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Abstract

Statistically based iterative image reconstruction has been widely used in positron emission

tomography (PET) imaging. The quality of reconstructed images depends on the accuracy of the

system matrix that defines the mapping from the image space to the data space. However, an

accurate system matrix is often associated with high computation cost and huge storage

requirement. In this paper, we present a method to address this problem using sparse matrix

factorization and graphics processor unit (GPU) acceleration. We factor the accurate system

matrix into three highly sparse matrices: a sinogram blurring matrix, a geometric projection matrix

and an image blurring matrix. The geometrical projection matrix is precomputed based on a

simple line integral model, while the sinogram and image blurring matrices are estimated from

point-source measurements. The resulting factored system matrix has far less nonzero elements

than the original system matrix, which substantially reduces the storage and computation cost. The

smaller matrix size also allows an efficient implementation of the forward and backward

projectors on a GPU, which often has a limited memory space. Our experimental studies show that

the proposed method can dramatically reduce the computation cost of high-resolution iterative

image reconstruction, while achieving better performance than existing factorization methods.

1. Introduction

Fast and efficient statistically based image reconstruction is in high demand for state-of-the-

art high-resolution PET scanners. The system matrix that defines the mapping from the

image space to the data space is the key to high-resolution image reconstruction. A variety

of approaches have been proposed to calculate the system matrix based on numerical

integrations (Schmitt et al 1988, Karuta and Lecomte 1992, Huesman et al 2000, Hu et al

2005, Moehrs et al 2008), Monte Carlo simulations (Mumcuoglu et al 1996, Qi et al 1998,

Rafecas et al 2004), or experimental measurements (Panin et al 2006, Alessio et al 2006,

Tohme and Qi 2009, Alessio et al 2010). However, an accurate system matrix is often

associated with huge storage requirement and high computation cost in image

reconstruction. This is especially true for fully 3D PET where a tremendous number of lines

of response (LORs) are acquired, leading to very large datasets.

Many methods have been proposed to tackle these issues. They can be divided into two

categories: on-the-fly calculation and matrix factorization. In the first category, the system

matrix is calculated on-the-fly during each forward and backward projection. Although on-

the-fly calculation eliminates the storage of a system matrix, the computation cost of image
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reconstruction can be expensive when an accurate system model is required in forward- and

backward-projection operations. To keep the reconstruction time practical, approximations

are introduced. For example, Kadrams proposed a rotate-and-slant projector (Kadrmas

2008), but the resulting forward and backward projectors may not be matched and their

effects on the final reconstructed images need careful investigation (Zeng and Gullberg

2000). More recently, researchers have resorted to graphics processor units (GPUs) or other

high-performance parallel computing platforms to speed up on-the-fly calculations. To

maximize computation efficiency, on-the-fly forward projectors are often implemented in a

‘ray-driven’ manner and back projectors in a ‘voxel-driven’ manner (Bai and Smith 2006,

Herraiz et al 2009). Similar to the rotational-based projector, the resulting forward and

backward projectors are not matched. A different method was proposed for list-mode PET

reconstruction (Pratx et al 2009), where the LORs were modeled as Gaussian tubes and

calculated on the fly. This method avoids the ‘unmatched’ projector problem by

implementing both forward and backward projectors in a ray-driven manner. However, a

ray-driven backward projector with massive parallel threads can easily lead to the so-called

‘race condition’ where multiple threads attempt to modify the same memory location (image

voxel) at the same time. To solve this problem, one has to use atomic operations, which can

severely degrade GPU parallel performance if LORs are not well organized.

Alternative to on-the-fly calculations, researchers have used matrix factorization to reduce

both storage and computation costs (Mumcuoglu et al 1996, Qi et al 1998, Sureau et al

2008, Rapisarda et al 2010, Cloquet et al 2010). Since matrix factorization can result in

sparse matrices, system matrices can be precomputed and stored. The implementation of

forward and backward projections only requires sparse-matrix and vector multiplication

(SpMV) operation. The precomputed system matrix can also employ sophisticated models

including experimental measurements, so it can achieve higher accuracy than on-the-fly

calculations. For these reasons, here we focus on matrix factorization and propose a new

method to obtain a sparse-factored system matrix that allows efficient implementation of

fully 3D reconstruction with GPU acceleration. Similar to existing models, the proposed

system model consists of three major components: a simplified geometric projection matrix,

a sinogram blurring matrix and an image blurring matrix. Previously, the geometrical

projection matrix was precomputed based on the solid angle subtended to the detector faces

