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Abstract

Iterative image reconstruction for positron emission tomography (PET) can improve image quality

by using spatial regularization that penalizes image intensity difference between neighboring

pixels. The most commonly used quadratic penalty often over-smoothes edges and fine features in

reconstructed images. Non-quadratic penalties can preserve edges but often introduce piece-wise

constant blocky artifacts and the results are also sensitive to the hyper-parameter that controls the

shape of the penalty function. This paper presents a patch-based regularization for iterative image

reconstruction that uses neighborhood patches instead of individual pixels in computing the non-

quadratic penalty. The new regularization is more robust than the conventional pixel-based

regularization in differentiating sharp edges from random fluctuations due to noise. An

optimization transfer algorithm is developed for the penalized maximum likelihood estimation.

Each iteration of the algorithm can be implemented in three simple steps: an EM-like image

update, an image smoothing and a pixel-by-pixel image fusion. Computer simulations show that

the proposed patch-based regularization can achieve higher contrast recovery for small objects

without increasing background variation compared with the quadratic regularization. The

reconstruction is also more robust to the hyper-parameter than conventional pixel-based non-

quadratic regularizations. The proposed regularization method has been applied to real 3D PET

data.

Index Terms

Image reconstruction; penalized maximum likelihood; patch regularization; positron emission
tomography

I. Introduction

Iterative reconstruction techniques have been increasingly used in positron emission

tomography (PET) to improve image quality [1]. Comparing to analytical reconstruction

(e.g. filtered backprojection), iterative reconstruction can make use of noise statistics,

accurate system modeling, and image prior knowledge. Maximum likelihood (ML)

reconstruction method estimates image from projections by maximizing the log likelihood of

PET data. However, a true ML solution can be very noisy, so some form of regularization is

necessary to stabilize the image estimation. It is commonly achieved by either terminating

the iteration before convergence or by using a penalty function to encourage spatially

smooth images. Here we focus on the latter approach. An ideal regularization function
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should be able to preserve two conflicting properties of PET images: spatial smoothness

within a region and sharp transition at region boundaries. However, the success has been

limited with existing regularization functions. The most commonly used quadratic penalty

often over-smoothes edges and small objects in reconstructed images. Non-quadratic

penalties can preserve edges but often introduce piece-wise constant blocky artifacts and the

results can be sensitive to the value of the hyper-parameter that controls the shape of the

penalty function.

We postulate that the main reason for the instability of traditional non-quadratic penalties is

that the image roughness is calculated based on the intensity difference between neighboring

pixels. When an image is noisy, pixel intensity differences are not reliable in distinguishing

real edges from noisy fluctuation. To overcome this problem, we propose a patch-based

regularization that uses neighborhood patches instead of individual pixels in measuring

image roughness. Since it compares the similarity between patches, the patch-based

regularization is expected to be more robust than pixel-based regularizations. In addition to

being edge preserving, patch-based regularization can also preserve features or texture

within patches, which may have important applications beyond PET image reconstruction.

The patch-based regularization presented in this paper is closely related to the nonlocal

regularization that has been studied in the context of image restoration [2]–[8] and image

reconstruction [9]–[12]. However, existing nonlocal regularization methods either require a

pre-known reference image for constructing the weight function or involve a nonconvex

optimization (see Section III for more discussions). In image reconstruction, a good

reference image is not directly available before reconstruction. A nonconvex optimization

often suffers from unstable image estimation because of multiple local solutions. In

comparison, the proposed regularization does not require a reference image before

reconstruction and has a convex objective function, which allows us to derive an

optimization transfer algorithm that guarantees convergence to the penalized likelihood

solution. Part of this work was previously presented at the 2011 International Symposium of

Biomedical Imaging [13]. Yang and Jacob also presented a similar work at the same

conference but focused on nonconvex penalty functions [14] and applications in magnetic

resonance imaging (MRI).

II. Penalized Likelihood Reconstruction

PET data y = {yi} can be well modeled as a collection of independent Poisson random

variables with the log likelihood function as

(1)

The expected data ȳ = {ȳi} is related to the unknown image x through an affine transform

(2)
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where P = {pij } ∈ IRni×nj is the system matrix with pij denoting the probability of detecting

an event originated at pixel j by detector pair i, r accounts for background events such as

randoms and scatters. ni is the total number of detector pairs and nj is the total number of

pixels in image.

