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results based on actual longitudinal studies
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Abstract

We investigated the power to detect variances and covariances in rates of change in the context of
existing longitudinal studies using linear bivariate growth curve models. Power was estimated by
means of Monte Carlo simulations. Our findings show that typical longitudinal study designs have
substantial power to detect both variances and covariances among rates of change in a variety of
cognitive, physical functioning, and mental health outcomes. We performed simulations to
investigate the interplay among number and spacing of occasions, total duration of the study,
effect size, and error variance on power and required sample size. The relation between growth
rate reliability (GRR) and effect size to the sample size required to detect power = .80 was non-
linear, with rapidly decreasing sample sizes needed as GRR increases. The results presented here
stand in contrast to previous simulation results and recommendations (Hertzog, Lindenberger,
Ghisletta, & von Oertzen, 2006; Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008; von
Oertzen, Ghisletta, & Lindenberger, 2010), which are limited due to confounds between study
length and number of waves, error variance with GCR, and parameter values which are largely out
of bounds of actual study values. Power to detect change is generally low in the early phases (i.e.
first years) of longitudinal studies but can substantially increase if the design is optimized. We
recommend additional assessments, including embedded intensive measurement designs, to
improve power in the early phases of long-term longitudinal studies.
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Most questions in the study of developmental and aging-related processes pertain to
“change” in systems of variables and across different time scales. Typical longitudinal
studies focus on change processes over months and years while “intensive measurement”
studies examine change and variation across much shorter periods of time (e.g. Walls, Barta,
Stawski, Collyer, & Hofer, 2011). While the design of particular longitudinal studies relies
on both theoretical rationale and previous empirical results, there is general agreement that
longitudinal data are necessary in order to approach questions regarding developmental and
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aging-related change within individuals (e.g. Bauer, 2011; Hofer & Sliwinski, 2006; Schaie
& Hofer, 2001). Optimally, the design of the longitudinal study will provide estimates of
reliable within-person change and variation in the processes of interest.

In order to model individual differences in change in longitudinal settings, multilevel models
are a frequent choice (Laird & Ware, 1982; Raudenbush & Bryk, 2002) because they allow
the flexible specification of both fixed (i.e., average) and random effects (i.e., individual
departures from the average effect). The degree to which individuals change differently over
time is in the variance of a time-based slope, which can be expanded to covariances in the
multivariate case involving two or more processes over time (e.g. MacCallum, Kim,
Malarkey, & Kiecolt-Glaser, 1997; McArdle, 1988). The covariance among the random
slopes provides information whether, and how strongly, these processes are associated. For
example, Hofer et al. (2009) report associations among individual differences in level, rate
of change, and occasion-specific variation across subscales of the Developmental Behavior
Checklist (DBC) in a sample (N = 506) aged 5-19 years and at four occasions over an 11-
year period. Correlations among the five DBC subscales ranged from .43 to .66 for level, .43
to .88 for linear rates of change, and .31 to .61 for occasion-specific residuals, with the
highest correlations observed consistently between Disruptive, Self-Absorbed, and
Communication Disturbance behaviors. In addition to the mean trends (Einfeld et al., 2006),
the pattern of these interdependencies among dimensions of emotional and behavioral
disturbance provide insight into the developmental dynamics of psychopathology from
childhood through young adulthood.

The power to detect the variance and covariance of variables over time is a fundamental
issue in associative and predictive models of change. While a number of authors have dealt
with questions of sample size planning and power in the context of longitudinal studies (e.g.
Hedeker, Gibbons, & Waternaux, 1999; Kelley & Rausch, 2011; Maxwell, 1998; Maxwell,
Kelley, & Rausch, 2008; B. O. Muthén & Curran, 1997), relatively few have specifically
addressed the power to estimate individual differences in change and associations among
rates of change (but see Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006; Hertzog,
von Oertzen, Ghisletta, & Lindenberger, 2008; von Oertzen, Ghisletta, & Lindenberger,
2010).

The estimation of power to detect change and correlated change in longitudinal designs
requires consideration of a number of critical parameters, each having potential differential
effects on the results. Briey, following early work by Willett (1989), we differentiate
between parameters which are not typically under control of the researcher, such as the

variability of change over time (i.e., individual differences in slope az), the correlation
between changes over time (i.e., covariance of slopes 05),3,(), the measurement error variance

(+2), and features of the study design that are modifiable such as the sample size (N), the
spacing and number of measurement assessments, and the total span or duration of the
study. These parameters and design features are directly linked to the reliability to detect
individual growth curves (cf. Willett, 1989), which is partly given by the reliability of the
measures but can be considerably altered by the study design.

Psychol Methods. Author manuscript; available in PMC 2015 March 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rast and Hofer

Page 3

Hence, the purpose of this work is to cast light on the interplay among different factors
which contribute to the detection of individual differences in and among rates of change. It
is important to know how our decisions regarding longitudinal designs impact power to
detect certain effects. In this regard it is of special interest to identify features of the study
design that are modifiable and which can be used to optimize power and with it sample size
requirements. An important tool to identify the relevant parameters and their interplay is the
reliability of the growth rate as proposed by Willett (1989).

Growth Rate Reliability (GRR)

The reliability of the growth rate is central to the analysis of change. In the context of
longitudinal multilevel models, the first step usually involves the estimation of an intraclass

correlation coefficient (ICC), an index of the ratio of between-subject variance (¢2,,. ) to

total variance. This is done by estimating an unconditional means model whereby the
variance due to differences between persons in a repeated-measures setting is expressed as a

proportion of the total variance o2, . /(c?,,.,+02) (cf. Raudenbush & Bryk, 2002). If the
number of measurement occasions is the same for all participants in a study, the ICC can be

expanded to obtain a measure of reliability. Thereby, the residual variance (52) is divided by
the number of measurement occasions to obtain the ICC2 estimate (Bliese, 2000). The ICC2
indicates how much of the between-person variation in observed scores is due to true score
variation (see also Kuljanin, Braun, & DeShon, 2011).

In order to obtain an estimate of the reliability of the growth rate, Willett (1989) presented
an index which bears some similarity to the reliability estimate ICC2. Willett’s index,

however, takes into account the design of the study by dividing the residual variance o2 by
the sum of squared deviations of time points () at measurement occasions (w) in W waves,

W o
SST:Zw:1()‘w -%)° Hence, Willett (1989) defines growth rate reliability (GRR) as

2

The GRR estimate provides critical information about the capability to distinguish
individual differences in the slope parameters but should not be mistaken for an index of
reliability of the measurement instrument as “it confounds the unrelated influences of group
heterogeneity in growth-rate and measurement precision” (Willett, 1989, p. 595). For
instance, in a situation with no individual differences in slope, GRR will be zero even if the
reliability of the measurement is high. At the same time, this feature is desirable for the
purpose of understanding and identifying critical design parameters because it takes into
account the increasing difficulty to detect slope variances as they approach zero. Hence,
GRR is well suited for the identification of critical design parameters which influence the
ability to detect individual differences in growth rates. As Willett (1989) showed, the
reliability of individual growth is dependent on several factors, including the magnitude of

interindividual heterogeneity in growth (ai), the size of the measurement error variance (%)
and SST which is dependent on the number of waves (W), the spacing or interval between

Psychol Methods. Author manuscript; available in PMC 2015 March 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rast and Hofer

Page 4

these waves, and the total duration of a study. Besides the sample size, these five elements
all contribute to the power to detect individual differences in and among rates of change. Of
special interest is the SST component because it is typically under the control of the
researcher.

The same value of SST can be obtained with different designs varying in study length,
number of measurement occasions, and different intervals among the measurement
occasions. For example, SST=10 can be obtained with five measurement occasions at the
years 0, 1, 2, 3, and 4. The same SST could also be obtained with three measurement
occasions at the years 0, 2.2, and 4.5 or with seven occasion at approximately 0, 0.6, 1.2,
1.8, 2.4, 3.0, and 3.6 years. On the other hand, SST can result in different values if the same
number of measurement occasions cover different time spans. For example, if five equally
spaced waves cover four years SST is 10. If five equally spaced waves cover eight years,
SST increases to 40, and if five waves cover two years SST reduces to 2.5. Clearly,
decisions regarding the study design can have a strong influence on GRR as SST alters the
impact of the error variance. Hence, the reliability of the same slope variance can be quite
different depending on the study design and Willett (1989) concluded that “with sufficient
waves added, the influence of fallible measurement rapidly dwindles to zero” (p. 598). We
would add, that any step taken to increase SST, such as adding years and optimizing design
intervals, reduce the impact of “fallible measurement” and increase GRR.

The relation of GRR to power, however, remains an open question. It is reasonable to
assume that higher GRR will increase power but it is not well understood how these two

quantities are related and how manipulations of GRR elements, such as az, o2, and
especially SST-related design factors will affect power to detect variances and covariances
of growth rates. Hence, GRR will be used here to define and examine different longitudinal
designs and the impact of these decisions on power to detect individual differences in
change.