(figure 1(b)) and compressed with symmetries (Qi et al 1998). However, reconstructing

high-resolution images often requires small-size image voxels, which can lead to a very

large geometric projection matrix even with data compression. One example is the high-

resolution zoom-in PET systems (Zhou and Qi 2009) where a high-resolution detector with

much smaller crystals is incorporated into an existing PET scanner. Such a hybrid system

requires images to be reconstructed using voxels that are much smaller than the PET

detector crystals. In this paper, we propose a new strategy that uses a simpler geometrical

projection matrix to further reduce the number of nonzero elements as well as the

computational complexity associated with projection operations. As shown in figure 1(c),

we only consider a single ray connecting the pair of crystals that forms an LOR. Obviously,

it can be sparser than the solid-angle-based geometric projection matrix and can be

precomputed and easily manipulated without high costs in storage and computation.
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Using the simple geometric projection matrix alone is not sufficient for high-resolution

image reconstruction, so we use the sinogram blurring matrix and the image blurring matrix

to improve the model accuracy. The proposed sinogram blurring is analogous to that in

existing factorization models, which models detector physical responses such as crystal

attenuation, inter-crystal scattering and photon non-colinearity (Qi et al 1998, Mumcuoglu et

al 1996, Panin et al 2006, Alessio et al 2006, Tohme and Qi 2009, Alessio et al 2010). The

image blurring matrix plays a central role in compensating the degradation due to

insufficient LOR sampling. The related blurring kernel can be estimated from point-source

measurements and can also compensate for other resolution degradation effects. While the

image blurring matrix has been used in previous works (Sureau et al 2008, Rapisarda et al

2010), the combination with a simple geometric projection matrix and sinogram blurring

matrix makes the proposed model more accurate and efficient.

While we use voxels to represent images, the proposed factored system model can also

adopt alternative basis functions, such as the blob function (Matej and Lewitt 1992), or the

rotation-symmetric voxel assemblies recently proposed by Scheins et al (2011). With

additional symmetries, the geometric projection matrix can be further compressed in size.

However, it is worth noting that symmetry-based compression only reduces the storage size,

but does not reduce the computational cost of image reconstruction. In comparison, the

proposed sparse matrix factorization reduces both the storage size of the system matrix and

computational cost of image reconstruction.

This paper is organized as follows. In section 2, we describe our sparse factorized system

model and techniques to estimate the sinogram blurring matrix and the image blurring

matrix. Section 3 describes the implementation of the forward and backward projectors on

GPU. Section 4 compares the proposed method with the existing method using computer

simulation and real animal data. Finally, discussions and conclusions are presented in

section 5.

2. Theory

2.1. Sparse system matrix factorization

Let P be the system matrix of a fully 3D PET scanner. We propose to factor P into a set of

sparse matrices as

(1)

where D is a diagonal matrix containing detector normalization factors and attenuation

correction factors, B is a sinogram blurring matrix, G is a geometrical projection matrix and

R is an image blurring matrix. The normalization factors are usually estimated from scans of

uniform sources and attenuation factors from a transmission scan or CT image. Here we use

the standard methods for normalization and attenuation correction, and focus our attention

on B, G and R.

To reduce the number of nonzero elements, we propose to use a geometric projection matrix

that is precomputed based on a simple line integral model (figure 1(c)). The sinogram
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blurring matrix B and the image blurring matrix R are estimated by minimizing the

following objective function:

(2)

subject to that both B and R are non-negative matrices, where Φ is a distance measure, Ψ is a

sparsity penalty with β and γ being parameters controlling the strength of the regularization.

When P is given, the above problem is quite close to the non-negative matrix factorization

which is well known in areas of data mining and machine learning (Lee and Seung 1999).

The above estimation can also be extended to the estimation of the blurring matrices from a

set of point-source measurements. Let ej be a point source at voxel j, whose measurements

are denoted by yj (which is equivalent to P ej). Then, we can estimate B and R by

(3)

where A ≥ 0 denotes that all the elements of A are non-negative. Using an alternating

minimization algorithm leads to the following iterative procedure:

(4)

(5)

with k being the iteration number.

2.2. Sinogram-blurring matrix estimation

We focus our study on PET scanners with a cylindrical multi-ring geometry. There are two

types of symmetries that can be exploited to simplify the sinogram blurring matrix

estimation.