Penalized likelihood (PL) reconstruction (or equivalently maximum a posteriori, MAP)

estimates the unknown image by maximizing a penalized likelihood function

(3)

where U (x) is an image roughness penalty. Conventionally the image roughness is

measured based on the intensity difference between neighboring pixels

(4)

where ψ(t) is the penalty function and wjk is the weighting factor related to the distance

between pixel j and pixel k in the neighborhood Nj. The regularization parameter β controls

the trade-off between data fidelity and spatial smoothness. When β goes to zero, the

reconstructed image approaches the ML estimate.

A common choice of ψ(t) in PET image reconstruction is the quadratic function

(5)

A disadvantage of the quadratic regularization is that it may over-smooth edges and small

objects when a large β is used to smooth out noise in large regions. A penalty function that

can preserve edges is the absolute value function

(6)

which is not differentiable at zero. A similar function but with continuous second-order

derivatives is the Lange function [15]

(7)

which approximates the quadratic function when |t| ≪ δ and approaches the absolute

function for |t| ≫ δ. Other examples of non-quadratic convex penalty functions include the

hyperbola function , the Huber function [16] and the lp penalty (p ≥ 1) [17]. Non-

convex penalty functions (e.g. [18], [19]) have also been proposed to form even sharper

edges in reconstructed images. One problem with non-quadratic penalty functions is that
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reconstructed images are often very sensitive to the hyper-parameter δ and there has been no

practical method to select the optimum value.

III. Patch-based Regularization

A. Definition

We propose to use a patch associated with each pixel in calculating the image roughness

between neighboring pixels j and k. Here a patch of a pixel is defined as a square region

centered at that pixel and all patches in an image share the same size. The new roughness

function based on patches is defined as

(8)

where fj (x) is a feature vector consisting of intensity values of all pixels in the patch

centered at pixel j. The patch-based distance between pixel j and k is measured by

(9)

where jl denotes the l-th pixel in the patch of pixel j and kl denotes the l-th pixel in the patch

of pixel k, both having the same geometric relationship with respect to their center pixels. nl

is the total number of pixels in a patch. hl is a positive weighting factor equal to the

normalized inverse spatial distance between pixel jl and pixel j with

(10)

The pixel-based regularization in (4) can be considered as a special case of the patch-based

regularization with nl = 1.

To obtain a convex penalized likelihood function, we require the penalty functions to satisfy

the following conditions:

1. The function ψ(t) is symmetric and differentiable everywhere;

2. The first-order derivative

(11)

is nondecreasing (and hence ψ(t) is convex);

3. The curvature
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(12)

is nonincreasing for t ≥ 0, and 0 < wψ(0) < +∞.

The above conditions are the same as those for the pixel-based convex regularizations [16],

[20]. The penalty ψ(||fj (x) − fk (x)||h) is convex with respect to x because it is a

nondecreasing convex function of the convex norm function ||fj (x) − fk (x)||h of x ( [21],

p84). Therefore, the patch-based penalty given in (8) is convex for any ψ(t) that satisfies the

above conditions. Examples of ψ(t) include the quadratic function, Huber function, Lange

function, and hyperbola function. Note that when ψ(t) is the quadratic function, the patch-

based regularization is equivalent to the pixel-based quadratic regularization with a scaled β.

B. Relation to other work

Recently, nonlocal regularization has been proposed for image restoration, motivated by the

work of nonlocal means filter [22], [23]. Buades et al [2] proposed the regularization model

(13)

where x̃ is a reference image and N Lj (x|x̃) is the nonlocal means defined by

(14)

The weight function wjk (x̃) is often calculated on the reference image x̃ using patches

(15)

where δ is a filter parameter.