Growth Curve Reliability (GCR)

It is important to differentiate growth rate reliability GRR (Willett, 1989) from growth curve
reliability (GCR) defined by McArdle and Epstein (1987) and applied recently by Hertzog et
al. (2006, 2008). GCR is defined as (see also Table 2B in McArdle & Epstein, 1987),

012+2/\w015+)\3)0§

GCR == )
w U?+2)\w0'15—|—/\12u(7§ +o2

@

and describes the relation between the expected variance determined by a growth curve
model at a particular measurement occasion (w) and the total variance at that same time
point. Besides the slope variance, GCR also accounts for the intercept variance and
covariance among the intercept and slope in the computation of predicted total variance of a
parameter at a particular occasion. Given that GCR relates model predicted true-score to

total variance, the ratio provides different estimates for different occasions if az>0 and/or
o1s#0.
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While GRR remains unaffected by the intercept variance and the related covariance term,
GCR provides an index of reliability of the measurement at a given occasion and may result

in high values even if there is no variability in the slope (02:0). GCR is somewhat
complementary to GRR, which can produce high reliability even if GCR approaches zero at
one occasion. For example, if the intercept (A, = 0) approaches the cross-over point of a
growth model, most variance at this occasion will due to residual variance and, accordingly,
GCRg approaches zero. GRR is unaffected by the location of the intercept and its estimate
remains constant across a study design.

The commonality between GRR and GCR is in the error variance. Large error variances
decrease both reliability indices whereas small error variances increase their magnitude. The
ratios upon which these estimates are based, however, are quite different and have distinct
interpretations. Also, with a given residual variance, GCR is defined by the size of the true-
score variance. In turn, the detrimental effect of unreliable measurements on power can be
attenuated in GRR as longitudinal observations or the duration of the study increase.

As such, GCR provides information about the reliability of static measurements but it does
not provide information on how well we can distinguish individual differences in growth
processes. Hence, if we are interested in understanding which factors contribute to the power
to detect individual differences in rates of change we should rely on the reliability of the
growth rate, GRR as it includes the most relevant parameters which impact power.

Critique of Power Analyses by Hertzog et al. (2006,2008) and von Oertzen et

al. (2010)

Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) estimated the power to detect
correlated change and individual differences in change using latent growth curve models.
They tested a number of different models by varying sample size, effect size, number of
measurement occasions, and growth curve reliability (GCRg at the first measurement
occasion w(0)) using a simulation approach. The authors concluded from their results that
most existing longitudinal studies do not have sufficient power to detect either individual
differences in change or covariances among rates of change. For example, with a sample
size of 200 and a correlation among the linear slopes of r = .25 in a bivariate growth curve
model power did not exceed .80 for study designs with equal or less than six waves in 10
years unless growth curve reliability (GCRp) was almost perfect at .98 (Hertzog et al., 2006,
Figure 1). The outlook was similar for power to detect slope variances (Hertzog et al., 2008).
For example, in the case of a four-wave design over the period of six years, the power to

detect a significant slope variance in the best condition (02:50 and N =500) is only
sufficient if the residual variance is 10 (GCRg = .91) or smaller. The closing comments in
von Oertzen et al. (2010) “persuade [latent growth curve model] LGCM users not to rest on
substantive findings, which might be invalid because of inherent LGCM lack of power
under specific conditions” (p. 115). However, the identification of individual differences in
change and correlated change does not seem to be particularly difficult or rare in practice
and the results from these simulation studies (Hertzog et al., 2006, 2008; von Oertzen et al.,
2010) do not appear to correspond to actual results. In the following, we provide a critical
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evaluation of this set of previous simulation-research on the power to detect individual
differences in change.

Role of GCR on power to detect slope (co-)variances

A key assumption in Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) is that GCRg
is a primary determinant of power. The authors computed GCR at the first measurement
occasion w(0) in order to obtain an estimate of measurement reliability. At the wave where
the intercept is defined as \,, = 0, Equation (2) reduces to the ratio of intercept variance to

total variance (GCRO:(;I2 / (af+a§)). At that specific occasion the ratio bears some
similarity to ICC which, however, is based on an unconditional means model and, hence,
GCRg and ICC usually do not provide the same values.

As discussed earlier, GCR is an index of measurement reliability but does not directly
provide information on the ability to detect slope variances. While variations in the intercept
and error variance will result in different GCR values, increases or decreases in the slope

variance ag are not captured by GCRg and the index is unaffected by the amount of
individual differences in growth rates. GCRq does not contain the critical slope-to-error
variance ratio and informs only about measurement reliability at the intercept (or at other
particular values of time) which can be unrelated to the ability to statistically detect slope
variances. GCR can also vary substantially across measurement occasions and is therefore
not an invariant index.

Selection of population parameters: Intercept-to-slope variance ratio

Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) framed their simulations using a
hypothetical longitudinal study covering 19 years with 20 occasions. The variance of the

intercept ‘712 defined at the first time point was fixed to 100 and the slope variance o—f, was
chosen such that the ratio of total change over true-score variance at the first occasion was
either 1:2 or 1:4. Given that the authors used a 0-1 unit scale to cover the full range of 19

years, the slope variance was 02250 and 02:25 accordingly. In the case where the intercept
and slope are uncorrelated (0,5= 0) their approach yields variance ratios across 20 occasions

up to 100:150 (o5:07yfora>=50)and100:125(05: 07, foro> =25). Table 1 reports ratios of

variances (aﬁ:af,wr) for studies with 6, 8, 10 and the full range of 19 years. These values
correspond to the four, five, and six occasion case with a two-year interval and the one case
which covered the whole study length of 19 years with one-year intervals (cf. von Oertzen et
al., 2010, p.111).

Hertzog et al. (2006) assumed that they had generated population values which are on the
positive side and claimed “...that estimated ratios reported in the literature are generally
smaller, in all likelihood making it even more difficult to detect interindividual differences
in change” (p. 245). In reality, however, the parameter values selected by Hertzog and
colleagues represent, for the most part, unusually small rates of total change to intercept
variance. In actual longitudinal studies, ratios of total change to intercept variance seem to
be more favorable than the ratios used in these earlier simulations. For example,
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Lindenberger and Ghisletta (2009, Table 3) report intercept and slope variances for a set of
variables from the Berlin Aging Study (BASE; Baltes & Mayer, 1999) which result! in

variance ratios of ¢2:5%,=100:221.79to0?:07,=100:837.73 With a median ratio of

02:0%,=100:397.25 indicating that the ratios used in Hertzog et al. (2006, 2008) and von
Oertzen et al. (2010) seem to be quite unfavorable.

In order to obtain a broader view of change variances in longitudinal studies, we analyzed
35 variables from nine longitudinal studies (cf. Table 4). The lower 51 and higher 95t
percentile, and median intercept to total change variance ratios for these variables are
reported in the right side of Table 1 and yielded, on average, quite large variance ratios.
Note that the position of the intercept was shifted to the case where 0,5= 0 (cf. Stoel & van
den Wittenboer, 2003) to obtain ratios that can be compared to those of Hertzog and
colleagues.

Selection of population parameters: Slope-to-error variance ratio

While in most conditions the magnitude of intercept-to-slope variance ratios were unusually
small, the variance ratios in Table 1 are difficult to compare across studies and not
interpretable in terms of their impact on power. In reality, the intercept-to-slope variance
ratio is not meaningful as it depends on centering and it does not take into consideration the
size of the residual variance. The ratio of total change to intercept variance alone, provides
little evidence whether the population values are optimistic or pessimistic. It is the size of
the residual variance which gauges these values and defines the reliability and ultimately
power. Throughout all simulation conditions Hertzog et al. (2006, 2008) used four error

variances ¢ (1, 10, 25, and 100) to obtain four prototypical GCRy (.99, .91, .80, .50)
conditions. However, the simulation results were presented and interpreted using a
continuous range of 5>=1 to 100 (cf. Figure 1 in Hertzog et al. 2006, and Figure 2 in
Hertzog et al. 2008). There are two relevant issues to consider with the choice of these
values.

First, the values in Hertzog et al. (2006, 2008) produce for most simulation conditions slope-
to-error variance ratios which are unusually small. Table 2 provides slope-to-error variance
ratios for various conditions and study durations in the Hertzog et al. simulations and for a

comparable set of ratios obtained from actual studies. In the most favorable case of 03:50,
more than 50% of the slope-to-error variance ratios fall below the range of typically

observed ratios. The condition with 5250 results in a slope-to-error variance ratio of 1,
which is just below the 5t percentile of ratios observed in existing studies. The condition

with 03210 results in a ratio of 5, which is close to the median ratio of observed studies and
only the best condition with 5>=1 results in a ratio which seems to be more favorable than

typically observed. Note also that =10 represents the GCRg = .91 condition, indicating
that the second best condition in the Hertzog et al. simulation parameters represents an
average value within the range of actual studies and variables. For the less optimistic cases

1The variances in Lindenberger and Ghisletta (2009) were rescaled from an annual scale to the metric used in Hertzog et al.’s (2006,
2008) simulations.

Psychol Methods. Author manuscript; available in PMC 2015 March 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rast and Hofer

Page 8

where 03:25, more than 75% of the simulation results are obtained from slope-to-error
variance ratios which fall below ratios at the 51 percentile from actual studies.

Second, the manipulation of error variance was interpreted as a manipulation of GCRy. In
actuality, manipulating slope and residual variance systematically alters GRR as is
illustrated in Willett (1989). This is the relevant ratio as it defines the ability to detect
individual differences in growth. Note that the same ratio of slope-to-error variance can be

obtained within different GCRg conditions. For example, if GCRq = .91 (¢2=10) and 02 =
25 the slope-to-error variance ratio is 25:10. The same ratio can be obtained for the GCR

= .80 (¢2=25) condition if ag =62.5. These two different GCR( values produce identical
ratios and, accordingly GRR remains unaffected by this variation. Hence, GCRy is not
uniquely related to power and, as such, it is not advisable to follow Hertzog et al.’s (2008)
recommendation that

At minimum, researchers should calculate estimates of GCR in their study and
evaluate whether it is sufficiently low to raise concerns about power to detect
random effects, which could be done to a crude approximation from the simulation
results provided in this [Hertzog et al. 2008] study. Generically, our simulation
indicates that GCR values under .90 are potentially problematic.” (p.560).