The first one is the axial parallel symmetry between sinograms with the same absolute ring

difference. Let Nr be the total number of detector rings and define

(6)

as the set of ring pairs with the absolute ring difference equal to r. Clearly, we have 0 ≤ r ≤

Nr − 1. Let P (m,n) ∈ ℝnp × nv denote the system matrix between ring pair (m, n), where np ≜

na × nb is the size of the sinogram with na projection angles and nb radial bins per angle and

nv ≜ nx × ny × nz is the total number of image voxels with nx, ny and nz being the three
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dimensions along x, y and z axes, respectively. Let P (r) ∈ ℝ (| (r)|np)×nv be the collection

of system matrices corresponding to the ring pairs in set (r), where | (r)| is the cardinality

of (r). The axial parallel symmetry indicates that the sinogram blurring matrices are the

same for all sub-matrices contained in P (r). Thus we can rewrite the sinogram blurring

matrix for P  (r) as

(7)

where I |  (r)| is the identity matrix of size |  (r)| × |  (r)|,  represents the two-

dimensional sinogram blurring matrix and ‘⊗’ is the Kronecker product. As a result, the

estimation of  requires only data from a single ring pair for each ring difference.

The second symmetry that we can use is the rotation symmetry within each sinogram. Let K

be the number of crystals contained in each detector module transaxially; the rotational

symmetry indicates that the blurring effect is the same for every K contiguous azimuthal

angle. Such a property means that  has a block Toeplitz structure

where  and  is the matrix whose ith diagonal elements are all ones and

others are zeros. Here br, 0, ∈ ℝnbK ×nbK models the blurring effect taking place inside a

group of azimuthal angles, while br, i, ∈ ℝnbK ×nb K (i ≠ 0) models the blurring effect

between groups. Because the detector blurring effect is local, usually only blocks br,0, br,±1

and br,±(L−1) are nonzero and need to be estimated.

As described in Tohme and Qi (2009), one can use point-source scans located in the

quadrant of the central transaxial plane (shown in figure 2(a)) to estimate the sinogram

blurring matrix. In this case, it is natural to choose the negative Poisson log-likelihood

function for Φ. We enforce the sparsity constraint explicitly by restricting the blurring effect

to be within a small local region for each sinogram element. Then the maximum likelihood

expectation-maximization (MLEM) algorithm can be employed to find the blurring matrix.

Combination of the symmetries and local support constraint substantially reduces the

computational cost of sinogram blurring matrix estimation. Details of the MLEM algorithm

can be found in Tohme and Qi (2009).
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2.3. Image-blurring matrix estimation

Let vj ≜ Rej ∈ ℝnv×1 be the image blurring kernel at the j th voxel, and denote

. It is easy to show from (5) that each image blurring kernel

can be estimated separately by

(8)

for j = 1, …, nv. The estimation of each kernel is similar to an image reconstruction whose

computational complexity increases as the image size increases. Like the sinogram blurring

kernel estimation, we allow vj to be nonzero only within a small local support near voxel j in

the image space, so that the computation cost can be substantially reduced. Equation (8)

shows that estimating the whole image blurring matrix requires point-source measurements

from all voxels within the FOV, which can be cumbersome to acquire. To reduce the effort

in point-source data acquisition, we model the image blurring matrix using the Kronecker

product of an axial blurring matrix Ra ∈ ℝ nz ×nz and a transaxial blurring matrix Rtr ∈

ℝ (nxny )×(nxny):

(9)

Because the transaxial blurring kernel is independent of the axial position and the axial

blurring kernel is independent of the transaxial position, estimating the above image blurring

matrix only requires point-source measurements from voxels in the central transaxial plane

and along the central axial axis (figure 2(a)). The axial and transaxial blurring matrices can

be estimated jointly by

(10)

with γ1 and γ2 being the weighting parameters. Using alternating minimization and the

property Ra ⊗ Rtr = (Ra ⊗ Inxny) (I nz ⊗ Rtr) = (Inz ⊗ Rtr) (Ra ⊗ Inxny) leads to

(11)

(12)

where
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and

For the transaxial blurring kernels, we only need to estimate those in the quadrant of the

central plane  and obtain others by applying geometric symmetries (see figure 2(a)).

Once all matrices are estimated, one more step is necessary to normalize the plane efficiency

of the factored system matrix. This is because we use plane-independent transaxial blurring

matrices and cannot model the plane-dependent solid-angle effect. The plane efficiency

factors can be obtained by first scanning a uniform cylinder filling the FOV and then taking

the ratio between the average values of each acquired sinogram plane and the corresponding

one predicted by the factored system matrix. The plane efficiency factors can be lumped into

matrix D.

