure of reliability. Thereby, the residual variance ( ) is divided by

the number of measurement occasions to obtain the ICC2 estimate (Bliese, 2000). The ICC2

indicates how much of the between-person variation in observed scores is due to true score

variation (see also Kuljanin, Braun, & DeShon, 2011).

In order to obtain an estimate of the reliability of the growth rate, Willett (1989) presented

an index which bears some similarity to the reliability estimate ICC2. Willett’s index,

however, takes into account the design of the study by dividing the residual variance  by

the sum of squared deviations of time points (λ) at measurement occasions (w) in W waves,

. Hence, Willett (1989) defines growth rate reliability (GRR) as

(1)

The GRR estimate provides critical information about the capability to distinguish

individual differences in the slope parameters but should not be mistaken for an index of

reliability of the measurement instrument as “it confounds the unrelated influences of group

heterogeneity in growth-rate and measurement precision” (Willett, 1989, p. 595). For

instance, in a situation with no individual differences in slope, GRR will be zero even if the

reliability of the measurement is high. At the same time, this feature is desirable for the

purpose of understanding and identifying critical design parameters because it takes into

account the increasing difficulty to detect slope variances as they approach zero. Hence,

GRR is well suited for the identification of critical design parameters which influence the

ability to detect individual differences in growth rates. As Willett (1989) showed, the

reliability of individual growth is dependent on several factors, including the magnitude of

interindividual heterogeneity in growth ( ), the size of the measurement error variance ( )

and SST which is dependent on the number of waves (W), the spacing or interval between
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these waves, and the total duration of a study. Besides the sample size, these five elements

all contribute to the power to detect individual differences in and among rates of change. Of

special interest is the SST component because it is typically under the control of the

researcher.

The same value of SST can be obtained with different designs varying in study length,

number of measurement occasions, and different intervals among the measurement

occasions. For example, SST=10 can be obtained with five measurement occasions at the

years 0, 1, 2, 3, and 4. The same SST could also be obtained with three measurement

occasions at the years 0, 2.2, and 4.5 or with seven occasion at approximately 0, 0.6, 1.2,

1.8, 2.4, 3.0, and 3.6 years. On the other hand, SST can result in different values if the same

number of measurement occasions cover different time spans. For example, if five equally

spaced waves cover four years SST is 10. If five equally spaced waves cover eight years,

SST increases to 40, and if five waves cover two years SST reduces to 2.5. Clearly,

decisions regarding the study design can have a strong influence on GRR as SST alters the

impact of the error variance. Hence, the reliability of the same slope variance can be quite

different depending on the study design and Willett (1989) concluded that “with sufficient

waves added, the influence of fallible measurement rapidly dwindles to zero” (p. 598). We

would add, that any step taken to increase SST, such as adding years and optimizing design

intervals, reduce the impact of “fallible measurement” and increase GRR.

The relation of GRR to power, however, remains an open question. It is reasonable to

assume that higher GRR will increase power but it is not well understood how these two

quantities are related and how manipulations of GRR elements, such as , and

especially SST-related design factors will affect power to detect variances and covariances

of growth rates. Hence, GRR will be used here to define and examine different longitudinal

designs and the impact of these decisions on power to detect individual differences in

change.

Growth Curve Reliability (GCR)

It is important to differentiate growth rate reliability GRR (Willett, 1989) from growth curve

reliability (GCR) defined by McArdle and Epstein (1987) and applied recently by Hertzog et

al. (2006, 2008). GCR is defined as (see also Table 2B in McArdle & Epstein, 1987),

(2)

and describes the relation between the expected variance determined by a growth curve

model at a particular measurement occasion (w) and the total variance at that same time

point. Besides the slope variance, GCR also accounts for the intercept variance and

covariance among the intercept and slope in the computation of predicted total variance of a

parameter at a particular occasion. Given that GCR relates model predicted true-score to

total variance, the ratio provides different estimates for different occasions if  and/or

σIS ≠ 0.
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While GRR remains unaffected by the intercept variance and the related covariance term,

GCR provides an index of reliability of the measurement at a given occasion and may result

in high values even if there is no variability in the slope ( ). GCR is somewhat

complementary to GRR, which can produce high reliability even if GCR approaches zero at

one occasion. For example, if the intercept (λw = 0) approaches the cross-over point of a

growth model, most variance at this occasion will due to residual variance and, accordingly,

GCR0 approaches zero. GRR is unaffected by the location of the intercept and its estimate

remains constant across a study design.

The commonality between GRR and GCR is in the error variance. Large error variances

decrease both reliability indices whereas small error variances increase their magnitude. The

ratios upon which these estimates are based, however, are quite different and have distinct

interpretations. Also, with a given residual variance, GCR is defined by the size of the true-

score variance. In turn, the detrimental effect of unreliable measurements on power can be

attenuated in GRR as longitudinal observations or the duration of the study increase.

As such, GCR provides information about the reliability of static measurements but it does

not provide information on how well we can distinguish individual differences in growth

processes. Hence, if we are interested in understanding which factors contribute to the power

to detect individual differences in rates of change we should rely on the reliability of the

growth rate, GRR as it includes the most relevant parameters which impact power.

Critique of Power Analyses by Hertzog et al. (2006,2008) and von Oertzen et

al. (2010)

Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) estimated the power to detect

correlated change and individual differences in change using latent growth curve models.

They tested a number of different models by varying sample size, effect size, number of

measurement occasions, and growth curve reliability (GCR0 at the first measurement

occasion w(0)) using a simulation approach. The authors concluded from their results that

most existing longitudinal studies do not have sufficient power to detect either individual

differences in change or covariances among rates of change. For example, with a sample

size of 200 and a correlation among the linear slopes of r = .25 in a bivariate growth curve

model power did not exceed .80 for study designs with equal or less than six waves in 10

years unless growth curve reliability (GCR0) was almost perfect at .98 (Hertzog et al., 2006,

Figure 1). The outlook was similar for power to detect slope variances (Hertzog et al., 2008).

For example, in the case of a four-wave design over the period of six years, the power to

detect a significant slope variance in the best condition (  and N = 500) is only

sufficient if the residual variance is 10 (GCR0 ≥ .91) or smaller. The closing comments in

von Oertzen et al. (2010) “persuade [latent growth curve model] LGCM users not to rest on

substantive findings, which might be invalid because of inherent LGCM lack of power

under specific conditions” (p. 115). However, the identification of individual differences in

change and correlated change does not seem to be particularly difficult or rare in practice

and the results from these simulation studies (Hertzog et al., 2006, 2008; von Oertzen et al.,

2010) do not appear to correspond to actual results. In the following, we provide a critical
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evaluation of this set of previous simulation-research on the power to detect individual

differences in change.

Role of GCR on power to detect slope (co-)variances

A key assumption in Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) is that GCR0

is a primary determinant of power. The authors computed GCR0 at the first measurement

occasion w(0) in order to obtain an estimate of measurement reliability. At the wave where

the intercept is defined as λw = 0, Equation (2) reduces to the ratio of intercept variance to

total variance ( ). At that specific occasion the ratio bears some

similarity to ICC which, however, is based on an unconditional means model and, hence,

GCR0 and ICC usually do not provide the same values.

As discussed earlier, GCR is an index of measurement reliability but does not directly

provide information on the ability to detect slope variances. While variations in the intercept

and error variance will result in different GCR values, increases or decreases in the slope

variance  are not captured by GCR0 and the index is unaffected by the amount of

individual differences in growth rates. GCR0 does not contain the critical slope-to-error

variance ratio and informs only about measurement reliability at the intercept (or at other

particular values of time) which can be unrelated to the ability to statistically detect slope

variances. GCR can also vary substantially across measurement occasions and is therefore

not an invariant index.

Selection of population parameters: Intercept-to-slope variance ratio

Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) framed their simulations using a

hypothetical longitudinal study covering 19 years with 20 occasions. The variance of the

intercept  defined at the first time point was fixed to 100 and the slope variance  was

chosen such that the ratio of total change over true-score variance at the first occasion was

either 1:2 or 1:4. Given that the authors used a 0–1 unit scale to cover the full range of 19

years, the slope variance was  and  accordingly. In the case where the intercept

and slope are uncorrelated (σIS = 0) their approach yields variance ratios across 20 occasions

up to 100:150 . Table 1 reports ratios of

variances  for studies with 6, 8, 10 and the full range of 19 years. These values

correspond to the four, five, and six occasion case with a two-year interval and the one case

which covered the whole study length of 19 years with one-year intervals (cf. von Oertzen et

al., 2010, p.111).