SST: Study-duration, number of occasions, and spacing of occasions

GRR is a function of o2, 52, and SST whereby the latter is determined by study duration,
number of waves, and relative spacing of occasions. In Hertzog et al. (2006, 2008) and von
Oertzen et al. (2010), study duration and number of occasions are confounded. The interval
between occasions is constant at two years for all conditions (except for the condition where
all 20 occasions are presented). As a result, only one of the three facets of SST was
systematically manipulated, rendering the results ambiguous with respect to the impact of
number of occasions on power. Although the authors concluded from their simulations that
number of occasions is a determining factor of power it might as well be argued that it is not
the number of measurement occasions but the study length that matters. Given the
discussion about the elements of GRR it is clear that study length has an important influence
on GRR and on power because it impacts the size of SST. From these previous simulations
it remains unknown whether power increased due to more measurement occasions or due to
more time covered — or, and probably, both. These factors need to be manipulated
independently in order to understand design decisions on power. Unfortunately, however,
the Hertzog et al. results convey little information about the interplay of power and design
issues such as study length as well as number and spacing of measurement occasions which
could have been illustrated even with unusual population parameters. For example, if four

waves are administered over six years with o2 =50ando?=10, GRR is .22 (SST=0.05) but
increases to .74 (SST=0.56) if the same number of measurement occasions cover the full
study length of 19 years. The increase in GRR suggests that covering a longer time period
with the same amount of waves has a strong effect on the ability to detect non-zero slope
variances. GRR clearly indicates that it is not necessarily the number of waves but also the
time covered that can have a beneficial effect on power. Figure 1 illustrates the effect of
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study duration and number of waves with constant values of ag =50ando?=10 0on GRR. In
this example, study length is scaled as a one-unit difference comprising 19 years (cf.
Hertzog et al., 2006). Different numbers of measurement occasions are marked with
different symbols and range from three to 10 waves within a given amount of time. The
effect of increasing study length on GRR under equal numbers of measurement occasions is
clearly visible. As more years are covered, GRR increases. At the same time, increasing the
number of measurement occasions within the same study length increases GRR as well and
both manipulations seem to have a unique effect on GRR.

So far, the above issues treat the impact of various components separately. In reality, a
number of interrelating factors that are described in GRR contribute to power. GCR,
defined by the error variance, is one of them and cannot be considered independently of
other values as it reflects only one facet of a number of factors that influence GRR. Figure 2,
which mirrors the power plot of Hertzog et al. (2008, Figure 3), illustrates this relation

among az, GCRy (¢2), and four different designs. It is clear, that GCRq is not uniquely

related to power or GRR because altering of; also changes the slope-to-error variance ratio
and in each of the the four designs SST is different as well. As described previously, the
same GRR value is obtained in a number of different GCRg conditions and the same GCRg
condition can result in almost any GRR or power value. For example, a constant value of
GCRg = .91 yields GRR values that range form 0 to .36 in the four occasions design or from
0 to .90 in the 10 occasions design. Accordingly, power to detect slope variances can take
almost any value within a given GCRg condition. Figure 2 clearly illustrates that the only
value that is uniquely related to power is GRR and it also shows that power is a function of
GRR. What remains unknown, however, is the nature of the function that relates power to
GRR. Also, the curves illustrate the impact of study-duration with equally-spaced
measurement occasions. However, Hertzog et al. (2006, 2008) and von Oertzen et al. (2010)
do not indicate the unique impact of study duration, number of measurement occasions, and
interval size on GRR.

Aim of the Study

The present study evaluates the power to detect variances and covariances among rates of
change in growth curve models using Monte Carlo simulations. We base these simulations
on a range of sensible population values from a number of different longitudinal studies
comprising early and late life periods and varying in sample size, number of waves, interval
lengths, overall study follow-up, variables, heterogeneity of baseline age, and other
characteristics of the participants. We examine power across several variable domains that
are often the focus within developmental and aging psychology: cognition, affect, physical
functioning and dimensions of psychopathology. Together, these studies provide a basis for
estimating power as well as a realistic range of population values for further simulation
studies.

Our aim is to understand the effect of critical design parameters on power to detect
individual differences in growth. GRR, the measure of the reliability of the growth rate
proposed by Willett (1989), is used as an index of power to detect individual differences in
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change but also as a guide to identify the interplay among its elements, slope variance, error
variance, number and spacing of waves, and study length. Of special interest are the
variables that constitute SST as they are under the control of the researcher conducting a
longitudinal study and can be used to optimize power in the early phases of such studies.

Latent Growth Curve Modeling

Our analyses base on a bivariate linear growth curve (LGC) model where we observe a set
of repeated observations on two variables Y and X for individual i in a longitudinal setting
with several waves. Let y; = (y1;, Y2;, --- Yw;)’ denote the response on Yand X; = (Xg;, X, ...,
xw)” denote the response on X for individual i. The responses are observed according to a
set of waves wj = (1, 2, 3, ..., W), where W is the total number of waves for individual i
which do not need to be the same for all individuals. A general expression for a time-
structured latent curve model for two variables y; and x; then is

Yi=Ayini=€yi Xi=Aziflyt€zi;s (3)

where A is the (W, x p) factor loading matrix with number of rows equal to W; and where the
number of columns is equal to the number of factors or growth parameters (p) estimated in
the model (here, p = 2 for each variable). The vector n captures the random effects particular
to individual i in the intercept and slope, and & represents a vector of residuals. We follow
standard assumptions where E(e) = 0 and COV(n, €) = 0. Further, let E(n) = a, COV(n, n) =
¥, and COV(e, €) = O.

In the bivariate LGC model (cf. MacCallum et al., 1997; Tisak & Meredith, 1990, for the
general multivariate case) Y and X are modeled simultaneously which is expressed in the
means and covariance matrix

r=Aa (1)

S=ATA+O. (5

The vector of means a, has 2p elements, in the case where we estimate two intercept and two
slope parameters the elements in columns 1 and 3 in a pertain to the intercept and the
elements in columns 2 and 4 capture the slope of Y and X. A defines the loadings (i.e.,
intercepts and slopes) for both sets of variables with the dimension 2W x 2p and the 2p x 2p
covariance matrix ¥ is unstructured leaving the (co-)variances unconstrained
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In order to set the intercept at the first wave we assign Ay, and Ay, the value 0. The loadings
M may take different scales, usually they are assigned values which reflect the interval of
the measurement occasions but they may be scaled to alternative metrics as well as be
individually time-varying. Note that here both variables are measured at the same occasions
and, hence, Ay = Ay

In order to account for dependencies across measurements within each wave, we relaxed the
condition of uncorrelated residuals and allowed occasion-specific covariances among the
residuals across Y and X. The residual covariance matrix with equality constraints across
occasion-specific residual covariances is defined as

o,
0
®: 05214
Ocey 0 Ui
Ocyey 0
L 0 Ocpe, 0 ng_

This bivariate growth model is represented in Figure 3 and it was used to both estimate
parameter values from a set of longitudinal studies and served as the basis for all
simulations.

Power Estimation

Statistical power is defined as the probability of correctly rejecting the null hypothesis when
it is false (Cohen, 1988) which is represented as power () = 1 — § where 3 represents the
probability of a Type Il error. Statistical power depends on a number of factors such as the
Type | error rate, sample and effect size. In the present work we will use the commonly
applied values of a < .05 to define statistical significance and values of 7 = .80 to define
sufficient power.

In order to assess the power to detect variance in slopes (o iz ) Uzy) and covariances among
slopes (OS(S)/) in a first step we estimated the actual power for these parameters in a number
of current longitudinal studies. All parameters based on the same bivariate longitudinal
growth curve model described in Equation (2) and depicted in Figure 3. The estimates for
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each combination of variables upon which the simulations were based are reported in Table
4. We used Monte Carlo simulations to estimate the power for each variable combination
within the reported longitudinal studies and the sample size needed to obtain power of at
least w = .80. For all analyses, the extraction of population values and the estimation of
power for different conditions, were based on an annual time scale where one unit represents
one year. The choice of an annual time scale is arbitrary and does not change the power
estimates but it places the population parameters on a commonly used metric which
facilitates their interpretation and comparison to other studies.

In a second step, we systematically varied the number of waves, the interval between waves,
the total duration of the study, and the size of the error and slope variance in order to obtain
different GRR values. Further we varied the strength of the correlation among the slopes and
among the residuals to observe the influence and interplay among these factors on the
sample size required to achieve power > .80. The population values for these analyses were
derived from the studies reported in Table 4 in order to obtain realistic variance and
covariance parameters for the simulation study.

The estimate of power was based on the proportion of statistically significant results relative
to the total number of valid replications. For covariances, only covariances with the same
sign were counted as hits, that is, if the population covariance was negative and the sample
covariance was statistically significant but positive we did not count it as a hit. This decision
lead to very slightly lower estimates of power for the covariance term as there were very few
cases where population and significant sample covariances differed in sign.