2.4. Algorithm summary

To sum up, the entire procedure for our proposed sparse system matrix factorization is as

follows.

1. Acquire point-source scans based on the scheme shown in figure 2.

2. Calculate the simple geometric projection matrix G based on Siddon’s method

(Siddon 1985).

3. For k = 1, 2, …

i.
estimate  using the method in Tohme and Qi (2009);

ii. estimate the transaxial image blurring matrix  by solving (11);

iii. estimate the axial image blurring matrix  by solving (12).

4. Calculate the plane efficiency factors for the factored system matrix.

We ran 100 iterations of the MLEM algorithm for each estimation step in (3.i)–(3.iii).

3. Parallel implementation

Our factored system matrix can be relatively small in size, which allows easy

implementation of forward and backward projectors in GPUs. We also store the transposed

matrices and implement the backward projector in a ‘voxel-driven’ manner so that each

voxel can be processed independently without memory access conflict. For both forward and

backward projectors, we only need the SpMV operation which is able to take full advantage
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of GPU’s parallel capability. Instead of using existing SpMV libraries (Bell and Garland

2008, NVIDIA 2009a), we designed specific GPU kernels to suit the factored system matrix.

Based on our factorized system model, each projector consists of three main steps: image

domain blurring, geometric projection and sinogram domain blurring. The first and last steps

are analogous to image filtering (with filters given by R and B) which can be efficiently

implemented on GPU. Here we mainly discuss the second and most time-consuming step,

the geometrical projection operation. Our development is guided by the basic CUDA

parallel programming strategy (NVIDIA 2009b, 2009c). The projectors are able to handle

the axial parallel symmetry, axial reflection symmetry and in-plane symmetry. The structure

of projectors is shown in figure 3. Basically, each projector consists of three GPU kernels

forming a pipeline. For the forward projector, they are an image buffer maker kernel,

forward projection kernel and sinogram maker kernel, each of which is explained in detail

below.

Image buffer maker

In this first GPU kernel, an image is re-organized into an image buffer. This is due to the in-

plane symmetry which allows the entries Gij for one LOR to be repeatedly used for the other

three symmetric LORs. Such an image buffer can be seen as a big image combining four

(equal to the number of in-plane symmetries) images: the image itself and three symmetrical

images according to the in-plane symmetry. We used the build-in vector type float4 to store

this buffer, which has exactly four single-precision floating-point channels corresponding to

the four images. The advantage is that such an array is automatically aligned in the GPU

global memory, and hence a single instruction can read/write all four symmetric voxels at

once to take the advantage of GPU’s ‘single instruction, multiple data’ (SIMD) capability.

The operation only involves coordinate mapping, so it can be easily parallelized on GPU

with one thread per voxel. As we will show in the simulation study, the cost of this GPU

kernel is negligible.

SpMV-based projection

The second GPU kernel performs the geometric forward projection from the image space to

the projection space. Here, one projection has type float4 also containing four data due to the

use of the four-channel image buffer. Because of the axial reflection symmetry, the same

LOR in the geometrical matrix can be used twice to produce two projections that can be

stored together. At this stage, it is not necessary to arrange these projection data into

sinograms because storing them in a sequential order provides us the coalesced global

memory access pattern: continuous threads can access continuous locations of global

memory, which is very efficient for data processing. Moreover, since the access pattern does

not require many complex intermediate operations, it simplifies the kernel operations,

lowers the risk of ‘warp divergence’ and maximizes the parallel efficiency (NVIDIA

2009b). Additionally, the created projection data buffer fulfills the ‘data locality’ condition,

which has the extra benefit for acceleration of the projection speed by using the cached

memory such as texture.
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Sinogram maker

Once we have the projection data, the remaining step is to reorder them into sinograms. In

this GPU kernel, we use lookup tables. For each thread we first read out a projection and

then put it back properly to the sinogram according to the lookup tables. Similar to the first

kernel, this kernel only requires a linear address mapping which is trivial with hundreds of

GPU threads running simultaneously.

The three kernels in the backward projector are just the counterparts of those used by the

forward projector. The first and last kernels are almost the same as those in the forward

projector but doing the reverse operations. For the image-maker kernel, we merge all

channels of an image buffer into a single channel to form an image. This is done with the

componentwise summation. For the projection maker which transforms sinograms into our

required projection format, it is just a reverse operation of the sinogram maker. The

geometric backward projector is implemented in a similar way by using the transpose of the

geometrical projection matrix. Its performance is close to the forward projector.