Hertzog et al. (2006) assumed that they had generated population values which are on the

positive side and claimed “…that estimated ratios reported in the literature are generally

smaller, in all likelihood making it even more difficult to detect interindividual differences

in change” (p. 245). In reality, however, the parameter values selected by Hertzog and

colleagues represent, for the most part, unusually small rates of total change to intercept

variance. In actual longitudinal studies, ratios of total change to intercept variance seem to

be more favorable than the ratios used in these earlier simulations. For example,
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Lindenberger and Ghisletta (2009, Table 3) report intercept and slope variances for a set of

variables from the Berlin Aging Study (BASE; Baltes & Mayer, 1999) which result1 in

variance ratios of  with a median ratio of

 indicating that the ratios used in Hertzog et al. (2006, 2008) and von

Oertzen et al. (2010) seem to be quite unfavorable.

In order to obtain a broader view of change variances in longitudinal studies, we analyzed

35 variables from nine longitudinal studies (cf. Table 4). The lower 5th and higher 95th

percentile, and median intercept to total change variance ratios for these variables are

reported in the right side of Table 1 and yielded, on average, quite large variance ratios.

Note that the position of the intercept was shifted to the case where σIS = 0 (cf. Stoel & van

den Wittenboer, 2003) to obtain ratios that can be compared to those of Hertzog and

colleagues.

Selection of population parameters: Slope-to-error variance ratio

While in most conditions the magnitude of intercept-to-slope variance ratios were unusually

small, the variance ratios in Table 1 are difficult to compare across studies and not

interpretable in terms of their impact on power. In reality, the intercept-to-slope variance

ratio is not meaningful as it depends on centering and it does not take into consideration the

size of the residual variance. The ratio of total change to intercept variance alone, provides

little evidence whether the population values are optimistic or pessimistic. It is the size of

the residual variance which gauges these values and defines the reliability and ultimately

power. Throughout all simulation conditions Hertzog et al. (2006, 2008) used four error

variances  (1, 10, 25, and 100) to obtain four prototypical GCR0 (.99, .91, .80, .50)

conditions. However, the simulation results were presented and interpreted using a

continuous range of  to 100 (cf. Figure 1 in Hertzog et al. 2006, and Figure 2 in

Hertzog et al. 2008). There are two relevant issues to consider with the choice of these

values.

First, the values in Hertzog et al. (2006, 2008) produce for most simulation conditions slope-

to-error variance ratios which are unusually small. Table 2 provides slope-to-error variance

ratios for various conditions and study durations in the Hertzog et al. simulations and for a

comparable set of ratios obtained from actual studies. In the most favorable case of ,

more than 50% of the slope-to-error variance ratios fall below the range of typically

observed ratios. The condition with  results in a slope-to-error variance ratio of 1,

which is just below the 5th percentile of ratios observed in existing studies. The condition

with  results in a ratio of 5, which is close to the median ratio of observed studies and

only the best condition with  results in a ratio which seems to be more favorable than

typically observed. Note also that  represents the GCR0 = .91 condition, indicating

that the second best condition in the Hertzog et al. simulation parameters represents an

average value within the range of actual studies and variables. For the less optimistic cases

1The variances in Lindenberger and Ghisletta (2009) were rescaled from an annual scale to the metric used in Hertzog et al.’s (2006,
2008) simulations.
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where , more than 75% of the simulation results are obtained from slope-to-error

variance ratios which fall below ratios at the 5th percentile from actual studies.

Second, the manipulation of error variance was interpreted as a manipulation of GCR0. In

actuality, manipulating slope and residual variance systematically alters GRR as is

illustrated in Willett (1989). This is the relevant ratio as it defines the ability to detect

individual differences in growth. Note that the same ratio of slope-to-error variance can be

obtained within different GCR0 conditions. For example, if GCR0 = .91 ( ) and σ2 =

25 the slope-to-error variance ratio is 25:10. The same ratio can be obtained for the GCR0

= .80 ( ) condition if . These two different GCR0 values produce identical

ratios and, accordingly GRR remains unaffected by this variation. Hence, GCR0 is not

uniquely related to power and, as such, it is not advisable to follow Hertzog et al.’s (2008)

recommendation that

At minimum, researchers should calculate estimates of GCR in their study and

evaluate whether it is sufficiently low to raise concerns about power to detect

random effects, which could be done to a crude approximation from the simulation

results provided in this [Hertzog et al. 2008] study. Generically, our simulation

indicates that GCR values under .90 are potentially problematic.” (p.560).

SST: Study-duration, number of occasions, and spacing of occasions

GRR is a function of  , and SST whereby the latter is determined by study duration,

number of waves, and relative spacing of occasions. In Hertzog et al. (2006, 2008) and von

Oertzen et al. (2010), study duration and number of occasions are confounded. The interval

between occasions is constant at two years for all conditions (except for the condition where

all 20 occasions are presented). As a result, only one of the three facets of SST was

systematically manipulated, rendering the results ambiguous with respect to the impact of

number of occasions on power. Although the authors concluded from their simulations that

number of occasions is a determining factor of power it might as well be argued that it is not

the number of measurement occasions but the study length that matters. Given the

discussion about the elements of GRR it is clear that study length has an important influence

on GRR and on power because it impacts the size of SST. From these previous simulations

it remains unknown whether power increased due to more measurement occasions or due to

more time covered – or, and probably, both. These factors need to be manipulated

independently in order to understand design decisions on power. Unfortunately, however,

the Hertzog et al. results convey little information about the interplay of power and design

issues such as study length as well as number and spacing of measurement occasions which

could have been illustrated even with unusual population parameters. For example, if four

waves are administered over six years with , GRR is .22 (SST=0.05) but

increases to .74 (SST=0.56) if the same number of measurement occasions cover the full

study length of 19 years. The increase in GRR suggests that covering a longer time period

with the same amount of waves has a strong effect on the ability to detect non-zero slope

variances. GRR clearly indicates that it is not necessarily the number of waves but also the

time covered that can have a beneficial effect on power. Figure 1 illustrates the effect of

Rast and Hofer Page 8

Psychol Methods. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



study duration and number of waves with constant values of  on GRR. In

this example, study length is scaled as a one-unit difference comprising 19 years (cf.

Hertzog et al., 2006). Different numbers of measurement occasions are marked with

different symbols and range from three to 10 waves within a given amount of time. The

effect of increasing study length on GRR under equal numbers of measurement occasions is

clearly visible. As more years are covered, GRR increases. At the same time, increasing the

number of measurement occasions within the same study length increases GRR as well and

both manipulations seem to have a unique effect on GRR.

So far, the above issues treat the impact of various components separately. In reality, a

number of interrelating factors that are described in GRR contribute to power. GCR0,

defined by the error variance, is one of them and cannot be considered independently of

other values as it reflects only one facet of a number of factors that influence GRR. Figure 2,

which mirrors the power plot of Hertzog et al. (2008, Figure 3), illustrates this relation

among , GCR0 ( ), and four different designs. It is clear, that GCR0 is not uniquely

related to power or GRR because altering  also changes the slope-to-error variance ratio

and in each of the the four designs SST is different as well. As described previously, the

same GRR value is obtained in a number of different GCR0 conditions and the same GCR0

condition can result in almost any GRR or power value. For example, a constant value of

GCR0 = .91 yields GRR values that range form 0 to .36 in the four occasions design or from

0 to .90 in the 10 occasions design. Accordingly, power to detect slope variances can take

almost any value within a given GCR0 condition. Figure 2 clearly illustrates that the only

value that is uniquely related to power is GRR and it also shows that power is a function of

GRR. What remains unknown, however, is the nature of the function that relates power to

GRR. Also, the curves illustrate the impact of study-duration with equally-spaced

measurement occasions. However, Hertzog et al. (2006, 2008) and von Oertzen et al. (2010)

do not indicate the unique impact of study duration, number of measurement occasions, and

interval size on GRR.

Aim of the Study

The present study evaluates the power to detect variances and covariances among rates of

change in growth curve models using Monte Carlo simulations. We base these simulations

on a range of sensible population values from a number of different longitudinal studies

comprising early and late life periods and varying in sample size, number of waves, interval

lengths, overall study follow-up, variables, heterogeneity of baseline age, and other

characteristics of the participants. We examine power across several variable domains that

are often the focus within developmental and aging psychology: cognition, affect, physical

functioning and dimensions of psychopathology. Together, these studies provide a basis for

estimating power as well as a realistic range of population values for further simulation

studies.