In the estimation of power, the type of statistical test can play an important role. Basically,
variances and covariances can be tested via single- or multiparameter tests (cf. Raudenbush
& Bryk, 2002). Given that not all tests are equally powerful, the results may change
depending on which test one uses to estimate the significance of variances or covariances.
Here, we decided to base the majority of our simulation results on the Wald test statistic
which is known to typically have lower power primarily because it isolates the effect of the
slope variance from related covariances. By relying on the Wald statistic our simulation
results may reflect a conservative or worst-case scenario. The Wald test provides the z
statistic via the ratio of the parameter estimate divided by its estimated standard error2,
Hence, the Wald test is based on one parameter no matter whether covariances or variances
are tested. In contrast, the likelihood ratio (LR) test, which is typically used in mixed effects
modeling (e.g. Pinheiro & Bates, 2000), is based on LR = 2(L; — Lg), where Ly and L, are
maximized log-likelihood values for an unrestricted and a restricted model. The statistic has
an approximate %2 distribution with m degrees of freedom, where m is the difference in the
number of parameters between both models (Raudenbush & Bryk, 2002). As long as one
covariance is tested, the Wald and LR test both use one parameter and will provide similar
results. However, if the significance of variances are tested in models with multiple random
effects, the Wald test is based on one parameter whereas the LR test is based on at least two
parameters. This is because, in order to define the restricted model, one needs to set the

2The standard errors in OpenMx are derived from the “calculated Hessian” which is created with numerical estimation by sampling
the parameter space around the converged parameter values to obtain unbiased standard error estimates.

Psychol Methods. Author manuscript; available in PMC 2015 March 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rast and Hofer

Page 13

variance and all related covariances to zero. In the present case, where we estimate a
bivariate growth curve model, the restricted model uses four df less than the unrestricted
model because the test of the variance of S, requires that we set the following to zero:

2
Usyzo, OSny: 0, Olysy =0, and 0SSy =0.

This important difference between single- and multiparameter tests is the reason why their
results can be different if variance components are tested (cf. Berkhof & Snijders, 2001).
Accordingly, the Wald test is considered to have less power to detect slope variances
compared to the LR test if the relevant covariances are large (e.g. Fears, Benichou, & Gail,
1996; Longford, 1999). As Berkhof and Snijders (2001) have illustrated in the univariate
case, the Wald test remains unaffected under different conditions of level/slope correlations
whereas the LR test draws much of its power to detect the slope variance via the covariance
terms. This result has been replicated by Hertzog et al. (2008) who assumed from their
simulation results that the power of the LR test drops to its minimum as the level/slope
correlation approaches r = —.10 (p. 551). This only partly reflects the relation among the
covariances and power. While it is correct that the lowest power is obtained at a negative
correlation, its actual value does not necessarily approach r = —.10 but depends on the
growth curve parameters. A LR test will always yield the minimal power at the point where
the unrestricted Ly model and the restricted model L; produce the smallest difference. In a

univariate LGC model with ag >0 there is a covariance among o;gthat nullifies the sum of

2
g
all growth effects 2)\015+/\202 =0. Resolving for o gresults in o, o= — )\75. In correlation

—Xo2 /2
re=—=—
metric, the correlation among intercept and slope that minimizes power is /o202 andis
always negative (or zero). To illustrate, if the values from Hertzog et al. (2008) are used, the
correlations that minimize power in the 4, 5, 6, and 10 occasion study are ry = —.11, rg = —.

15, rg = —.19, and rqp = .35 respectively. Note that these values exactly reflect the findings

presented in Figure 1 from Hertzog et al. (2008).

Hence, although the Wald test has known weaknesses and generally results in lower
estimates of power (e.g. Fears et al., 1996) we regard it as an informative measure in this
present context and we follow Berkhof and Snijders (2001, p. 137) assertion that single
parameter tests may be advantageous if the intercept/slope-covariances are of no substantive
interest in the study. Given that our primary aim is to obtain distinct power estimates to
detect the covariance among rates of change and to detect variances in slopes, we chose to
base our simulation studies on the Wald statistic to permit clear conclusions in this regard.
Further, the Wald statistic best reflects GRR which only accounts for one parameter, the
slope variance, and is independent from covariance effects. In terms of a simulation study,
we reiterate that the Wald test may be seen as conservative because it tests variances
independently of related covariances and, hence, it does not draw power from this additional
source.

To illustrate the differences between the power estimates from the Wald and LR statistic we
report both estimates in the Monte Carlo simulations (Table 5). For the estimation of power

Psychol Methods. Author manuscript; available in PMC 2015 March 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rast and Hofer

Page 14

based on the LR statistic we ran four models for each replication. A baseline model (a)
where all parameters were freely estimated and three additional models where (b) the

variance term of one slope and its corresponding covariances were fixed to zero (© ﬁy =0,
osly = 0, Olygy = 0, and 05 = 0), and (c) the variance term of the other slope with its

corresponding covariances fixed to zero (cfﬁm =0, oSy = 0, SRV 0, and os,j, = 0). In the
last model (d) the covariance 05, Was fixed to zero. The estimates of power were based on
the comparison among models (a) to (b), and (a) to (c) with 4 df and a critical 2 = 9.49 for
variances and the model (a) to (d) with 1 df and a critical 2 = 3.84 for covariances.

Studies and Measures

The simulations reported here are based on parameter estimates drawn from a broad range of
longitudinal studies of developmental and aging-related change. Design characteristics of
the included longitudinal studies are provided in Table 3 and descriptive statistics are
reported in Table 4. Bivariate linear growth models described in Equation (5) were analyzed
for each set of outcomes and were used to provide a range of realistic values on which to
base an evaluation of power to detect variance in linear slopes and bivariate associations in
linear rates of change.

All of the actual longitudinal studies used in this paper had incomplete data due to study
attrition. In addition, in longitudinal studies of aging, this attrition is related primarily to
dropout due to death. Incomplete data were estimated under the assumption that the data are
at least Missing at Random (MAR; where the probability of missing information is related to
covariates and previously measured outcomes). Such methods are in regular usage in
analysis of longitudinal studies. However, attrition in studies of aging is often non-random,
or selective, in that it is likely to result from mortality or declining physical and mental
functioning of the participants over the period of observation. In the case of mortality-
related dropout, the MAR assumption is likely to be problematic unless age at death is
included in the model to account for population selection.

The parameter estimates were obtained using full information maximum likelihood (FIML).
We report only linear growth models with fixed time-in-study intervals as the time basis and
only models with adequate model fit according to the the comparative fit index (CFI above .
95) and the root-mean-square error of approximation (RMSEA below .08; Browne &
Cudeck, 1993; MacCallum, Browne, & Sugawara, 1996). Estimates were based on annual
rates of change with the intercept specified at baseline. We refrained from using the unit
scale transformation applied by Hertzog et al. (2006, and later studies) which covers 19
years because it provides estimates which are uncommon as most researchers scale change
in years. The purpose of Table 4 is also to provide an array of actual population values in the
most common format. As pointed out earlier, all variance and covariance estimates can be
rescaled to be on other time metrics, such as the 0-1 unit scale adopted by these earlier
simulation studies, with GRR and power being invariant to such rescaling. Note that our
primary aim in the parameter extraction was to obtain a range of realistic values for later use
as population values in simulation studies. Hence, we chose to remain with the FIML in
order to make full use of the sample sizes and we did not include higher order terms to
capture curvilinear changes over time in the few cases where this was indicated.
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All of the power estimates in Table 5 were based on 10,000 replications. In order to compute
and plot the required N for power of at least 7 = .80 for given population values we used an
iterative approach whereby the final iterations approached = = .80 by steps of N =10 to
ensure sufficient precision. The figures were generated using 5,000 replications in the final
iteration steps. All analyses made use of the software package R (Team, 2012) where we
relied on the mvr nor mfunction from the MASS package (Venables & Ripley, 2002) to
generate random bivariate samples with the structure given in Equations 4 and 5. The
statistical analysis of the LGC models was performed using the freely available structural
equation modeling software package OpenMx version 1.2.3 (Boker et al., 2011). In order to
check the consistency of the power estimates based on the Wald statistic, we re-ran all
models (i.e., data generation and estimation) within the Monte Carlo facility of Mplus (L. K.
Muthén & Muthén, 2010). The results from both software packages resulted in close to
identical power and sample size estimates. To speed up computing time, all analyses in R
were conducted on “Nestor”, a capability cluster geared towards large parallel jobs provided
by WestGrid and Compute/Calcul Canada. Sample scripts used in this simulation study are
available at the APA website (www.website.com) for download and integration in R or
Mplus.

Power Estimates for Actual Study Values

A sample of longitudinal developmental and aging studies was used as a foundation to
evaluate power to detect variance in, and associations among, rates of change. Table 4
provides descriptive statistics and estimated values from bivariate growth curve models for a
variety of outcomes, including cognitive, physical functioning, and mental health variables.
In few cases, particularly in studies with more waves and longer follow-up, quadratic trends
were indicated. However, all reported estimates are based on LGC models in order to permit
evaluation of linear slope associations and to provide a consistent basis for obtaining LGC
parameters for simulation purposes. The values from Table 1 provide the basis for
estimating power for particular combinations of variables within actual studies but also for
extrapolating to a range of effect sizes, sample sizes, and slope reliabilities. Notably, 95% of
the slope-to-error variance in these longitudinal studies ranged from 1:14 to 1:478. The
average ratio was 1:335 and the median was 1:81 indicating that the error variance was 81
times larger relative to the slope variance. Accordingly, 95% of GRR ranged from .07 to .71,
with a median GRR of .36. For these same variables, 95% of GCRg values ranged from 0.33
to 0.90 with a median of .68.