4. Experimental study

4.1. System setup

Our experimental studies were based on the microPET II scanner (Tai et al 2003). The

scanner uses 90 detector modules arranged in three rings, with 30 detector modules in each

ring. Each detector module consists of 14×14 lutetium oxyorthosilicate (LSO) crystals, each

having size 1.0 mm×1.0 mm in cross section and 12.5 mm in length. The crystal pitch is

1.15 mm in both axial and transaxial directions. This leads to a total of 17 640 LSO crystals

arranged in 42 rings with 420 crystals per ring. The ring diameter is 160 mm and the

diameter of the transaxial FOV is about 80 mm. We considered to reconstruct the image of

size 256×256×85 with voxel size 0.2 × 0.2 × 0.58 mm3. A total number of 42×42 sinograms

are generated by the scanner, each containing 210 projection angles and 140 radial bins per

angle.

4.2. System matrix calculation and storage

We calculated an accurate system matrix P using the numerical integral method proposed in

Huesman et al (2000) and Hu et al (2005). Basically we divided each crystal into

10(transaxial)×10(axial)×25(radial) subcrystals. Each LOR is then calculated by tracing a

total of (2500)2 lines connecting all the possible subcrystal pairs between the two crystals

that forming the LOR, which models the solid-angle effect, crystal attenuation and photon

penetration, but without inter-crystal scatter effect (as illustrated in figure 1(a)). The

modeled effects are completely in 3D and are ring difference dependent. Consequently, the

resulting matrix P does not satisfy the approximations used in section 2, so it provides a

realistic test of the accuracy of the proposed factored system model. All point-source

measurements were simulated by properly selecting columns from this matrix. The number

of point sources we used was about 13 000. Our simple geometrical projection matrix,

denoted by Gline.int, was computed using the simple ray-tracing method (as illustrated in

figure 1(c)) where neither the crystal attenuation nor the photon penetration was taken into

account. We assumed that all detectors have the same detection efficiency when performing
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sparse factorization. For the transaxial image blurring kernel estimation, we used a square

window of 11×11 pixels. For the estimation of sinogram blurring matrix, we used the same

window size, i.e. 11×11 bins coverage in radial and angular directions. Because each axial

image blurring kernel only takes about 85 elements at most, we did not enforce any

additional constraint on the support of nonzero elements. For each individual kernel

estimation step, we ran 100 MLEM iterations and then set any value less than 0.0001% of

the kernel maximum to zero. We manually stopped the alternating algorithm after five

alternating updates between B and R (further iteration did not change kernels much). Once

all matrices are obtained, we then calculate the plane efficiency of the factored matrix by

simulating a uniform cylindrical source filling the FOV. We forward projected this source

using both the accurate system matrix and the factored system matrix to obtain sinograms.

Then we calculated a scaling factor for each sinogram as the ratio between the total counts

of the accurate sinogram and the one based on the factored model. These scaling factors

formed a diagonal matrix which was used to normalize the plane efficiency of the factorized

system matrix.

We compared our model with the existing factored model available on micro-PET scanners.

In the latter method, the geometrical projection matrix, denoted by Gsolid.ang, was calculated

based on the solid-angle effect extended from each voxel to the faces of each detector pair

(as illustrated in figure 1(b)). No depth interaction such as the photon penetration effect was

included. Then a two-dimensional sinogram blurring matrix  was estimated based

on the method in Tohme and Qi (2009). The resulting factorized system matrix was also

normalized using the same method described above. All sparse matrices used in our paper

were stored in the compressed row storage (CRS) format (Saad 1994). Here we used two 4-

byte integers to represent the column index and the row offset pointer, and a 32-bit single-

precision floating-point number for the nonzero element value. All geometrical projection

matrices (including the accurate system matrix P) were compressed based on in-plane and

axial symmetries. Their sizes were also reduced by only considering those LORs

intersecting the FOV.