Kindermann et al [5] proposed a general form for nonlocal regularization

(16)

in which nonlocal means filters can be interpreted as one step of fixed-point iteration when

the Yaroslavsky function ψ(t) = 1 − exp(−t2) and patch-based distance are employed. Note

that the regularization form defined in (16) is quite similar to the penalty function given in

(4) but with the weights calculated based on a reference image.
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A major problem with the nonlocal Yaroslavsky functional is that the corresponding

optimization problem is hard to solve because the objective function is nonconvex. Inspired

by the spectral graph, Gilboa and Osher [3] proposed to use the quadratic function ψ(t) = t2

to keep the objective function convex. Later, nonlocal total variation (TV) regularization

was proposed for better preservation of structures than the nonlocal quadratic regularization

[4], [6]. A general form of the penalty function is given by Elmoataz et al [8],

(17)

with p = 1 for the nonlocal TV regularization. Note that (17) reduces to the regular TV

penalty [24] when wjk (x̃) = 1 and the neighboring pixels consist of the first-order nearest

neighbors. The nonlocal TV model has been applied to image reconstruction for computed

tomography (CT) [12] and for MRI [11].

All the regularization models stated above rely on the weights wjk (x̃) that are calculated on a

reference image x̃. The reference image is usually required to be as close as possible to the

true image x so that they share the same structures. This might not be a problem for image

denoising because a noisy image can be used directly as the reference image. However, for

tomographic image reconstruction, a good reference image is not readily available before

image reconstruction, although people have used filtered backprojection reconstruction as

the reference image [12].

Alternatively, the weights in nonlocal regularizations can be computed on the unknown

image x and estimated simultaneously to avoid the need of a prior image x̃ and to improve

the estimation precision [7], [9]. However, this leads to a complicated nonconvex

optimization problem. Empirical iterative implementations are often used, which calculate

the weights based on the current image estimate and then update the image assuming that the

weights are fixed constants [6], [9]–[11]. However, no proof of global convergence has been

established for this type of algorithms.

It is worth noting that the weights in (16) can also be determined without using patches and

it has long history in Bayesian image reconstruction. One early example is the line site

model where the weights were adaptively determined to preserve edges [25]–[27].

Anatomical CT or MRI images can also be used to define the line sites in PET or SPECT

image reconstruction [28]–[31]. Another example is the level set based regularization which

estimates the weights using nonlocal boundary information [32]. Limitations of these

approaches include either the challenging nonconvex optimization or the requirement of a

perfectly aligned anatomical image.

In comparison, the regularization model presented in this paper has a convex objective

function and does not require a prior reference image. In the next section, we shall present a

deterministic optimization algorithm that guarantees global convergence.
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IV. Proposed Optimization Transfer Algorithm

A. Optimization transfer

We develop an optimization transfer algorithm for the PL reconstruction using the patch-

based regularization. The basic idea of optimization transfer [33] is to construct a surrogate

function Q(x; xn) of the image x at the nth iteration which minorizes the original objective

function Φ(x) by satisfying the following two conditions:

(18)

(19)

where ∇ denotes the gradient with respect to x. Then the maximization of Φ(x) is transferred

into maximizing Q(x; xn)

(20)

The surrogate function Q(x; xn) is usually easier to optimize than the original objective

function by design. The new update xn+1 increases the original penalized likelihood

monotonically

(21)

and this minorization-maximization procedure guarantees the convergence. The well-known

expectation maximization (EM) algorithm [34] is a special case of the optimization transfer

algorithms [33].

B. Likelihood surrogate

For the log-likelihood function, we borrow the surrogate function from the ML EM

(expectation maximization) algorithm [33], [34]:

(22)

where

(23)

and  is given by
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(24)

where the expected projection at iteration n is

(25)

From the derivation of the ML EM algorithm [33], we know that the surrogate function

satisfies

(26)

(27)

C. Penalty surrogate

For a penalty function ψ(t) satisfying the three conditions described in Section III-A, the

following quadratic surrogate function can be constructed [16], [20]:

(28)

where ψ̇(t) and wψ(t) are defined in Eq. (11) and (12), respectively, and

 is a function of the known estimate tn but is independent of

the unknown t. Replacing t and tn in (28) by t = ||fj (x) − fk (x)||h and tn = ||fj (xn) − fk (xn)||h,

we get the following surrogate function  at iteration n for the patch-based penalty

term U (x) in (8):

(29)

where the term related to c(tn) is omitted and

(30)

It is easy to show

(31)

(32)
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By expanding the quadratic term  in (29) for each neighborhood and

combining together the j – k pairs from different neighborhoods, the surrogate  can

be simplified to

(33)

where

(34)

with jl and kl denoting the l-th pixels in the patch fj (x) and patch fk (x), respectively.