Based on the results of Table 4, Table 5 provides standardized estimates of associations
among slopes and power to detect linear slope variances and covariances in bivariate
combinations of outcomes. Results from Monte Carlo simulations using both Wald and LR
statistics are reported.

Covariance Among Slopes—The correlations among rates of change ranged from -.57
(VLS; RT with IPic) through .03 (VLS; SA with IPic) to .89 (ACAD; D with SA), with an
average, absolute correlation of r = |.52|. Power and the sample size needed to obtain power
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of at least .80 was largely dependent on two factors: The magnitude of the correlation
among the slopes (i.e., effect size) and the magnitude of GRR. If any one of these factors
was small, sufficient power (m = .80) to detect the covariance was only achieved with large
sample sizes. For example, in SLS, the sample size was comparable among the five sets of
variable pairs but the power ranged from .09 to 1.0. Power estimates for the covariances
appeared to be related to the GRR values of the respective variables. For example, the power
to detect the correlation among variables including PHY (GRR < .03) was always very low
and there was virtually no chance to detect correlations involving the PHY variable with the
available sample size. In turn, the somewhat stronger correlation among DWR and NC in
the same study had sufficient power to be detected. Given the simulation results, 240
participants would have been sufficient to detect the statistically significant correlation
among the slopes of both variables with 7 = .80. The main difference in these two examples
from Table 5 was in the GRR. Notably, the GRR of the DWR variable was .40 which was
considerably larger compared to that of PHY.

Another factor which influenced the power estimate was the number of waves and duration
of a study. Note that in Table 5, for the most part, number of measurement occasions and
study length was confounded in the sense that more measurement occasions were associated
with longer follow-up periods. A clear distinction of the contribution of study length and
number of measurement occasions on power is difficult to obtain from Table 5.
Nevertheless, analyses of the shorter three-wave designs OCTO and LASA, showed that the
number of participants required to obtain sufficient power was much larger compared to the
same studies with five waves that covered four to seven more years. The magnitude of this
effect was quite remarkable. For example, we estimated the power to detect the significant
correlation of .56 among the slopes of DST and MiR in three-waves of OCTO-Twin. The
GRR values were at .39 and .37 which is comparably high for a short study with only three
waves. Accordingly, power was = .97 with the actual sample and 250 participants would
have been needed to obtain power = .80 to detect the correlation. Four years and two waves
later, the same study based on five waves covering eight years had more than sufficient
power to detect the correlation among the same two variables (i.e., 55 participants would
have been sufficient to detect the correlation of .64 between DST and MiR). The GRR
values were now very high with .55 (DST) and .72 (MiR) which, together with the stronger
correlation, reduced the required sample size drastically. Similarly, in LASA, the correlation
of r =.53 among the slopes of RCPM and AIC was detectable in six years and three waves
with an N = 2, 500. In the five-wave design covering the full range of 13.15 years about 140
participants would have sufficed to detect the correlation of r = .57 between RCPM and AIC
with = .80. Note that the associated GRR values increased each by .30 points from .07
(RCPM) and .26 (AIC) to .34 and .56 respectively.

The effect size of the association among the slopes played an important role as well. Small
correlations (r = .10) were, if at all, detectable in five-wave studies with more than 7,000
participants such as HRS. Larger effect sizes were associated with higher power. It is
important to note that considering one factor alone is not sufficient to obtain an estimate
about power. If GRR is small, larger correlations may still not be detectable, such as in the
case of VHY'S where the correlation of r = .43 among Anx and OpD suffered from low GRR
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(= .25) values for both variables. Accordingly, the power to detect this specific correlation
was moderate and at w = .64 with the available sample size. Note that the power estimates of
the covariances were all based on 1 df test and that the results obtained with the Wald and
the LR statistic were very close.

Slope Variances—Similar patterns of results were found in the power to detect
statistically significant variances although the power to detect variances was in most cases
higher compared to the power to detect covariances among linear slopes. Further, a notable
difference among the results can be seen for the type of hypothesis test. The power to detect
slope variances based on either Wald or LR sometimes resulted in very different results.
Note that the Wald statistic for variances is still based on 1 df whereas the LR statistic is
now based on 4 df in the bivariate growth model. Notably, the LR-test had more power to
detect slope variances if the accompanying covariances were large and positive. The
magnitude of this effect was quite remarkable for some situations such as in case of ELSA
study. According to the Wald test 790 participants would have been needed to achieve
sufficient power to detect the variance of AF. The LR test, in turn, required 300 participants
in order to achieve the same power of w = .80 for the same variable. In this case, the LR test
drew its power from large associations among the slope of AF and DWR and among its
large and positive level and slope covariance which were all medium to large in terms of

effect sizes (rsapipwr = 34 'sapSpwr = +46, and rsapi a4 = -23).

Even though the differences among the Wald and LR statistic were usually not as extreme as
in the ELSA data, in most cases the LR test outperformed the Wald statistic in terms of
power to detect variances. As described previously, the Wald statistic may be seen as
conservative but given that our focus is on slope variances its power estimates can be
generalized more easily in the context of this simulation study because the effect of the
covariances does not influence, and therefore confound, the power estimate of the variance.
Given the Wald statistic, all studies had sufficient power to detect both or at least one of the
variances in the given variable combinations.

In summary, besides the sample size, design factors such as study length and number of
measurement occasions which constitute SST in GRR, influenced the power estimate of the
slope variances. To illustrate this relation, in Figure 4, we plotted, for each variable
combination reported in Table 5, the sample size needed to obtain power of w > .80 relative
to GRR. The number of waves in the studies are represented by the shape of the symbols.
Triangles correspond to studies with three waves, squares are for studies with four, and
circles correspond to studies with five waves. Each symbol corresponds to an actual estimate
within Table 5. Across all studies, the relation among GRR and sample size needed for 7= .
80 followed a non-linear, asymptotic function with a dramatic decrease in sample size as
GRR increased to about .40. For values of GRR above .60 sample size decrements seemed
to flatten out and approach an asymptote. A power function (f(GRR) = 13.48GRR2-266 with
R2 = .99) fitted the data points in Figure 4 best and illustrates that GRR is functionally
related to the sample size required to obtain a power of 7 = .80 using a single-parameter test.
Even though the non-linear relation seems to hold across all types of studies, three wave
designs are discernible from designs with more waves. That is, studies with three waves and
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short duration seem to require slightly more participants for the same values of GRR
compared to four or five wave studies.

In order to illustrate the effect of GCR on sample size needed to obtain 7 = .80, we followed
Hertzog et al.’s (2006) approach and computed the GCRg value at the first measurement
occasion where the time scale is defined to be at zero for each variable in Table 5. The
relation between GCR and sample size is shown in Figure 5. As in Figure 4 the symbols
represent different numbers of waves and each symbol represents one value from Table 5.
The visual inspection shows that GCR does not seem to be related to power or sample size
estimates, especially for GCR values between .50 and .80. The hatched vertical gray line
represents the .90 GCR threshold which, according to Hertzog et al. (2008), should be
calculated to identify potentially problematic slope variances. In the present case, practically
all variables produce GCR values below the threshold while five variables were at a GCR
of .90.

Simulation Results for Different Cases

Case 1: The

Given the observations from Table 5 and Figure 4 as well as the definition of GRR in
Equation (1) we systematically varied a number of parameters which are related to the
estimation of power to detect change. In the first three cases we manipulated all elements of

GRR: SST, o2, andag. SST was manipulated via the number of waves, the duration of the
study, and the length of the interval among waves. In the last two cases the impact of
varying effect sizes of slope covariances and residuals on the power to detect correlated
change are investigated. The population values used in the following cases were derived
from Table 4 in order to obtain realistic situations and to obtain covariance matrices which
were positive definite for all variations of the simulation parameters. These case studies are
meant to be instructive as to the potential for altering key elements of the design.

Impact of Design Variations on SST, GRR and Power

The correlation among the slopes in the covariance matrix of the random coefficients was

set to r = .50 and the slope variances were both U;:in =28, The slope-to-error variance
ratio was 1:75 and the intercept to slope variance ratio was 1:180 which is close the median
across all reported studies. The effect sizes of the correlations among the intercept and slope
were moderate. This covariance matrix reects average values from Table 4 (correlations are
in the upper triangle in parentheses):

[ 5040 (—0.27) (.48)  (.09) W

| =100 28  (—.08) (.50)

T | 2400  —29 5040 (—.27)
32 14 —-100 28

P

Note that the error variance #2=2100 and the occasion specific error covariance was set to
Oeyex = 70 which corresponds to a correlation among the errors of r = .05.
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Variable SST and GRR: The Impact of Study Duration and Number of Waves—
First, we explored the effect of varying study length on power. Therefore we manipulated
the duration of the study to range from three to 15 years. We created four different study
designs based on three (W3), four (W4), five (W5) and seven (W7) waves. The intervals
between measurement occasions within a given study length were equidistant. As shown
earlier in Figure 1 different study durations result in different SST values and, hence, in
different GRR values. Figure 6 shows the impact of different study durations on the sample
size required to obtain at least power of = .80 to detect significant slope variances and
covariances among slopes at p < .05. Solid lines represent .80 power to detect covariances
among slopes and hatched lines represent .80 power to detect slope variances.