Our aim is to understand the effect of critical design parameters on power to detect

individual differences in growth. GRR, the measure of the reliability of the growth rate

proposed by Willett (1989), is used as an index of power to detect individual differences in
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change but also as a guide to identify the interplay among its elements, slope variance, error

variance, number and spacing of waves, and study length. Of special interest are the

variables that constitute SST as they are under the control of the researcher conducting a

longitudinal study and can be used to optimize power in the early phases of such studies.

Methods

Latent Growth Curve Modeling

Our analyses base on a bivariate linear growth curve (LGC) model where we observe a set

of repeated observations on two variables Y and X for individual i in a longitudinal setting

with several waves. Let yi = (y1i, y2i, … yWi)′ denote the response on Y and xi = (x1i, x2i, …,

xWi)′ denote the response on X for individual i. The responses are observed according to a

set of waves wi = (1, 2, 3, …, Wi)′, where Wi is the total number of waves for individual i

which do not need to be the same for all individuals. A general expression for a time-

structured latent curve model for two variables yi and xi then is

(3)

where Λ is the (Wi × p) factor loading matrix with number of rows equal to Wi and where the

number of columns is equal to the number of factors or growth parameters (p) estimated in

the model (here, p = 2 for each variable). The vector η captures the random effects particular

to individual i in the intercept and slope, and ε represents a vector of residuals. We follow

standard assumptions where E(ε) = 0 and COV(η, ε) = 0. Further, let E(η) = α, COV(η, η) =

Ψ, and COV(ε, ε) = Θ.

In the bivariate LGC model (cf. MacCallum et al., 1997; Tisak & Meredith, 1990, for the

general multivariate case) Y and X are modeled simultaneously which is expressed in the

means and covariance matrix

(4)

(5)

The vector of means α has 2p elements, in the case where we estimate two intercept and two

slope parameters the elements in columns 1 and 3 in α pertain to the intercept and the

elements in columns 2 and 4 capture the slope of Y and X. Λ defines the loadings (i.e.,

intercepts and slopes) for both sets of variables with the dimension 2W × 2p and the 2p × 2p

covariance matrix Ψ is unstructured leaving the (co-)variances unconstrained
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In order to set the intercept at the first wave we assign λy0 and λx0 the value 0. The loadings

λW may take different scales, usually they are assigned values which reflect the interval of

the measurement occasions but they may be scaled to alternative metrics as well as be

individually time-varying. Note that here both variables are measured at the same occasions

and, hence, λy = λx.

In order to account for dependencies across measurements within each wave, we relaxed the

condition of uncorrelated residuals and allowed occasion-specific covariances among the

residuals across Y and X. The residual covariance matrix with equality constraints across

occasion-specific residual covariances is defined as

This bivariate growth model is represented in Figure 3 and it was used to both estimate

parameter values from a set of longitudinal studies and served as the basis for all

simulations.

Power Estimation

Statistical power is defined as the probability of correctly rejecting the null hypothesis when

it is false (Cohen, 1988) which is represented as power (π) = 1 − β where β represents the

probability of a Type II error. Statistical power depends on a number of factors such as the

Type I error rate, sample and effect size. In the present work we will use the commonly

applied values of α ≤ .05 to define statistical significance and values of π ≥ .80 to define

sufficient power.

In order to assess the power to detect variance in slopes  and covariances among

slopes (σSxSy) in a first step we estimated the actual power for these parameters in a number

of current longitudinal studies. All parameters based on the same bivariate longitudinal

growth curve model described in Equation (2) and depicted in Figure 3. The estimates for
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each combination of variables upon which the simulations were based are reported in Table

4. We used Monte Carlo simulations to estimate the power for each variable combination

within the reported longitudinal studies and the sample size needed to obtain power of at

least π = .80. For all analyses, the extraction of population values and the estimation of

power for different conditions, were based on an annual time scale where one unit represents

one year. The choice of an annual time scale is arbitrary and does not change the power

estimates but it places the population parameters on a commonly used metric which

facilitates their interpretation and comparison to other studies.

In a second step, we systematically varied the number of waves, the interval between waves,

the total duration of the study, and the size of the error and slope variance in order to obtain

different GRR values. Further we varied the strength of the correlation among the slopes and

among the residuals to observe the influence and interplay among these factors on the

sample size required to achieve power ≥ .80. The population values for these analyses were

derived from the studies reported in Table 4 in order to obtain realistic variance and

covariance parameters for the simulation study.

The estimate of power was based on the proportion of statistically significant results relative

to the total number of valid replications. For covariances, only covariances with the same

sign were counted as hits, that is, if the population covariance was negative and the sample

covariance was statistically significant but positive we did not count it as a hit. This decision

lead to very slightly lower estimates of power for the covariance term as there were very few

cases where population and significant sample covariances differed in sign.

In the estimation of power, the type of statistical test can play an important role. Basically,

variances and covariances can be tested via single- or multiparameter tests (cf. Raudenbush

& Bryk, 2002). Given that not all tests are equally powerful, the results may change

depending on which test one uses to estimate the significance of variances or covariances.

Here, we decided to base the majority of our simulation results on the Wald test statistic

which is known to typically have lower power primarily because it isolates the effect of the

slope variance from related covariances. By relying on the Wald statistic our simulation

results may reflect a conservative or worst-case scenario. The Wald test provides the z

statistic via the ratio of the parameter estimate divided by its estimated standard error2.

Hence, the Wald test is based on one parameter no matter whether covariances or variances

are tested. In contrast, the likelihood ratio (LR) test, which is typically used in mixed effects

modeling (e.g. Pinheiro & Bates, 2000), is based on LR = 2(L1 − L0), where L0 and L1 are

maximized log-likelihood values for an unrestricted and a restricted model. The statistic has

an approximate χ2 distribution with m degrees of freedom, where m is the difference in the

number of parameters between both models (Raudenbush & Bryk, 2002). As long as one

covariance is tested, the Wald and LR test both use one parameter and will provide similar

results. However, if the significance of variances are tested in models with multiple random

effects, the Wald test is based on one parameter whereas the LR test is based on at least two

parameters. This is because, in order to define the restricted model, one needs to set the

2The standard errors in OpenMx are derived from the “calculated Hessian” which is created with numerical estimation by sampling
the parameter space around the converged parameter values to obtain unbiased standard error estimates.

Rast and Hofer Page 12

Psychol Methods. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



variance and all related covariances to zero. In the present case, where we estimate a

bivariate growth curve model, the restricted model uses four df less than the unrestricted

model because the test of the variance of Sy requires that we set the following to zero:

, σSyIy = 0, σIxSy = 0, and σSxSy = 0.

This important difference between single- and multiparameter tests is the reason why their

results can be different if variance components are tested (cf. Berkhof & Snijders, 2001).

Accordingly, the Wald test is considered to have less power to detect slope variances

compared to the LR test if the relevant covariances are large (e.g. Fears, Benichou, & Gail,

1996; Longford, 1999). As Berkhof and Snijders (2001) have illustrated in the univariate

case, the Wald test remains unaffected under different conditions of level/slope correlations

whereas the LR test draws much of its power to detect the slope variance via the covariance

terms. This result has been replicated by Hertzog et al. (2008) who assumed from their

simulation results that the power of the LR test drops to its minimum as the level/slope

correlation approaches r = −.10 (p. 551). This only partly reflects the relation among the

covariances and power. While it is correct that the lowest power is obtained at a negative

correlation, its actual value does not necessarily approach r = −.10 but depends on the

growth curve parameters. A LR test will always yield the minimal power at the point where

the unrestricted L0 model and the restricted model L1 produce the smallest difference. In a

univariate LGC model with  there is a covariance among σIS that nullifies the sum of

all growth effects . Resolving for σIS results in . In correlation

metric, the correlation among intercept and slope that minimizes power is  and is

always negative (or zero). To illustrate, if the values from Hertzog et al. (2008) are used, the

correlations that minimize power in the 4, 5, 6, and 10 occasion study are r4 = −.11, r5 = −.

15, r6 = −.19, and r10 = −.35 respectively. Note that these values exactly reflect the findings

presented in Figure 1 from Hertzog et al. (2008).

Hence, although the Wald test has known weaknesses and generally results in lower

estimates of power (e.g. Fears et al., 1996) we regard it as an informative measure in this

present context and we follow Berkhof and Snijders (2001, p. 137) assertion that single

parameter tests may be advantageous if the intercept/slope-covariances are of no substantive

interest in the study. Given that our primary aim is to obtain distinct power estimates to

detect the covariance among rates of change and to detect variances in slopes, we chose to

base our simulation studies on the Wald statistic to permit clear conclusions in this regard.