A comparison of storage size is shown in table 1, where we denote  and

 as the estimated sinogram blurring matrix, transaxial image blurring matrix and

axial image blurring matrix based on the simple geometric projection matrix Gline.int. We see

that the accurate system matrix with compression still requires about 18 Gbyte storage

space. The geometrical projection matrix Gsolid.ang also occupies 6.1 Gbyte. This is because

the voxel size is relatively small compared to the crystal size, leading to many voxels

covered by one LOR between two crystals. The proposed matrix Gline.int only takes 410

Mbyte, about 45 times reduction compared to P, and 15 times reduction compared to

Gsolid.ang. The transpose of Gline.int was also calculated and stored for the backward

projector which requires 557 Mbyte. This is because the row of the transposed compressed

geometric matrix is larger than its column size while the CRS format is less efficient to

handle the storage of such a kind of sparse matrix. The transposes of , Rtr and Ra do not

change storage size since they are square matrices. The total memory space for our proposed

sparse factorized system model is about 1.0 Gbyte which is much less than that required by

either P or Gsolid.ang.
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4.3. Evaluation of computing performance

All programs were developed using C++ on a PC running a 64-bit Linux with a quad-core

2.4 GHz Intel Xeon 5530 processor. The GPU was the NVIDIA Tesla C1060 which has 240

streaming processor cores and a total of 4 Gbyte global memory space. For large system

matrices such as P and Gsolid.ang, the forward and backward projectors were only

implemented on the CPU with multi-threaded computing. For the proposed factorized

system matrix, both CPU- and GPU-based projectors were implemented. The GPU-based

programs were compiled with NVIDIA’s nvcc compiler and the aid of CUDA Toolkits 2.3

(NVIDIA 2009d), while the CPU-based programs used GNU C++ compiler with option −03

for performance optimization.

A comparison of the computational costs is shown in table 2. Clearly, the factorized system

matrix has far less computational cost than the nonfactorized model P. The acceleration is

proportional to the reduction of the number of nonzero elements in the system matrix.

Moreover, using GPU can reduce the computational cost by another order of magnitude. As

we can see, one forward projection and one backward projection take only about 5 s on the

GPU, which is more than 200 times faster than that based on the accurate system matrix

running on four CPUs. Such dramatic speedup comes from the combination of matrix

factorization and well-designed GPU pipelines. Table 3 shows the computational cost of

each kernel inside a forward projector and a backward projector. Clearly, most of the time is

taken by the forward and backward SpMV operations while the image buffer maker and

sinogram buffer maker occupy less than 1% of the computation time. In addition, with the

aid of texture memory, the backward projector speed could be improved further by about

40%.

4.4. Evaluation of image quality

4.4.1. Simulated phantom data—To evaluate image reconstruction quality, we

simulated a NEMA-type phantom which consists of five spheres inside a cylinder 30 mm in

diameter and 46 mm long. The center cross section of this phantom is shown in figure 4. The

diameters of spheres are 1.0 mm, 1.6 mm, 2.2 mm, 3.0 mm and 4.0 mm, respectively. The

largest sphere is a cold sphere whose activity ratio to the warm background is 1:10, and the

other four spheres are hot spheres with an activity ratio of 5:1. A total of 460 million counts

were generated including 10% background randoms and scatters. All images were

reconstructed by running 400 MLEM iterations starting from a uniform image. Figures 5

and 6 compare transaxial and sagittal slices of reconstructed images at different iteration

numbers. The importance of the image blurring matrix is clear. The simple system model

without this blurring matrix results in severe artifacts (see the third row of figures 5 and 6 or

the line profile comparison in figure 7), while such a problem can be well alleviated by the

image blurring matrix. Visually the results based on our proposed sparse factorization model

are close to those yielded by either the accurate system model or the existing factored

model. This can also be confirmed by the line profile comparison shown in figure 7. Note

that the reconstructed image with the proposed method also produces ‘cold’ centers for the

hot spots as the accurate model. This edge artifact is caused by the Gibbs ringing effect and

is a known behavior of PET image reconstruction with resolution recovery (Alessio et al
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2010). To eliminate such an artifact, one could consider post-smoothing or penalized image

reconstruction.

For a quantitative comparison, we calculated the sphere contrast recovery coefficient (CRC)

using

(13)

where t indicates the iteration number,  is the true activity ratio between the j th sphere

and the warm background,  is the mean activity value in sphere j at the tth iteration

and μb(t) is the mean of the background image at the tth iteration. Different spheres used

different background regions for calculating the mean value and the noise standard

deviation. The background region we selected is a hollow spherical region that surrounds

each sphere. The thickness of each region is 2 mm with the inner radius 1 mm larger than

the radius of the sphere inside.

Figure 8 shows the CRC of the five spheres versus background standard deviation tradeoff

curves obtained by varying the number of iterations. Except for the smallest sphere (1.0

mm), the CRC curves produced by our proposed model are very close to the curves of the

accurate system model. However, this comparison is not fair because the data were

generated using the accurate system matrix and hence the results of the accurate model do

not suffer from any model mismatch. A more meaningful comparison is between the

proposed model and the solid-angle-based model. The results show that the CRC curves

produced by our proposed model are always above those by the solid-angle-based method,

even though the proposed model is more than 10 times faster. This is because our sparse

system model uses both the sinogram blurring matrix and image blurring matrix, which

results in better accuracy in system modeling and leads to improvements in both image

quality and reconstruction speed.