Equation (33) is in the same form as the nonlocal quadratic regularization, but with the

weight wjk (xn) adaptively determined by the penalty function and the current estimate at

each iteration.

To obtain a closed-form update equation, we derive a separable surrogate function for the

surrogate  using the De Pierro’s decoupling rule [35]:

(35)

Applying the above inequality to Eq. (33) and combining all the terms involving xj, we

obtain the following separable surrogate function 

(36)

where the pixel-wise weight  is

(37)

and the intermediate image  is calculated by

(38)

which corresponds to a local smoothing operation. A constant that is independent of x has

been omitted in . It is easy to prove that
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(39)

(40)

D. Proposed algorithm

The optimization of the original objective function Φ(x) is now transferred to the

optimization of the combined surrogate function. The image is updated by

(41)

which can be performed pixel-by-pixel

(42)

(43)

where

(44)

Solving the quadratic equation derived from the Karush-Kuhn-Tucker (KKT) condition, we

get the PL image estimate at iteration (n + 1),

(45)

The above update equation reduces to the ML-EM formula when β = 0.

This optimization transfer algorithm guarantees a monotonic convergence to the global

solution when the penalty function satisfies the three conditions given in Section III-A. The

whole algorithm is summarized in Algorithm table 1.

E. Comparison with pixel-based regularization

The proposed algorithm can be applied to both patch-based regularization (nl > 1) and pixel-

based regularization (nl = 1). The only difference between pixel-based regularization and

patch-based regularization is the value of the weight wjk (x). We use a noise-free step-edge

image and a noisy image shown in figure 1 to demonstrate the benefit of the patch-based

regularization. We pick an edge pixel as the jth pixel and compute the weights wjk (x ̂) for the
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pixels in a 7 × 7 neighborhood of pixel j, where x̂ is either the noise-free step-edge image or

the noisy image. The Lange function is used here as the penalty function, with the curvature

. The left column of figure 2 shows the images of the pixel-based weights. For

the noise free image, the resulting weights are as expected with the pixels on the right hand

side of the image having higher weights than those on the left hand side. However, weights

are unstable for the noisy image and are also sensitive to the hyper-parameter δ that controls

the shape of penalty function. For comparison, the weights calculated using 3 × 3 patches

are shown in the right column of figure 2. Higher values are concentrated along the step

edge because only these pixels share a similar patch pattern to the central pixel. The weights

are fairly robust to the image noise and insensitive to the change of δ value.

The robustness of the patch-based weight comes from two factors: (1) the patch distance is

computed based on nl pixels, so it is less sensitive to noise than pixel distance; (2) the

weight wjk (xn) in (34) is a spatial average of . We expect that the patch-

regularization will result in more robust image reconstruction.

While the weight {wjk (x)} given in (34) is derived for the optimization transfer algorithm, it

plays a critical role in preserving edges at convergence. To illustrate this point, let x* be the

solution at convergence. The KKT condition states that x* must satisfy

(46)

Substituting the matched gradient condition (32) into the above equation results in

(47)

For each pixel j, we have

(48)

Equation (48) shows that the penalty of the pixel intensity difference between pixel j and

pixel k is weighted by wjk (x*) at convergence. Therefore, the patch-based regularization can

preserve edges by adaptively computing the weighting factor wjk (x*), although the edges

may not be as sharp as in pixel-based regularization because of the averaging operation in

(34). The quadratic regularization does not preserve edges because the corresponding wjk

(x*) is always unity.