Further, the Wald statistic best reflects GRR which only accounts for one parameter, the

slope variance, and is independent from covariance effects. In terms of a simulation study,

we reiterate that the Wald test may be seen as conservative because it tests variances

independently of related covariances and, hence, it does not draw power from this additional

source.

To illustrate the differences between the power estimates from the Wald and LR statistic we

report both estimates in the Monte Carlo simulations (Table 5). For the estimation of power
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based on the LR statistic we ran four models for each replication. A baseline model (a)

where all parameters were freely estimated and three additional models where (b) the

variance term of one slope and its corresponding covariances were fixed to zero ( ,

σSyIy = 0, σIxSy = 0, and σSxSy = 0), and (c) the variance term of the other slope with its

corresponding covariances fixed to zero ( , σSxIy = 0, σSxSy = 0, and σSxIx = 0). In the

last model (d) the covariance σSxSy was fixed to zero. The estimates of power were based on

the comparison among models (a) to (b), and (a) to (c) with 4 df and a critical χ2 = 9.49 for

variances and the model (a) to (d) with 1 df and a critical χ2 = 3.84 for covariances.

Studies and Measures

The simulations reported here are based on parameter estimates drawn from a broad range of

longitudinal studies of developmental and aging-related change. Design characteristics of

the included longitudinal studies are provided in Table 3 and descriptive statistics are

reported in Table 4. Bivariate linear growth models described in Equation (5) were analyzed

for each set of outcomes and were used to provide a range of realistic values on which to

base an evaluation of power to detect variance in linear slopes and bivariate associations in

linear rates of change.

All of the actual longitudinal studies used in this paper had incomplete data due to study

attrition. In addition, in longitudinal studies of aging, this attrition is related primarily to

dropout due to death. Incomplete data were estimated under the assumption that the data are

at least Missing at Random (MAR; where the probability of missing information is related to

covariates and previously measured outcomes). Such methods are in regular usage in

analysis of longitudinal studies. However, attrition in studies of aging is often non-random,

or selective, in that it is likely to result from mortality or declining physical and mental

functioning of the participants over the period of observation. In the case of mortality-

related dropout, the MAR assumption is likely to be problematic unless age at death is

included in the model to account for population selection.

The parameter estimates were obtained using full information maximum likelihood (FIML).

We report only linear growth models with fixed time-in-study intervals as the time basis and

only models with adequate model fit according to the the comparative fit index (CFI above .

95) and the root-mean-square error of approximation (RMSEA below .08; Browne &

Cudeck, 1993; MacCallum, Browne, & Sugawara, 1996). Estimates were based on annual

rates of change with the intercept specified at baseline. We refrained from using the unit

scale transformation applied by Hertzog et al. (2006, and later studies) which covers 19

years because it provides estimates which are uncommon as most researchers scale change

in years. The purpose of Table 4 is also to provide an array of actual population values in the

most common format. As pointed out earlier, all variance and covariance estimates can be

rescaled to be on other time metrics, such as the 0–1 unit scale adopted by these earlier

simulation studies, with GRR and power being invariant to such rescaling. Note that our

primary aim in the parameter extraction was to obtain a range of realistic values for later use

as population values in simulation studies. Hence, we chose to remain with the FIML in

order to make full use of the sample sizes and we did not include higher order terms to

capture curvilinear changes over time in the few cases where this was indicated.
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All of the power estimates in Table 5 were based on 10,000 replications. In order to compute

and plot the required N for power of at least π ≥ .80 for given population values we used an

iterative approach whereby the final iterations approached π = .80 by steps of N = 10 to

ensure sufficient precision. The figures were generated using 5,000 replications in the final

iteration steps. All analyses made use of the software package R (Team, 2012) where we

relied on the mvrnorm function from the MASS package (Venables & Ripley, 2002) to

generate random bivariate samples with the structure given in Equations 4 and 5. The

statistical analysis of the LGC models was performed using the freely available structural

equation modeling software package OpenMx version 1.2.3 (Boker et al., 2011). In order to

check the consistency of the power estimates based on the Wald statistic, we re-ran all

models (i.e., data generation and estimation) within the Monte Carlo facility of Mplus (L. K.

Muthén & Muthén, 2010). The results from both software packages resulted in close to

identical power and sample size estimates. To speed up computing time, all analyses in R

were conducted on “Nestor”, a capability cluster geared towards large parallel jobs provided

by WestGrid and Compute/Calcul Canada. Sample scripts used in this simulation study are

available at the APA website (www.website.com) for download and integration in R or

Mplus.

Results

Power Estimates for Actual Study Values

A sample of longitudinal developmental and aging studies was used as a foundation to

evaluate power to detect variance in, and associations among, rates of change. Table 4

provides descriptive statistics and estimated values from bivariate growth curve models for a

variety of outcomes, including cognitive, physical functioning, and mental health variables.

In few cases, particularly in studies with more waves and longer follow-up, quadratic trends

were indicated. However, all reported estimates are based on LGC models in order to permit

evaluation of linear slope associations and to provide a consistent basis for obtaining LGC

parameters for simulation purposes. The values from Table 1 provide the basis for

estimating power for particular combinations of variables within actual studies but also for

extrapolating to a range of effect sizes, sample sizes, and slope reliabilities. Notably, 95% of

the slope-to-error variance in these longitudinal studies ranged from 1:14 to 1:478. The

average ratio was 1:335 and the median was 1:81 indicating that the error variance was 81

times larger relative to the slope variance. Accordingly, 95% of GRR ranged from .07 to .71,

with a median GRR of .36. For these same variables, 95% of GCR0 values ranged from 0.33

to 0.90 with a median of .68.

Based on the results of Table 4, Table 5 provides standardized estimates of associations

among slopes and power to detect linear slope variances and covariances in bivariate

combinations of outcomes. Results from Monte Carlo simulations using both Wald and LR

statistics are reported.

Covariance Among Slopes—The correlations among rates of change ranged from −.57

(VLS; RT with IPic) through .03 (VLS; SA with IPic) to .89 (ACAD; D with SA), with an

average, absolute correlation of r = |.52|. Power and the sample size needed to obtain power
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of at least .80 was largely dependent on two factors: The magnitude of the correlation

among the slopes (i.e., effect size) and the magnitude of GRR. If any one of these factors

was small, sufficient power (π ≥ .80) to detect the covariance was only achieved with large

sample sizes. For example, in SLS, the sample size was comparable among the five sets of

variable pairs but the power ranged from .09 to 1.0. Power estimates for the covariances

appeared to be related to the GRR values of the respective variables. For example, the power

to detect the correlation among variables including PHY (GRR ≤ .03) was always very low

and there was virtually no chance to detect correlations involving the PHY variable with the

available sample size. In turn, the somewhat stronger correlation among DWR and NC in

the same study had sufficient power to be detected. Given the simulation results, 240

participants would have been sufficient to detect the statistically significant correlation

among the slopes of both variables with π ≥ .80. The main difference in these two examples

from Table 5 was in the GRR. Notably, the GRR of the DWR variable was .40 which was

considerably larger compared to that of PHY.

Another factor which influenced the power estimate was the number of waves and duration

of a study. Note that in Table 5, for the most part, number of measurement occasions and

study length was confounded in the sense that more measurement occasions were associated

with longer follow-up periods. A clear distinction of the contribution of study length and

number of measurement occasions on power is difficult to obtain from Table 5.

Nevertheless, analyses of the shorter three-wave designs OCTO and LASA, showed that the

number of participants required to obtain sufficient power was much larger compared to the

same studies with five waves that covered four to seven more years. The magnitude of this

effect was quite remarkable. For example, we estimated the power to detect the significant

correlation of .56 among the slopes of DST and MiR in three-waves of OCTO-Twin. The

GRR values were at .39 and .37 which is comparably high for a short study with only three

waves. Accordingly, power was π = .97 with the actual sample and 250 participants would

have been needed to obtain power ≥ .80 to detect the correlation. Four years and two waves

later, the same study based on five waves covering eight years had more than sufficient

power to detect the correlation among the same two variables (i.e., 55 participants would

have been sufficient to detect the correlation of .64 between DST and MiR). The GRR

values were now very high with .55 (DST) and .72 (MiR) which, together with the stronger

correlation, reduced the required sample size drastically. Similarly, in LASA, the correlation

of r = .53 among the slopes of RCPM and AlC was detectable in six years and three waves

with an N ≥ 2, 500. In the five-wave design covering the full range of 13.15 years about 140

participants would have sufficed to detect the correlation of r = .57 between RCPM and AlC

with π ≥ .80. Note that the associated GRR values increased each by .30 points from .07

(RCPM) and .26 (AlC) to .34 and .56 respectively.