The effect of time was non-linear leading to larger sample size requirements for studies
covering few years. At the same time, the requirements on the sample size dropped rapidly
as the study duration increased. For example, if the W4 design covers three years, SST is 5
and GRR is 0.06. With this design approximately 5,650 participants are required to obtain
power of at least = .80 to detect a significant slope variance at p <.05. If the W4 design
covers four years, SST changes to 8.89, GRR to .11, and the required sample size decreases
to 1,860 which is a reduction in N of 67%. The effect of adding one year to the total study
length on the critical sample size becomes less pronounced as more years are covered. That
is, if the W4 design covers 10 years (STT=55.56, GRR=.42) approximately 90 participants
are required to detect a significant slope variance with = .80. A W4 design that covers 11
years (SST=67.22, GRR=.47) requires 70 participants, 22% less, to detect the same slope
variance.

To explore the effect of the number of measurement occasions on power and sample size,
we manipulated a larger set of measurement occasions ranging from three to 15 in four study
conditions covering in total 3, 5, 7, or 9 years. Figure 7 shows the effect of different
numbers of waves that are administered within a given total study duration. Due to the non-
linear nature of number of measurement occasions and power, the impact of the number of
waves on the sample size was more pronounced for studies with few waves and short
durations. For example, if five years (5y) comprise three waves, 1,320 participants are
required to detect a significant slope variance at p < .05 with = .80. If in the same amount
of time four waves are administered, sample size reduces by 35% to 860 participants. If
seven years are covered with three waves, 410 participants suffice to detect the slope
variance and if in the same time span four waves are administered, the required sample size
reduces by 32% to approximately 280 participants. Figure 7 also illustrates that short studies
that only cover three years would have to operate with very large numbers of measurement
occasions in order to reduce the sample size. For example, in a study with a duration of three
years, 1,600 participants and nine measurement occasions are needed to detect a significant
slope variance at p < .05 with 7 = .80. To detect the correlation among slopes of r = .50 in
the same study, at least 16 measurement occasions would be required.

The relation among power to detect a significant covariance among the slopes was
functionally similar but generally resulted in larger samples size requirements compared to
slope variances. With, for example, 500 participants and a study length of nine years,
correlations among the slopes of r = .50 have more than sufficient power for all studies with
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three or more waves. That is, 370 participants suffice to detect a significant slope correlation
in a study covering nine years with three waves. If five years are covered approximately 10
waves are necessary to detect the same correlation with 500 participants.

As demonstrated above, both the study length and the number of waves have interrelated but
unique effects on power in the sense that power can be increased by either including more
waves within a given study length or by covering a longer time span with a constant number
of waves. Note that SST and GRR are different for all simulation conditions and both,
increasing the number of waves and years covered, positively influence SST.

Constant SST and GRR: Different Number of Waves, Different Study Duration
—In the previous case we manipulated the number of waves and study duration and with it,
SST and GRR. Here, we examined the effect of varying numbers of waves and study
duration on power while keeping SST and GRR constant. That is, all parameters in GRR
were kept constant while we compared different design types. In order to do so, we kept the
reliability constant at GRR = .40 across all conditions. Given that an increase in number of
waves also increases the reliability (cf. Equation 1) we chose to adjust the time span covered
by different designs in order to keep GRR constant. For instance, the W3 design covered ten
years with measurement occasions at time 0, 5, and 10, which amounts to an SST of 50. By
holding the error and slope variances constant, we achieved a reliability of

28
GRR:m:AO which is close to the average GRR in Table 5. In order to
achieve the same reliability with the W4 design we needed to reduce the amount of years
covered in that design. An SST=50 with four equally spaced waves is obtained in 9.49 years
and the measurement occasions were set to 0, 3.16, 6.33, and 9.49 years. The W5 design
spanned 8.94 years with measurements at 0, 2.24, 4.47, 6.71, and 8.94 years. The last design
W?7 spanned 8.02 years and had seven waves at the occasions 0, 1.34, 2.67, 4.01, 5.35, 6.68,
and 8.02. Note that with seven waves the total time span of a study reduces by almost 2
years while GRR remains constant.

Figure 8 shows four solid and four hatched lines. The solid lines represent the power curves
for the covariances among the slope and the hatched lines represent the power curves for the
slope variances which, in the present case, were identical for both sets of variables. The thin
horizontal line represents the .80 power threshold indicating that, for example, the sample
size needed to detect a correlated slope of r = .50 with three waves and a power of .80 is
about N = 275. The slope variance in the same W3 design requires about 130 participants to
obtain 7 = .80. There is a small gap in the sample size needed to uncover significant
covariances or variances between the study designs based on three and four waves. In order
to uncover the covariance among the slopes in the W4 design about 235 participants are
needed — 40 or 15% less than in the W3 design. Similarly, the slope variance may be
detected with about 110 participants in the W4 design which are 20 or 15% fewer
participants compared to the W3 design. Notably, power to detect slope variances was
higher compared to power to detect covariances among slopes. The small but consistent
effect of different number of waves on power indicates that SST did not completely absorb
all design effects.
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Variable SST and GRR: Constant number of Waves, Constant Study Duration,
Varying Intervals Among Waves—~Following the definition of the growth rate
reliability in Equation (1), changes in SST affect the magnitude of the reliability. Hence, the
type of the longitudinal study design not only alters the SST by number of waves and overall
time span but also via the choice of intervals between waves. By altering the times at which
measurements occur, one might maximize SST and, ultimately, reduce the sample size
needed to detect a given effect. In order to estimate changes in power due to different
interval spacing designs we tested three different designs which involved changes across ten
years. All designs involved four waves where Design 1 (D1) had measurement occasions at
0, 1,9, and 10 years and an SST of 82. The waves in Design 2 (D2) were equally spaced at
0, 3.3, 6.6, and 10 years which equates to an SST of 55.4. Design 3 (D3) had waves at 0, 4.9,
5.1, and 10 years which leads to the smallest SST of 50. Given that we varied the time at
which each measurement occurred, we also varied the SST and with it GRR. We chose to
set GRR =.35 in D2 which reects the average GRR from studies based on four waves in
Table 5. Given the intervals in the other two designs we obtained GRR = .44 for D1 and

GRR = .33 for D3. The error variance was set to afy :agz =2883 in order to obtain a GRR
= .35 for D2 with o2 = 28. The occasion specific error covariance was set to be equivalent to

a correlation of r = .05 which resulted in Ufygm=144~2.

Figure 9 shows the results from the Monte Carlo simulation for three different designs that
vary the intervals between waves. Solid lines represent power curves for the slope
covariance parameters and the dashed lines represent the power curves for the slope variance
parameters. The effect of the design type on the power curves is clearly visible for both the
covariances and the variance parameters. For example, in order to detect the covariance
among the slopes with 7 = .80 in the D2 design where the waves are equally spaced a
sample of 320 participants or more would be needed. In D3 one would need more than 380
participants to uncover the same correlation but with the D1 design which maximizes the
SST, only 190 participants would suffice. As previously observed, the slope variances were
detectable with fewer participants compared to the correlation among the slopes.

Effect of 52 on the Sample Size
In order to explore the effect of GRR on the power to detect slope variances and covariances
we varied the reliability between .10 and .80 via the error variance 2 We used the same

setup as above but now 42 ranged from 12,600 to 350. To further explore the combination of
study type and reliability regarding sample size, we varied GRR in all four previously
defined study design types W3 (10y), W4 (9.49y), W5 (8.94y), and W7 (8.02y). To facilitate
the interpretation we plotted .80 power curves in Figure 10. Each line represents « = .80 for
a given GRR value and a given sample size for four different study designs. SST was again
held constant at 50.

Figure 10, which shares some similarities with Figure 4, illustrates the non-linear relation
between reliability and sample size. As GRR decreases, the number of participants needed to
obtain a power of 7 = .80 increases notably and non-linearly. Further, the absolute sample
size and the gradient of change in sample size depends on GRR and on the parameters in

Psychol Methods. Author manuscript; available in PMC 2015 March 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rast and Hofer

Page 22

question: The sample size to detect covariances among slopes is generally higher compared
to the sample size needed to detect slope variances. Also, if GRR is held constant across
design types by reducing the total study duration, designs with different numbers of waves
produce similar sample size requirements to detect variances or covariances with power of at
least = .80. Note that the required sample sizes are close but not identical across design
types and designs with fewer waves, such as W3 need larger samples compared to designs
with higher numbers of waves. The size of the gap in the power curve between the three-
wave and the four-wave design is accentuated by smaller reliability values.

Case 3: Varying Effect Sizes of the Slope Variance ai—Up to this point, we varied
GRR via the error variance 2 and SST while keeping the slope variance constant. GRR also
depends on the size of the variance in linear change ai. Here we will manipulate the third,
remaining parameter oi in GRR. ag represents a critical parameter as it will reduce GRR to
0 in the case of 52=(. In order to evaluate the effect of the slope variance on power we

manipulated ai to cover a broad range of slope-to-error variance ratios as shown in Table 4.
In the present case we estimated power to detect significant slope variances with slope-to-
error variance ratios ranging from 1:420 to 1:20. These ratios produced GRR values ranging
from .11 to .71. We remained with the population values for the matrix of random

coefficients and the error (co)variance from Case 1 but in the present case ai ranged from 5
to 105. In order to keep the covariance matrix positive definite we kept the correlations
constant at the values given in Case 1. As in the prior cases we evaluated the effect of the
manipulations within four different designs, comprising the W3, W4, W5, and W7 designs
defined in Case 1 with SST=50.