4.4.2. Real mouse data—A 27 g mouse was injected with 0.22 mCi of [18F]FDG and

scanned by the microPET II scanner at UC Davis. The scan started 30 min post-injection

and lasted 30 min. In total 149 million counts were acquired. The detector efficiency

coefficients were obtained from a 3.3 h scan of a uniform cylindrical source. Images were

reconstructed with 256×256×83 voxels each having size 0.2×0.2×0.58 mm3. For image

reconstruction, we used the same system matrix that we derived in the simulation study. We

reconstructed images using 200 MLEM iterations. No correction was done for attenuation,

scatters or randoms.

Figure 9 compares the reconstructed images produced by different system models. Similar to

the simulation study, we see that our sparse factorization model yields good results that are

visually close to those obtained by the accurate model and the existing factored model. If the

image blurring matrix is not used, the sparse system model produces an image with severe

artifacts as shown in the third column in figure 9 or the difference image shown in the fifth

column in figure 9. To quantify the difference between the images obtained by the accurate

Zhou and Qi Page 12

Phys Med Biol. Author manuscript; available in PMC 2014 July 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



model and the factored models, we calculated the normalized root of mean square (NRMS)

error which is defined by ||x̂ acc − x̂ ||/||x̂acc|| × 100%, where ||·|| denotes the standard

Euclidean norm, x̂ is the reconstruction using one of the factored models and x̂acc is the

reconstruction using the accurate system model. The results are shown in table 4. It shows

that both approximate models are close to the accurate model with the maximum NRMS less

than 5%. The accuracy of the proposed model is similar to that of the existing factored

model using a solid-angle-based geometric projection matrix, but the reconstruction speed is

about two orders of magnitude faster.

5. Discussion and conclusion

We have presented a sparse system matrix factorization method for fast and efficient fully

3D PET image reconstruction. Our model uses three sparse matrices: a simplified geometric

projection matrix, a sinogram blurring matrix and an image blurring matrix. We

precomputed the geometric projection matrix using the simple line integral method, while

estimated the two blurring matrices by minimizing the difference between the factored

system matrix and the accurate system matrix. We have developed methods to efficiently

estimate these two blurring matrices using limited number of point-source scans. In our

simulation studies, we found that the storage size of the factored model is about 2.5% of the

accurate system model. Because of its relatively small size, the factored matrix can be

loaded directly into memory of a CPU or a GPU. Our experimental results show that our

proposed matrix factorization reduces the storage size of the system matrix and image

reconstruction time by more than a factor of 10 compared to the previous factored model on

a CPU. Implementing the forward and backward projectors on a GPU leads to another order

of magnitude speedup. In addition, since it uses both the sinogram blurring and image

blurring matrices to improve the model accuracy, the proposed factorization method offers

better performance than existing factorization methods that only use one blurring matrix.

Currently, only a single GPU has been used for computation but the extension to multiple

GPU computing is straightforward; hence, further speedup can be expected. One limitation

of our GPU implementation is that both the geometric projection matrix and its transpose

need to be saved before reconstruction. This may cause troubles when the GPU global

memory is very limited. One way to solve this problem is to consider more efficient sparse

matrix format such as the compressed sparse blocks (CSB) format described in (Buluç et al

2009) with which both GPU-based forward projector and backward projector can use the

same matrix without introducing the race conditions in read/modify/write operations.

Alternatively, the storage cost can be reduced by using highly symmetric image basis

functions proposed in Scheins et al (2011).

In this paper, we focused on small-animal imaging and ignored the attenuation effect of the

subject being imaged. However, the method is applicable to clinical whole-body scanners

and the attenuation factors can be incorporated in the system matrix. We also note that the

simulated point-source measurements are far less realistic. Real point-source scans are

inevitably contaminated by noise which would in turn affect the accuracy of kernel

estimation. One possible improvement is to consider parameterization of the sinogram and

image blurring kernels to reduce the effect of noise (Panin et al 2006, Kotasidis et al 2011).
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In addition, if the parameters change smoothly, one may also reduce the number of point-

source measurements. We will address these issues in future work.
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Figure 1.
A transaxial view of the LORs used by different system models. The boxes represent the