The effect size of the association among the slopes played an important role as well. Small

correlations (r = .10) were, if at all, detectable in five-wave studies with more than 7,000

participants such as HRS. Larger effect sizes were associated with higher power. It is

important to note that considering one factor alone is not sufficient to obtain an estimate

about power. If GRR is small, larger correlations may still not be detectable, such as in the

case of VHYS where the correlation of r = .43 among Anx and OpD suffered from low GRR
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(= .25) values for both variables. Accordingly, the power to detect this specific correlation

was moderate and at π = .64 with the available sample size. Note that the power estimates of

the covariances were all based on 1 df test and that the results obtained with the Wald and

the LR statistic were very close.

Slope Variances—Similar patterns of results were found in the power to detect

statistically significant variances although the power to detect variances was in most cases

higher compared to the power to detect covariances among linear slopes. Further, a notable

difference among the results can be seen for the type of hypothesis test. The power to detect

slope variances based on either Wald or LR sometimes resulted in very different results.

Note that the Wald statistic for variances is still based on 1 df whereas the LR statistic is

now based on 4 df in the bivariate growth model. Notably, the LR-test had more power to

detect slope variances if the accompanying covariances were large and positive. The

magnitude of this effect was quite remarkable for some situations such as in case of ELSA

study. According to the Wald test 790 participants would have been needed to achieve

sufficient power to detect the variance of AF. The LR test, in turn, required 300 participants

in order to achieve the same power of π = .80 for the same variable. In this case, the LR test

drew its power from large associations among the slope of AF and DWR and among its

large and positive level and slope covariance which were all medium to large in terms of

effect sizes (rSAFIDW R = .34, rSAFSDW R = .46, and rSAFIAF = .23).

Even though the differences among the Wald and LR statistic were usually not as extreme as

in the ELSA data, in most cases the LR test outperformed the Wald statistic in terms of

power to detect variances. As described previously, the Wald statistic may be seen as

conservative but given that our focus is on slope variances its power estimates can be

generalized more easily in the context of this simulation study because the effect of the

covariances does not influence, and therefore confound, the power estimate of the variance.

Given the Wald statistic, all studies had sufficient power to detect both or at least one of the

variances in the given variable combinations.

In summary, besides the sample size, design factors such as study length and number of

measurement occasions which constitute SST in GRR, influenced the power estimate of the

slope variances. To illustrate this relation, in Figure 4, we plotted, for each variable

combination reported in Table 5, the sample size needed to obtain power of π ≥ .80 relative

to GRR. The number of waves in the studies are represented by the shape of the symbols.

Triangles correspond to studies with three waves, squares are for studies with four, and

circles correspond to studies with five waves. Each symbol corresponds to an actual estimate

within Table 5. Across all studies, the relation among GRR and sample size needed for π ≥ .

80 followed a non-linear, asymptotic function with a dramatic decrease in sample size as

GRR increased to about .40. For values of GRR above .60 sample size decrements seemed

to flatten out and approach an asymptote. A power function (f(GRR) = 13.48GRR−2.266 with

R2 = .99) fitted the data points in Figure 4 best and illustrates that GRR is functionally

related to the sample size required to obtain a power of π = .80 using a single-parameter test.

Even though the non-linear relation seems to hold across all types of studies, three wave

designs are discernible from designs with more waves. That is, studies with three waves and
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short duration seem to require slightly more participants for the same values of GRR

compared to four or five wave studies.

In order to illustrate the effect of GCR on sample size needed to obtain π ≥ .80, we followed

Hertzog et al.’s (2006) approach and computed the GCR0 value at the first measurement

occasion where the time scale is defined to be at zero for each variable in Table 5. The

relation between GCR and sample size is shown in Figure 5. As in Figure 4 the symbols

represent different numbers of waves and each symbol represents one value from Table 5.

The visual inspection shows that GCR does not seem to be related to power or sample size

estimates, especially for GCR values between .50 and .80. The hatched vertical gray line

represents the .90 GCR threshold which, according to Hertzog et al. (2008), should be

calculated to identify potentially problematic slope variances. In the present case, practically

all variables produce GCR values below the threshold while five variables were at a GCR

of .90.

Simulation Results for Different Cases

Given the observations from Table 5 and Figure 4 as well as the definition of GRR in

Equation (1) we systematically varied a number of parameters which are related to the

estimation of power to detect change. In the first three cases we manipulated all elements of

GRR: SST, . SST was manipulated via the number of waves, the duration of the

study, and the length of the interval among waves. In the last two cases the impact of

varying effect sizes of slope covariances and residuals on the power to detect correlated

change are investigated. The population values used in the following cases were derived

from Table 4 in order to obtain realistic situations and to obtain covariance matrices which

were positive definite for all variations of the simulation parameters. These case studies are

meant to be instructive as to the potential for altering key elements of the design.

Case 1: The Impact of Design Variations on SST, GRR and Power

The correlation among the slopes in the covariance matrix of the random coefficients was

set to r = .50 and the slope variances were both . The slope-to-error variance

ratio was 1:75 and the intercept to slope variance ratio was 1:180 which is close the median

across all reported studies. The effect sizes of the correlations among the intercept and slope

were moderate. This covariance matrix reects average values from Table 4 (correlations are

in the upper triangle in parentheses):

Note that the error variance  and the occasion specific error covariance was set to

σεyεx = 70 which corresponds to a correlation among the errors of r = .05.
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Variable SST and GRR: The Impact of Study Duration and Number of Waves—
First, we explored the effect of varying study length on power. Therefore we manipulated

the duration of the study to range from three to 15 years. We created four different study

designs based on three (W3), four (W4), five (W5) and seven (W7) waves. The intervals

between measurement occasions within a given study length were equidistant. As shown

earlier in Figure 1 different study durations result in different SST values and, hence, in

different GRR values. Figure 6 shows the impact of different study durations on the sample

size required to obtain at least power of π ≥ .80 to detect significant slope variances and

covariances among slopes at p ≤ .05. Solid lines represent .80 power to detect covariances

among slopes and hatched lines represent .80 power to detect slope variances.

The effect of time was non-linear leading to larger sample size requirements for studies

covering few years. At the same time, the requirements on the sample size dropped rapidly

as the study duration increased. For example, if the W4 design covers three years, SST is 5

and GRR is 0.06. With this design approximately 5,650 participants are required to obtain

power of at least π = .80 to detect a significant slope variance at p ≤ .05. If the W4 design

covers four years, SST changes to 8.89, GRR to .11, and the required sample size decreases

to 1,860 which is a reduction in N of 67%. The effect of adding one year to the total study

length on the critical sample size becomes less pronounced as more years are covered. That

is, if the W4 design covers 10 years (STT=55.56, GRR=.42) approximately 90 participants

are required to detect a significant slope variance with π ≥ .80. A W4 design that covers 11

years (SST=67.22, GRR=.47) requires 70 participants, 22% less, to detect the same slope

variance.

To explore the effect of the number of measurement occasions on power and sample size,

we manipulated a larger set of measurement occasions ranging from three to 15 in four study

conditions covering in total 3, 5, 7, or 9 years. Figure 7 shows the effect of different

numbers of waves that are administered within a given total study duration. Due to the non-

linear nature of number of measurement occasions and power, the impact of the number of

waves on the sample size was more pronounced for studies with few waves and short

durations. For example, if five years (5y) comprise three waves, 1,320 participants are

required to detect a significant slope variance at p ≤ .05 with π ≥ .80. If in the same amount

of time four waves are administered, sample size reduces by 35% to 860 participants. If

seven years are covered with three waves, 410 participants suffice to detect the slope

variance and if in the same time span four waves are administered, the required sample size

reduces by 32% to approximately 280 participants. Figure 7 also illustrates that short studies

that only cover three years would have to operate with very large numbers of measurement

occasions in order to reduce the sample size. For example, in a study with a duration of three

years, 1,600 participants and nine measurement occasions are needed to detect a significant

slope variance at p ≤ .05 with π ≥ .80. To detect the correlation among slopes of r = .50 in

the same study, at least 16 measurement occasions would be required.