Figure 11 shows four hatched lines which represent .80 power estimates at a certain sample
size for the four design types. Different slope-to-error variance ratios affected the power and
the sample size needed to obtain power of > .80. As seen previously, the curves followed a

non-linear pattern indicating that little variance in ag needs to be compensated with a large

sample size while large oz can be detected with much fewer participants. Note that these .80
power estimates of the variance parameters reproduce closely the estimates obtained under
the same GRR values in Figure 10.

Case 4: Varying Effect Sizes of the Slope Covariance—As can be seen from Table
5 the magnitude of the correlation among the slopes largely influenced the power estimate
and sample size needed to obtain power of at least .80. In the present case, we investigated
the influence of the effect size on the sample size for a given reliability of GRR = .40. The
correlations ranged between .10 and .80, covering a realistic range of values from Table 4.
Again, we contrasted four conditions based on the W3, W4, W5, and W6 design defined in
Case 1 where GRR was held constant across all design conditions. The covariance matrix
was derived from the ELSA study using delayed word recall (DWR) and fluency (AF)
scores from Table 4 in order to represent findings in cognitive variables and to obtain a
covariance matrix which remained positive definite for the entire range of covariance
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parameters tested here. Note that both slope variances were set to equal values to facilitate
the interpretation of the figures. The covariance matrix for this present case was

260  (.05)  (.62) (.31

o | 1 1.4 (.17) [.10;.80]
| 150 3 224 (.23)
6 [014;1.12] 4 14

The values in squared brackets denote the range of the covariances and correlations (above
diagonal). Covariances varied between 0.14 and 1.12, accordingly the correlation ranged
from .10 to .80. The occasion specific error correlation was set to r =.10.

Figure 12 shows .80 power curves for the four given designs W3, W4, W5, and W7.
Generally, the relation among the effect and sample size was negative in the sense that high
correlations among the slopes can be detected with fewer participants compared to smaller
effect sizes which require more participants. The relationship between the effect size and the
sample size was non-linear. As the correlation increased in size the demand on the sample
size rapidly decreased until it reached a plateau. For example, in order to detect a correlation
of r = .25 between 1070 (W3) and 840 (W?7) participants are needed. Correlations of r = .50
are detectable with considerably smaller samples ranging from 280 (W3) to 210 (W7)
participants. Similarly, 500 participants suffice to detect correlations ranging from r = .36 in
the W3 design to r = .33 in the W7 design.

In order to investigate the relation between effect and sample size with varying GRR, we
computed the .80 power curves for GRR values of .20, .40, .60, and .80 in a four-wave
design. We used the W4 design defined in Case 1 which covers 9.48 years in total with GRR
modified only by changes to the error variance. As can be seen from Figure 13 the power
curves are non-linear indicating that smaller effect sizes require increasing sample sizes in
order to detect the slope correlations. Notably, the reliability exerts a substantial effect on
the sample size. Power curves for higher reliabilities seem to reach an asymptotic level
earlier than power curves based on low reliability which yields an increasingly strong but
negative dependence between the effect size and the sample size as GRR decreases. For
example, a correlation of r = .40 may be detectable with 80 participants if reliability is high
(GRR =.80) but more than 1,630 participants are required to detect the same correlation
with low reliability of GRR = .20.

Case 5: The Effect of Occasion Specific Error Covariances Oeyex ON the
Sample Size to Detect Power = .80—The studies in Table 4 show that the effect size of
the time-specific residual covariance was small to moderate with an average correlation of
about r =.10. In some studies however, such as in ACAD, the residual covariances were
large, up to r = .62. In order to relate the magnitude of the occasion specific error correlation
to the sample size we computed .80 power curves across four GRR values (.20, .40, .60,

and .80) in a four-waves study spanning six years with equally spaced waves. The
covariance matrix used to define the population values was the same as in Case 4 with a
slope correlation of r = .50. Apart from the effect of GRR on sample size, Figure 14 shows
that the magnitude of the error covariance Opyex EXEIS @ negligible effect on the sample size
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to detect power = .80. With GRR of .04 and above the effect of the error correlation has little
impact on the sample size. For example, if GRR = .60 the increase in sample size associated
to an increase in the error correlation fromr =.20 (N=90) to r = .60 (N = 120) is 20
participants. If the reliability is low, at GRR = .20, the sample size increases from 1,110 to
1,350 participants — which corresponds to a difference of 240 participants.

Discussion

In this study, we investigated the interplay of different factors which contribute to the power
to detect variances and covariances in linear rates of change in the context of a broad range
of actual longitudinal studies and variables. We emphasized the importance of growth rate
reliability (GRR) defined by Willett (1989) which captures relevant parameters associated to
power, such as the slope variance, error variance, and design attributes comprising number
and spacing of waves, and the total study duration. Power was estimated by means of Monte
Carlo simulations using LGC models. Our study was geared mainly towards the
understanding of the interplay among the components of GRR and their relation to power
and not to report a definitive statement about the range of power to detect individual
differences in slope variances and covariances in longitudinal studies. Nonetheless, our
results provide a quite positive summary of power in existing studies and demonstrate that
most existing longitudinal studies of developmental and aging-related outcomes have more
than sufficient power to detect individual differences in change and associations among
linear rates of change. This was also the case in many of the studies covering few years with
only three measurement occasions. Power to detect covariances among rates of change was
generally lower and required larger sample sizes compared to the detection of variances.
Also, power can be substantially increased by adding more measurement occasions,
particularly when study duration is short (e.g. five years and less) such as in the early phases
of every longitudinal study.

The range of GRR and slope-to-error variance ratios is considerable across longitudinal
studies (as shown in Tables 2 and 5) and, accordingly, the range of sample size requirements
to obtain sufficient power can be very large. While we provide estimates of power for actual
values from the studies reported here, we used the model estimates primarily to anchor our
power simulations to a range of real parameter estimates for several variable domains. Table
4 provides a range of values for cognitive, physical, and mental health variables that can be
used as start values for simulation and power analyses that provide a realistic basis for the
design of new longitudinal studies and further extensions of existing studies. Given the large

heterogeneity in the relevant parameters aiandaf we strongly encourage investigators to run
power analyses during the processes of designing longitudinal studies and plan for relatively
low power early in the longitudinal follow-up by adding observations, possibly including
more intensive measurement designs to capture within-person dynamics and optimize
estimates of within-person means.

The selection of realistic simulation parameters is essential, particularly given the
discrepancy between results from recent simulations and the increasing number of
statistically and substantively significant findings reported from a variety of developmental
and aging studies based on longitudinal designs. Crucial to any simulation is its
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generalizability to the “real world" with the outcome of any simulation being highly
dependent on the derivation of population parameters (Paxton, Curran, Bollen, Kirby, &
Chen, 2001). Indeed, the large and increasing body of published longitudinal findings and
the results of our power analysis are at odds with recent results from a series of simulation
studies by Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) who painted a
pessimistic picture of current longitudinal studies and related designs. We have critically
evaluated these earlier studies of power to detect change in the introduction. We showed that
the low power estimates for most conditions reported by these earlier simulation studies was
due to their choice of parameter values that were largely out of bounds of actual study
values. In particular, their choice of parameter values resulted in low GRR conditions due to
little change variability relative to the error variance. Also, Hertzog and colleagues
interpreted GCR as an absolute index of power. Their interpretation regarding the pivotal
role of GCR in the context of power to detect slope variances and covariances needs to be
put into perspective. While measurement reliability is positively related to power, GCR
simply reflected variation in error variance within their simulation design. More importantly,
the different GCR conditions in their simulations were not static but resulted in different
slope-to-error variance ratios and different GRR conditions. We illustrate this effect in
Figure 2 across four designs where we show that changes in error variance lead to different
GRR values which truly captures the nature of power. For example, the GCR= .91 condition
can result in almost any value of GRR in the range between 0 and 1 depending on the size of
the slope variance and the number of measurements in the design. Accordingly, almost any
value of power between 0 and 1 will be obtained with these variations. Hence, while GCR
captures the important aspect of measurement reliability, it is only one element of a very
dynamic and complex relation among different facets that are captured in GRR and which
constitute power to detect change and covariation in change. Moreover, the simulation work
of Hertzog et al. (2006, 2008) and von Oertzen et al. (2010) perfectly confounded study
length with number of waves. As a result, a clear distinction of the unique contributions of
these study design elements to power to detect variances and covariances among rates of
change cannot be made. Any interpretation regarding study design elements in the earlier
results reported by Hertzog and colleagues remains ambiguous due to these confounds and
contributes little to the understanding of power to identify individual differences in and
among growth rates in longitudinal studies.

Growth Rate Reliability (GRR)

The growth rate reliability (Willett, 1989) turned out to be a very useful index which
captured the relevant parameters of power to detect growth rates. The relation of GRR and
power was first examined using estimates from existing longitudinal studies (Figure 4) and
we replicated these findings in several case studies where relevant parameters were
systematically varied. It is noteworthy that GCR, the reliability of a growth curve estimate at
one point in time, was largely unrelated to power to detect slope variance and covariance in
existing studies. Figures 4 and 5 illustrate the explications about GRR and GCR given in the
introduction and how these might typically be used in practice.