detector modules in which the crystal pair that form the LOR are shaded in gray color; (a)

shows the LOR of an accurate system matrix which involves the effect of photon penetration

leading to a relatively large coverage in image space; (b) is the LOR of the geometric

projection matrix based on the solid angle subtended to the two crystal faces, which results

in smaller coverage in image space; (c) shows the LOR used in the proposed simple

geometric projection matrix. The LOR in (c) is just a simple line connecting the centers of

two crystal faces, which has far less nonzero elements than those of the LOR models shown

in (a) and (b) and thus allows fast reconstruction. The accuracy of the system matrix is

preserved with the help of the sinogram blurring matrix and image blurring matrix.
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Figure 2.
An illustration of the point-source distribution required by the blurring matrix estimation. In

(a), the rectangular box represents the 3D image volume. The point sources are distributed in

the quadrant OABC in the central transaxial image plane  because of the geometric

symmetries. The corresponding point-source measurements are used to estimate the

sinogram blurring matrix and the transaxial image blurring matrix. The line segment OD

indicates the point-source locations for the axial image blurring kernel estimation; (b) shows

the transaxial view of the plane  where each small rectangle represents a local support that

constrains non-zero elements of a transaxial image blurring kernel. Because of the size of

the local support, the actual region for estimating these kernels inside the quadrant is

extended as shown by region O1A1BC1. For a kernel near the image boundary, we use a

truncated local support to restrict the blurring operation inside the image (see the rectangle

close to the edge BC for example).
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Figure 3.
The pipeline of the proposed forward and backward projectors implemented on a GPU.
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Figure 4.
The cross section of the computer-simulated phantom. The shaded region shows an example

of a cross section of a selected background region which is used to calculate the mean

background activity surrounding the enclosed sphere. Other background regions are selected

in a similar fashion. The largest sphere is a cold sphere whose activity ratio to the warm

background is 1:10, and the other four spheres are hot spheres with an activity ratio of 5:1.
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Figure 5.
A comparison of central transaxial slices of reconstructed images using different system

models. The first row shows the results based on the accurate system matrix, the second row

shows the results based on the factorization model  and the third and the

fourth rows correspond to the proposed factorization model  without and

with the image blurring matrix R, respectively.
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Figure 6.
A comparison of central sagittal slices of reconstructed images. Note that the voxel size is

anisotropic.
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Figure 7.
A comparison of vertical line profiles drawn through the images shown in figure 5(c).
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Figure 8.
A comparison of the CRC versus background noise curves for different spheres. The points

in each curve, from left to right, corresponds to iteration 50, 100, 150, 200, 250, 300, 350,

and 400, respectively.
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Figure 9.
Comparison of reconstructed images of the real mouse data. In both (a) and (b), there are

two rows corresponding to reconstructed images at the 50th (top) and 200th (bottom)

iterations, respectively. The first column shows the reconstructed images using the accurate

system matrix P; The second shows reconstructed images using ; The

third and fourth columns are results of  without and with the image

blurring matrix , respectively. The fifth column is the absolute

difference image between the result of the accurate system matrix and the result of

; The sixth and the last column are the absolute difference images

between the results of the accurate model and the results based on the sparse factorization

model without and with the image domain blurring matrix, respectively. Here the image size

has been truncated for better visualization. (c) Line profiles through the reconstructed

myocardium at the 200th iteration using different system models. The location of these
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profiles is indicated by the horizontal line in the right image. (a) Transaxial view, (b) coronal

view and (c) line profile comparison.
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Table 1

System matrix size comparison.

P

Size (byte) 18.2 G 6.1 G + 6.3 M 410.3 M + 5.7 M + 31.6 M + 4.0 K 557 M
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Table 2

Computation costs of different system models. All CPU implementations have used four threads.

P

CPU CPU CPU GPU

Forward projection (s) 621 300 25 2.6

Backward projection (s) 658 323 29 2.4

Total 1279 623 54 5.0
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Table 3

Computation cost of each kernel in forward and backward projectors (unit in millisecond).

Forward pipeline (ms) Image maker Forward projection (SpMV) Sinogram maker

2.2 1668.0/1897.7 (with/w.o texture memory) 17.3

Backward pipeline (ms) Sinogram maker Backward projection (SpMV) Image maker

15.4 1431.2/2989.2 (with/w.o texture memory) 5.7
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Table 4

A comparison of the NRMS versus iteration for different factored models.

Iteration number 50 150 200

1.5% 2.6% 4.4%

1.4% 3.1% 4.1%
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