The relation among power to detect a significant covariance among the slopes was

functionally similar but generally resulted in larger samples size requirements compared to

slope variances. With, for example, 500 participants and a study length of nine years,

correlations among the slopes of r = .50 have more than sufficient power for all studies with
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three or more waves. That is, 370 participants suffice to detect a significant slope correlation

in a study covering nine years with three waves. If five years are covered approximately 10

waves are necessary to detect the same correlation with 500 participants.

As demonstrated above, both the study length and the number of waves have interrelated but

unique effects on power in the sense that power can be increased by either including more

waves within a given study length or by covering a longer time span with a constant number

of waves. Note that SST and GRR are different for all simulation conditions and both,

increasing the number of waves and years covered, positively influence SST.

Constant SST and GRR: Different Number of Waves, Different Study Duration
—In the previous case we manipulated the number of waves and study duration and with it,

SST and GRR. Here, we examined the effect of varying numbers of waves and study

duration on power while keeping SST and GRR constant. That is, all parameters in GRR

were kept constant while we compared different design types. In order to do so, we kept the

reliability constant at GRR = .40 across all conditions. Given that an increase in number of

waves also increases the reliability (cf. Equation 1) we chose to adjust the time span covered

by different designs in order to keep GRR constant. For instance, the W3 design covered ten

years with measurement occasions at time 0, 5, and 10, which amounts to an SST of 50. By

holding the error and slope variances constant, we achieved a reliability of

 which is close to the average GRR in Table 5. In order to

achieve the same reliability with the W4 design we needed to reduce the amount of years

covered in that design. An SST=50 with four equally spaced waves is obtained in 9.49 years

and the measurement occasions were set to 0, 3.16, 6.33, and 9.49 years. The W5 design

spanned 8.94 years with measurements at 0, 2.24, 4.47, 6.71, and 8.94 years. The last design

W7 spanned 8.02 years and had seven waves at the occasions 0, 1.34, 2.67, 4.01, 5.35, 6.68,

and 8.02. Note that with seven waves the total time span of a study reduces by almost 2

years while GRR remains constant.

Figure 8 shows four solid and four hatched lines. The solid lines represent the power curves

for the covariances among the slope and the hatched lines represent the power curves for the

slope variances which, in the present case, were identical for both sets of variables. The thin

horizontal line represents the .80 power threshold indicating that, for example, the sample

size needed to detect a correlated slope of r = .50 with three waves and a power of .80 is

about N = 275. The slope variance in the same W3 design requires about 130 participants to

obtain π ≥ .80. There is a small gap in the sample size needed to uncover significant

covariances or variances between the study designs based on three and four waves. In order

to uncover the covariance among the slopes in the W4 design about 235 participants are

needed – 40 or 15% less than in the W3 design. Similarly, the slope variance may be

detected with about 110 participants in the W4 design which are 20 or 15% fewer

participants compared to the W3 design. Notably, power to detect slope variances was

higher compared to power to detect covariances among slopes. The small but consistent

effect of different number of waves on power indicates that SST did not completely absorb

all design effects.
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Variable SST and GRR: Constant number of Waves, Constant Study Duration,
Varying Intervals Among Waves—Following the definition of the growth rate

reliability in Equation (1), changes in SST affect the magnitude of the reliability. Hence, the

type of the longitudinal study design not only alters the SST by number of waves and overall

time span but also via the choice of intervals between waves. By altering the times at which

measurements occur, one might maximize SST and, ultimately, reduce the sample size

needed to detect a given effect. In order to estimate changes in power due to different

interval spacing designs we tested three different designs which involved changes across ten

years. All designs involved four waves where Design 1 (D1) had measurement occasions at

0, 1, 9, and 10 years and an SST of 82. The waves in Design 2 (D2) were equally spaced at

0, 3.3, 6.6, and 10 years which equates to an SST of 55.4. Design 3 (D3) had waves at 0, 4.9,

5.1, and 10 years which leads to the smallest SST of 50. Given that we varied the time at

which each measurement occurred, we also varied the SST and with it GRR. We chose to

set GRR = .35 in D2 which reects the average GRR from studies based on four waves in

Table 5. Given the intervals in the other two designs we obtained GRR = .44 for D1 and

GRR = .33 for D3. The error variance was set to  in order to obtain a GRR

= .35 for D2 with σ2 = 28. The occasion specific error covariance was set to be equivalent to

a correlation of r = .05 which resulted in .

Figure 9 shows the results from the Monte Carlo simulation for three different designs that

vary the intervals between waves. Solid lines represent power curves for the slope

covariance parameters and the dashed lines represent the power curves for the slope variance

parameters. The effect of the design type on the power curves is clearly visible for both the

covariances and the variance parameters. For example, in order to detect the covariance

among the slopes with π ≥ .80 in the D2 design where the waves are equally spaced a

sample of 320 participants or more would be needed. In D3 one would need more than 380

participants to uncover the same correlation but with the D1 design which maximizes the

SST, only 190 participants would suffice. As previously observed, the slope variances were

detectable with fewer participants compared to the correlation among the slopes.

Case 2: The Effect of  on the Sample Size

In order to explore the effect of GRR on the power to detect slope variances and covariances

we varied the reliability between .10 and .80 via the error variance . We used the same

setup as above but now  ranged from 12,600 to 350. To further explore the combination of

study type and reliability regarding sample size, we varied GRR in all four previously

defined study design types W3 (10y), W4 (9.49y), W5 (8.94y), and W7 (8.02y). To facilitate

the interpretation we plotted .80 power curves in Figure 10. Each line represents π = .80 for

a given GRR value and a given sample size for four different study designs. SST was again

held constant at 50.

Figure 10, which shares some similarities with Figure 4, illustrates the non-linear relation

between reliability and sample size. As GRR decreases, the number of participants needed to

obtain a power of π ≥ .80 increases notably and non-linearly. Further, the absolute sample

size and the gradient of change in sample size depends on GRR and on the parameters in
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question: The sample size to detect covariances among slopes is generally higher compared

to the sample size needed to detect slope variances. Also, if GRR is held constant across

design types by reducing the total study duration, designs with different numbers of waves

produce similar sample size requirements to detect variances or covariances with power of at

least π ≥ .80. Note that the required sample sizes are close but not identical across design

types and designs with fewer waves, such as W3 need larger samples compared to designs

with higher numbers of waves. The size of the gap in the power curve between the three-

wave and the four-wave design is accentuated by smaller reliability values.

Case 3: Varying Effect Sizes of the Slope Variance —Up to this point, we varied

GRR via the error variance  and SST while keeping the slope variance constant. GRR also

depends on the size of the variance in linear change . Here we will manipulate the third,

remaining parameter  in GRR.  represents a critical parameter as it will reduce GRR to

0 in the case of . In order to evaluate the effect of the slope variance on power we

manipulated  to cover a broad range of slope-to-error variance ratios as shown in Table 4.

In the present case we estimated power to detect significant slope variances with slope-to-

error variance ratios ranging from 1:420 to 1:20. These ratios produced GRR values ranging

from .11 to .71. We remained with the population values for the matrix of random

coefficients and the error (co)variance from Case 1 but in the present case  ranged from 5

to 105. In order to keep the covariance matrix positive definite we kept the correlations

constant at the values given in Case 1. As in the prior cases we evaluated the effect of the

manipulations within four different designs, comprising the W3, W4, W5, and W7 designs

defined in Case 1 with SST=50.

Figure 11 shows four hatched lines which represent .80 power estimates at a certain sample

size for the four design types. Different slope-to-error variance ratios affected the power and

the sample size needed to obtain power of π ≥ .80. As seen previously, the curves followed a

non-linear pattern indicating that little variance in  needs to be compensated with a large

sample size while large  can be detected with much fewer participants. Note that these .80

power estimates of the variance parameters reproduce closely the estimates obtained under

the same GRR values in Figure 10.

Case 4: Varying Effect Sizes of the Slope Covariance—As can be seen from Table

5 the magnitude of the correlation among the slopes largely influenced the power estimate

and sample size needed to obtain power of at least .80. In the present case, we investigated

the influence of the effect size on the sample size for a given reliability of GRR = .40. The

correlations ranged between .10 and .80, covering a realistic range of values from Table 4.

Again, we contrasted four conditions based on the W3, W4, W5, and W6 design defined in

Case 1 where GRR was held constant across all design conditions. The covariance matrix

was derived from the ELSA study using delayed word recall (DWR) and fluency (AF)

scores from Table 4 in order to represent findings in cognitive variables and to obtain a

covariance matrix which remained positive definite for the entire range of covariance
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parameters tested here. Note that both slope variances were set to equal values to facilitate

the interpretation of the figures. The covariance matrix for this present case was

The values in squared brackets denote the range of the covariances and correlations (above

diagonal). Covariances varied between 0.14 and 1.12, accordingly the correlation ranged

from .10 to .80. The occasion specific error correlation was set to r = .10.