GRR is a useful index of power, comprised of the most relevant parameters linked to power.
Of special interest is the SST component which captures design considerations such as study
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length, number of waves and spacing of waves. These elements are typically under the
control of the investigator and their impact on power and sample size is important to
understand and use in practice. Changes in the study design have direct influence on SST
which alters GRR. This relation can be easily established (cf. Figure 1 and Willett, 1989) but
at the same time the relation among GRR and power was largely unknown. Our results
showed that the non-linear relation among GRR and power leads to substantial increases in
sample sizes once GRR values are below .20. On the other hand, the sample size
requirements become quite stable for values of GRR above .40.

Changes in study designs such as number of measurement occasions, study length, and
intervals between observations had the largest effects at the lower end of GRR. For studies
which cover fewer than five to seven years, increasing the number of measurement
occasions can be beneficial. However, one needs to find a balance among increasing power
and other, unwanted effects, such as retest and practice effects. If the total study duration
exceeds 10 to 15 years, number of waves hardly influences power to detect variances of and
among growth rates. Obviously, power is a major issue in the early stages of longitudinal
studies. Given these findings one strategy could be to include more measurement occasions
in initial phases of longitudinal studies and then, reduce the amount of measurement
occasions once sufficient power is obtained for the analysis of change. However, more
frequent assessments and the use of intensive measurement designs can have additional
benefits by permitting analysis of within-person dynamics and short-term variation and
provide more reliable estimates of within-person level of functioning (e.g. Rast, MacDonald,
& Hofer, 2012; Walls et al., 2011).

As can be seen from working through the simulation case studies, GRR provides a
standardized estimate which stably predicts power, or required sample size to detect power
> .80, given a certain number of measurement waves. That is, the influence of the error and
the slope variance follows a non-linear trajectory in each of the simulations. In order to
explore this association, we evaluated a number of functions through these trajectories and
found that a power function best described the relation among GRR and sample size. This
relation among GRR and sample size was close but not perfect indicating that SST did not
fully account for the design effects in studies with only three measurement occasions. With
four and more waves, this discrepancy becomes negligible and we would second
MacCallum et al. (1997, p. 217) suggestion to obtain at least four to five measurement
occasions for modeling linear change. The close association of GRR and power to detect
longitudinal change in linear slopes encourages the use of GRR as a useful index for the
determination of sample size in a linear growth curve model. It is important to note here,
that the relation among GRR and power was established in the linear LGC model with
constant error variances and based on the more conservative single parameter Wald test. The
relation might be different for different variations of LGC models (e.g. with different
constraints) and may remain useful for approximating power in non-linear models and for
other statistical tests. However, GRR can not fully substitute for the estimation of power
using Monte Carlo simulations (or other techniques such as the power estimation introduced
by Satorra and Saris (1985) for particular applications). Nonetheless, GRR provides a very
effective index to formalize the reliability of growth rates and it illustrates the interplay
among a number of study design parameters that have an important role in the power to
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detect individual change. We expect that these same design factors will be important for
more complex and nonlinear models of change.

Keeping these limitations in mind, the implications for the design of longitudinal studies are
formalized to some degree in the GRR estimate, providing the impact on power for
particular design considerations. Power to detect individual differences in change is directly

related to the phenomenon of interest ag and to the combined error variance % comprised of
time-specific intraindividual variability and measurement reliability. As we demonstrated,
the investigator is able to increase GRR by increasing the total duration of the study,
optimizing wave intervals or adding in additional waves to increase SST. However, the
cautionary notes raised by Willett (1989) apply, suggesting that in most cases it will not be
beneficial to focus on one parameter and increase GRR by, for example, maximizing SST.
Design considerations should not be reduced to one factor alone and the present results
illustrate the complex interplay among effect sizes, type of study design, measurement
reliability, and power to detect variance and covariance in rates of change.

Implications for Design of Long-Term Longitudinal Studies

There are a number of implications of this analysis of existing longitudinal studies and
related simulations for the design of new longitudinal studies of developmental and aging-
related processes. One of the most important aspects is the number and interval between
measurement waves and the length of the study. While longitudinal designs are essential for
understanding developmental and aging-related change, their value is usually obtained only
after many years of effort. In particular, the early phases of longitudinal studies often do not
provide a sufficient basis for the analysis and explanation of individual change and
variation. Our recommendation is that these early phases of longitudinal studies be enhanced
using a variety of potential measurement intensive designs, such as a measurement burst
design (e.g. Walls et al., 2011) or by the addition of one or two additional more closely
spaced waves. Such study designs would refine detection of individual variation and change
and our understanding of intraindividual dynamics over shorter periods of time.
Measurement intensive designs and additional waves increase SST and GRR and have a
major effect on power to detect change and covariation among rates of change if embedded
in more typical longitudinal designs. Such innovations in measurement and intraindividual
dynamics would carry forward in important ways to understand change in outcomes and
processes that may better capture the complexity of individual development and improve
power to detect individual change and variation.
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Figure 1.
The effect of study length and number of measurement occasions on GRR. The slope

variance is ag =50 and the error variance is o2=10. Study length is scaled as a one-unit
difference comprising 19 years (cf. Hertzog et al. 2006).
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Figure 2.

GRR as a function of slope variance (ai) among different numbers of measurement
occasions. The four lines are based on four different error variances. The Figure parallels the
power plots in Hertzog et al. (2008, Figure 3) and shows how GCR is related to GRR. 4
occasions cover a study duration of 6 years, 5 occasions cover 8 years, 6 occasions cover 10,
and 10 occasions cover 18 years.
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Figure 3.

The bivariate latent growth curve model which was used to extract parameter values from
existing longitudinal studies. This model was also used to obtain power estimates by means
of Monte Carlo simulations.
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Figure 4
.80 power estimates to detect slope variances given the observed GRR from all variables in

the studies reported in Table 5. Each symbol represents the required sample size to achieve a
power of .80. Triangles represent studies with three waves, crosses represent studies with
four, and circles represent studies with five waves. All values are reported in Table 5. The
hatched gray line represents the fitted power function f(GRR) = 13.48GRR 2266,
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Figure 5
.80 power estimates to detect slope variances given the observed GCR from all the studies in

Table 5. Triangles represent studies with three waves, crosses represent studies with four,
and circles represent studies with five waves. The hatched, gray line represents the .90 GCR
value. According to Hertzog et al. (2008) values below .90, all values left of the line, are
“potentially problematic”.
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Power curves for covariances among slopes (solid lines) and slope variances (dashed lines)

given 02228, 02=2100 and a correlation (r = .50) among the slopes. The figure represents
four different design types based on three (W3), four (W4), five (W5), and seven (W7)

waves with equidistant intervals. The total study length varied between three and 15 years.
Study length and number of waves have interrelated but unique effects on power.
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Figure 7.
Power curves for covariances among slopes (solid lines) and slope variances (dashed lines)

given a§:28, 02=2100 and a correlation (r = .50) among the slopes. The lines represents
four study durations covering 3, 5, 7, and 9 years in total with equidistant intervals. The
number of measurement occasion for each of these four study length varied from 3 to 15.
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Figure 8.
Power curves for covariances among slopes (solid lines) and slope variances (dashed lines)

given equal growth curve reliability of GRR= .40, equal slope variances, and equal
correlations (r = .50) among the slopes. The figure represents four different design types
based on three (W3), four (W4), five (W5), and seven (W7) waves with equidistant
intervals. In order to maintain the reliability constant across all four study designs the SST
was fixed to 50 and the study designs covered different intervals. The thin gray line
represents the .80 power threshold.
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Figure 9.
Power curves for correlated slopes (solid lines) and slope variances (dashed lines) given

three different types of wave intervals which all span 10 years. The correlation between the
slopes is r = .50. D1 has measurement occasions at years 0, 1, 9, and 10 (SST=82), D2 at 0,
3.3, 6.6, and 10 (SST=55.4), and D3 at 0, 4.9, 5.1, and 10 (SST=50). The variances and

covariances of level, slope and of the errors are held constant across the three interval types.

The reliability only changes due to different spacing of the intervals between waves.
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Figure 10

.80 power curves for covariances among slopes (solid lines) and slope variances (dashed
lines) given equal slope variances, and equal correlations (r = .50) among the slopes. The
figure represents four different design types based on three (W3), four (W4), five (W5), and

seven (W7) waves with equidistant intervals. GRR is manipulated via the error term o2
which ranges from 12,600 to 350.
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Figure 11
.80 power estimates for different slope variances (dashed lines) in four designs based on

three (W3), four (W4), five (W5), and seven (W7) waves. The error variance is constant at

02=2100 and SST is 50. The slope-to-error variance ratio ranges from 1:420 (5:2100) to
1:20 (105:2100). The lower x-axis provides the variances and the top x-axis provides the
according GRR values.
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Figure 12
.80 power curves for correlated slopes given equal reliability of GRR =.40, and equal slope

variances of 1.4. The figure represents four different design types bases on three (W3), four
(W4), five (W5), and seven (W7) waves with equidistant intervals.
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Figure 13.
Four .80 power curves for covariances among slopes given different GRR values ranging

from .20 to .80 in a four-waves study design with equally spaced intervals.

Psychol Methods. Author manuscript; available in PMC 2015 March 01.

0.8



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rast and Hofer

1500

1000

Sample size

500

Page 45

Waves =4
Os,sy = 14
05 =28

GRR

0.2 —
04 —
0.6
0.8

I I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Occasion specific error correlation

Figure 14
.80 power curves of correlated slopes for four GRR values ranging from .20 to .80 in a four-

waves study design with equally spaced intervals. The occasion specific error correlation
spanned from 0.0 to .90.
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