Figure 12 shows .80 power curves for the four given designs W3, W4, W5, and W7.

Generally, the relation among the effect and sample size was negative in the sense that high

correlations among the slopes can be detected with fewer participants compared to smaller

effect sizes which require more participants. The relationship between the effect size and the

sample size was non-linear. As the correlation increased in size the demand on the sample

size rapidly decreased until it reached a plateau. For example, in order to detect a correlation

of r = .25 between 1070 (W3) and 840 (W7) participants are needed. Correlations of r = .50

are detectable with considerably smaller samples ranging from 280 (W3) to 210 (W7)

participants. Similarly, 500 participants suffice to detect correlations ranging from r = .36 in

the W3 design to r = .33 in the W7 design.

In order to investigate the relation between effect and sample size with varying GRR, we

computed the .80 power curves for GRR values of .20, .40, .60, and .80 in a four-wave

design. We used the W4 design defined in Case 1 which covers 9.48 years in total with GRR

modified only by changes to the error variance. As can be seen from Figure 13 the power

curves are non-linear indicating that smaller effect sizes require increasing sample sizes in

order to detect the slope correlations. Notably, the reliability exerts a substantial effect on

the sample size. Power curves for higher reliabilities seem to reach an asymptotic level

earlier than power curves based on low reliability which yields an increasingly strong but

negative dependence between the effect size and the sample size as GRR decreases. For

example, a correlation of r = .40 may be detectable with 80 participants if reliability is high

(GRR = .80) but more than 1,630 participants are required to detect the same correlation

with low reliability of GRR = .20.

Case 5: The Effect of Occasion Specific Error Covariances σεyεx on the
Sample Size to Detect Power ≥ .80—The studies in Table 4 show that the effect size of

the time-specific residual covariance was small to moderate with an average correlation of

about r = .10. In some studies however, such as in ACAD, the residual covariances were

large, up to r = .62. In order to relate the magnitude of the occasion specific error correlation

to the sample size we computed .80 power curves across four GRR values (.20, .40, .60,

and .80) in a four-waves study spanning six years with equally spaced waves. The

covariance matrix used to define the population values was the same as in Case 4 with a

slope correlation of r = .50. Apart from the effect of GRR on sample size, Figure 14 shows

that the magnitude of the error covariance σεyεx exerts a negligible effect on the sample size
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to detect power ≥ .80. With GRR of .04 and above the effect of the error correlation has little

impact on the sample size. For example, if GRR = .60 the increase in sample size associated

to an increase in the error correlation from r = .20 (N = 90) to r = .60 (N = 120) is 20

participants. If the reliability is low, at GRR = .20, the sample size increases from 1,110 to

1,350 participants – which corresponds to a difference of 240 participants.

Discussion

In this study, we investigated the interplay of different factors which contribute to the power

to detect variances and covariances in linear rates of change in the context of a broad range

of actual longitudinal studies and variables. We emphasized the importance of growth rate

reliability (GRR) defined by Willett (1989) which captures relevant parameters associated to

power, such as the slope variance, error variance, and design attributes comprising number

and spacing of waves, and the total study duration. Power was estimated by means of Monte

Carlo simulations using LGC models. Our study was geared mainly towards the

understanding of the interplay among the components of GRR and their relation to power

and not to report a definitive statement about the range of power to detect individual

differences in slope variances and covariances in longitudinal studies. Nonetheless, our

results provide a quite positive summary of power in existing studies and demonstrate that

most existing longitudinal studies of developmental and aging-related outcomes have more

than sufficient power to detect individual differences in change and associations among

linear rates of change. This was also the case in many of the studies covering few years with

only three measurement occasions. Power to detect covariances among rates of change was

generally lower and required larger sample sizes compared to the detection of variances.

Also, power can be substantially increased by adding more measurement occasions,

particularly when study duration is short (e.g. five years and less) such as in the early phases

of every longitudinal study.

The range of GRR and slope-to-error variance ratios is considerable across longitudinal

studies (as shown in Tables 2 and 5) and, accordingly, the range of sample size requirements

to obtain sufficient power can be very large. While we provide estimates of power for actual

values from the studies reported here, we used the model estimates primarily to anchor our

power simulations to a range of real parameter estimates for several variable domains. Table

4 provides a range of values for cognitive, physical, and mental health variables that can be

used as start values for simulation and power analyses that provide a realistic basis for the

design of new longitudinal studies and further extensions of existing studies. Given the large

heterogeneity in the relevant parameters  we strongly encourage investigators to run

power analyses during the processes of designing longitudinal studies and plan for relatively

low power early in the longitudinal follow-up by adding observations, possibly including

more intensive measurement designs to capture within-person dynamics and optimize

estimates of within-person means.

The selection of realistic simulation parameters is essential, particularly given the

discrepancy between results from recent simulations and the increasing number of

statistically and substantively significant findings reported from a variety of developmental

and aging studies based on longitudinal designs. Crucial to any simulation is its
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generalizability to the “real world" with the outcome of any simulation being highly

dependent on the derivation of population parameters (Paxton, Curran, Bollen, Kirby, &

Chen, 2001). Indeed, the large and increasing body of published longitudinal findings and

the results of our power analysis are at odds with recent results from a series of simulation

studies by Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) who painted a

pessimistic picture of current longitudinal studies and related designs. We have critically

evaluated these earlier studies of power to detect change in the introduction. We showed that

the low power estimates for most conditions reported by these earlier simulation studies was

due to their choice of parameter values that were largely out of bounds of actual study

values. In particular, their choice of parameter values resulted in low GRR conditions due to

little change variability relative to the error variance. Also, Hertzog and colleagues

interpreted GCR as an absolute index of power. Their interpretation regarding the pivotal

role of GCR in the context of power to detect slope variances and covariances needs to be

put into perspective. While measurement reliability is positively related to power, GCR

simply reflected variation in error variance within their simulation design. More importantly,

the different GCR conditions in their simulations were not static but resulted in different

slope-to-error variance ratios and different GRR conditions. We illustrate this effect in

Figure 2 across four designs where we show that changes in error variance lead to different

GRR values which truly captures the nature of power. For example, the GCR= .91 condition

can result in almost any value of GRR in the range between 0 and 1 depending on the size of

the slope variance and the number of measurements in the design. Accordingly, almost any

value of power between 0 and 1 will be obtained with these variations. Hence, while GCR

captures the important aspect of measurement reliability, it is only one element of a very

dynamic and complex relation among different facets that are captured in GRR and which

constitute power to detect change and covariation in change. Moreover, the simulation work

of Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) perfectly confounded study

length with number of waves. As a result, a clear distinction of the unique contributions of

these study design elements to power to detect variances and covariances among rates of

change cannot be made. Any interpretation regarding study design elements in the earlier

results reported by Hertzog and colleagues remains ambiguous due to these confounds and

contributes little to the understanding of power to identify individual differences in and

among growth rates in longitudinal studies.

Growth Rate Reliability (GRR)

The growth rate reliability (Willett, 1989) turned out to be a very useful index which

captured the relevant parameters of power to detect growth rates. The relation of GRR and

power was first examined using estimates from existing longitudinal studies (Figure 4) and

we replicated these findings in several case studies where relevant parameters were

systematically varied. It is noteworthy that GCR, the reliability of a growth curve estimate at

one point in time, was largely unrelated to power to detect slope variance and covariance in

existing studies. Figures 4 and 5 illustrate the explications about GRR and GCR given in the

introduction and how these might typically be used in practice.

GRR is a useful index of power, comprised of the most relevant parameters linked to power.

Of special interest is the SST component which captures design considerations such as study
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length, number of waves and spacing of waves. These elements are typically under the

control of the investigator and their impact on power and sample size is important to

understand and use in practice. Changes in the study design have direct influence on SST

which alters GRR. This relation can be easily established (cf. Figure 1 and Willett, 1989) but

at the same time the relation among GRR and power was largely unknown. Our results

showed that the non-linear relation among GRR and power leads to substantial increases in

sample sizes once GRR values are below .20. On the other hand, the sample size

requirements become quite stable for values of GRR above .40.

Changes in study designs such as number of measurement occasions, study length, and

intervals between observations had the largest effects at the lower end of GRR. For studies

which cover fewer than five to seven years, increasing the number of measurement

occasions can be beneficial. However, one needs to find a balance among increasing power

and other, unwanted effects, such as retest and practice effects. If the total study duration

exceeds 10 to 15 years, number of waves hardly influences power to detect variances of and

among growth rates. Obviously, power is a major issue in the early stages of longitudinal

studies. Given these findings one strategy could be to include more measurement occasions

in initial phases of longitudinal studies and then, reduce the amount of measurement

occasions once sufficient power is obtained for the analysis of change. However, more

frequent assessments and the use of intensive measurement designs can have additional

benefits by permitting analysis of within-person dynamics and short-term variation and

provide more reliable estimates of within-person level of functioning (e.g. Rast, MacDonald,

& Hofer, 2012; Walls et al., 2011).

As can be seen from working through the simulation case studies, GRR provides a

standardized estimate which stably predicts power, or required sample size to detect power

≥ .80, given a certain number of measurement waves. That is, the influence of the error and

the slope variance follows a non-linear trajectory in each of the simulations. In order to

explore this association, we evaluated a number of functions through these trajectories and

found that a power function best described the relation among GRR and sample size. This

relation among GRR and sample size was close but not perfect indicating that SST did not

fully account for the design effects in studies with only three measurement occasions. With

four and more waves, this discrepancy becomes negligible and we would second

MacCallum et al. (1997, p. 217) suggestion to obtain at least four to five measurement

occasions for modeling linear change. The close association of GRR and power to detect

longitudinal change in linear slopes encourages the use of GRR as a useful index for the

determination of sample size in a linear growth curve model. It is important to note here,

that the relation among GRR and power was established in the linear LGC model with

constant error variances and based on the more conservative single parameter Wald test. The

relation might be different for different variations of LGC models (e.g. with different

constraints) and may remain useful for approximating power in non-linear models and for

other statistical tests. However, GRR can not fully substitute for the estimation of power

using Monte Carlo simulations (or other techniques such as the power estimation introduced

by Satorra and Saris (1985) for particular applications). Nonetheless, GRR provides a very

effective index to formalize the reliability of growth rates and it illustrates the interplay

among a number of study design parameters that have an important role in the power to
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detect individual change. We expect that these same design factors will be important for

more complex and nonlinear models of change.

Keeping these limitations in mind, the implications for the design of longitudinal studies are

formalized to some degree in the GRR estimate, providing the impact on power for

particular design considerations. Power to detect individual differences in change is directly

related to the phenomenon of interest  and to the combined error variance  comprised of

time-specific intraindividual variability and measurement reliability. As we demonstrated,

the investigator is able to increase GRR by increasing the total duration of the study,

optimizing wave intervals or adding in additional waves to increase SST. However, the

cautionary notes raised by Willett (1989) apply, suggesting that in most cases it will not be

beneficial to focus on one parameter and increase GRR by, for example, maximizing SST.

Design considerations should not be reduced to one factor alone and the present results

illustrate the complex interplay among effect sizes, type of study design, measurement

reliability, and power to detect variance and covariance in rates of change.

Implications for Design of Long-Term Longitudinal Studies

There are a number of implications of this analysis of existing longitudinal studies and

related simulations for the design of new longitudinal studies of developmental and aging-

related processes. One of the most important aspects is the number and interval between

measurement waves and the length of the study. While longitudinal designs are essential for

understanding developmental and aging-related change, their value is usually obtained only

after many years of effort. In particular, the early phases of longitudinal studies often do not

provide a sufficient basis for the analysis and explanation of individual change and

variation. Our recommendation is that these early phases of longitudinal studies be enhanced

using a variety of potential measurement intensive designs, such as a measurement burst

design (e.g. Walls et al., 2011) or by the addition of one or two additional more closely

spaced waves. Such study designs would refine detection of individual variation and change

and our understanding of intraindividual dynamics over shorter periods of time.

Measurement intensive designs and additional waves increase SST and GRR and have a

major effect on power to detect change and covariation among rates of change if embedded

in more typical longitudinal designs. Such innovations in measurement and intraindividual

dynamics would carry forward in important ways to understand change in outcomes and

processes that may better capture the complexity of individual development and improve

power to detect individual change and variation.
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Figure 1.
The effect of study length and number of measurement occasions on GRR. The slope

variance is  and the error variance is . Study length is scaled as a one-unit

difference comprising 19 years (cf. Hertzog et al. 2006).
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Figure 2.

GRR as a function of slope variance ( ) among different numbers of measurement

occasions. The four lines are based on four different error variances. The Figure parallels the

power plots in Hertzog et al. (2008, Figure 3) and shows how GCR is related to GRR. 4

occasions cover a study duration of 6 years, 5 occasions cover 8 years, 6 occasions cover 10,

and 10 occasions cover 18 years.
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Figure 3.
The bivariate latent growth curve model which was used to extract parameter values from

existing longitudinal studies. This model was also used to obtain power estimates by means

of Monte Carlo simulations.
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Figure 4
.80 power estimates to detect slope variances given the observed GRR from all variables in

the studies reported in Table 5. Each symbol represents the required sample size to achieve a

power of .80. Triangles represent studies with three waves, crosses represent studies with

four, and circles represent studies with five waves. All values are reported in Table 5. The

hatched gray line represents the fitted power function f(GRR) = 13.48GRR−2.266.
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Figure 5
.80 power estimates to detect slope variances given the observed GCR from all the studies in

Table 5. Triangles represent studies with three waves, crosses represent studies with four,

and circles represent studies with five waves. The hatched, gray line represents the .90 GCR

value. According to Hertzog et al. (2008) values below .90, all values left of the line, are

“potentially problematic”.
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Figure 6.
Power curves for covariances among slopes (solid lines) and slope variances (dashed lines)

given  and a correlation (r = .50) among the slopes. The figure represents

four different design types based on three (W3), four (W4), five (W5), and seven (W7)

waves with equidistant intervals. The total study length varied between three and 15 years.

Study length and number of waves have interrelated but unique effects on power.

Rast and Hofer Page 37

Psychol Methods. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7.
Power curves for covariances among slopes (solid lines) and slope variances (dashed lines)

given  and a correlation (r = .50) among the slopes. The lines represents

four study durations covering 3, 5, 7, and 9 years in total with equidistant intervals. The

number of measurement occasion for each of these four study length varied from 3 to 15.
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Figure 8.
Power curves for covariances among slopes (solid lines) and slope variances (dashed lines)

given equal growth curve reliability of GRR= .40, equal slope variances, and equal

correlations (r = .50) among the slopes. The figure represents four different design types

based on three (W3), four (W4), five (W5), and seven (W7) waves with equidistant

intervals. In order to maintain the reliability constant across all four study designs the SST

was fixed to 50 and the study designs covered different intervals. The thin gray line

represents the .80 power threshold.
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Figure 9.
Power curves for correlated slopes (solid lines) and slope variances (dashed lines) given

three different types of wave intervals which all span 10 years. The correlation between the

slopes is r = .50. D1 has measurement occasions at years 0, 1, 9, and 10 (SST=82), D2 at 0,

3.3, 6.6, and 10 (SST=55.4), and D3 at 0, 4.9, 5.1, and 10 (SST=50). The variances and

covariances of level, slope and of the errors are held constant across the three interval types.

The reliability only changes due to different spacing of the intervals between waves.
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Figure 10
.80 power curves for covariances among slopes (solid lines) and slope variances (dashed

lines) given equal slope variances, and equal correlations (r = .50) among the slopes. The

figure represents four different design types based on three (W3), four (W4), five (W5), and

seven (W7) waves with equidistant intervals. GRR is manipulated via the error term 

which ranges from 12,600 to 350.
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Figure 11
.80 power estimates for different slope variances (dashed lines) in four designs based on

three (W3), four (W4), five (W5), and seven (W7) waves. The error variance is constant at

 and SST is 50. The slope-to-error variance ratio ranges from 1:420 (5:2100) to

1:20 (105:2100). The lower x-axis provides the variances and the top x-axis provides the

according GRR values.
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Figure 12
.80 power curves for correlated slopes given equal reliability of GRR =.40, and equal slope

variances of 1.4. The figure represents four different design types bases on three (W3), four

(W4), five (W5), and seven (W7) waves with equidistant intervals.
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Figure 13.
Four .80 power curves for covariances among slopes given different GRR values ranging

from .20 to .80 in a four-waves study design with equally spaced intervals.
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Figure 14
.80 power curves of correlated slopes for four GRR values ranging from .20 to .80 in a four-

waves study design with equally spaced intervals. The occasion specific error correlation

spanned from 0.0 to .90.
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