V. Computer Simulation

A. Setup

Computer simulations were conducted to validate the proposed patch-based regularization

algorithm. We simulated a GE Discovery ST PET scanner in 2D mode [36]. The scanner has

420 crystals per ring with each crystal having a cross section of 6.3 × 6.3 mm2. A brain
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phantom (Fig. 3(a)) was used to simulate PET tracer distribution in the gray matter, white

matter and a tumor. The noise-free image was forward projected to generate a noise-free

sinogram. A uniform background of 25% total true coincidences was added to simulate the

random and scatter fraction in 2D [36]. Independent Poisson noise was then introduced to

generate 100 realizations, each having an expected total number of events equal to 500k.

Images were reconstructed by the ML EM algorithm and the penalized likelihood method

with three different regularizations: the quadratic penalty, the pixel-based Lange penalty,

and the proposed patch-based Lange penalty. The noisefree background sinogram was

included in the forward model (2) for scatter and random correction. Two hundred iterations

were used in each reconstruction. All images were represented by 111 × 111 pixels with a

pixel size of 3 × 3 mm2. The patch size and the neighborhood size were both 3 × 3 pixels

unless noted otherwise.

B. Comparison with pixel-based regularizations

The images reconstructed by different approaches are shown in Fig. 3(b)–(i) and the

corresponding intensity profiles along the line through the tumor are shown in Fig. 4. Fig.

3(b) and (c) show the images reconstructed by the ML-EM with 20 iterations and the PL

reconstruction using the quadratic regularization with β = 0.1, respectively. Both methods

oversmoothed the tumor in order to control the noise in the brain region. Figures 3(d)–(f)

show the images reconstructed using the pixel-based edge-preserving Lange regularization

with β = 0.2 but different hyper-parameter values δ = 0.1, 0.01, 0.001. Edges of the grey

matter and tumor are preserved in the reconstructions. However, the resulting images are

sensitive to the value of the hyper-parameter δ. In comparison, figures 3(g)–(i) show the

reconstructions using the patch-based Lange regularization with the same set of parameters.

The tumor target is well preserved and the results are insensitive to the change of the hyper-

parameter δ. This is because that the patch distance has a much smaller variance than the

pixel distance and the spatial average in the weight calculation substantially reduces the

chance of generating isolated noisy pixels. As long as δ is less than the minimum patch

distance of true edges, the final reconstruction is insensitive to the exact value of δ. This

greatly simplifies the selection of the hyperparameter in the edge-preserving regularization.

Quantitatively we compare the ensemble mean of tumor contrast recovery coefficient (CRC)

versus the standard deviation of background noise as a function of the smoothing parameter

β between the quadratic regularization and patch regularization in figure 5. The CRC of the

ith reconstructed image is calculated by

(49)

where CR0 = 3 is the true contrast, S̄i denotes the mean activity of the tumor region and B̄i
denotes the mean activity of the white matter region (background). Here the true tumor and

white matter regions are used. The results clearly indicate that the patch-based regularization

can achieve higher contrast recovery (better performance) than the quadratic regularization

at any given background noise level.
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The comparison between the patch-based regularization and the pixel-based Lange

regularization is plotted in figure 6. Each group contains four curves corresponding to

different hyper-parameter values δ = 1.0, 0.1, 0.01, 0.0001. As δ changes, the performance

of the pixel-based Lange regularization changes dramatically, indicating the hyper-

parameter δ has to be selected carefully for the pixel-based regularization. In comparison,

the performance of the patch-based Lange regularization is insensitive to the change of δ

value and achieves higher CRC at any given background SD level, which demonstrates that

the patch-based regularization is more robust than the pixel-based regularization for image

reconstruction.

C. Effects of the neighborhood size and patch size

The computational cost of the patch regularization depends heavily on the patch size and

neighborhood size. For fast computation, smaller patch and neighborhood are preferred. In

addition, large patches may not be able to identify small image features and hence cannot

preserve the corresponding edges. Here we study the effect of the neighborhood size and

patch size on image quality.

Figure 7 shows the tumor contrast recovery versus the background SD curves for five

different neighborhood sizes (3×3, 5×5, 7×7, 9×9, and 11×11). The patch size was 3×3 and δ

= 0.01. The 3 ×3 neighborhood was found to have the best performance amongst all the

cases studied, except at very low standard deviation levels. The loss of performance with

large neighborhood window can be due to the accumulation of small weights of non-similar

patches, which biases the results [37].

The effect of the patch size on the tumor contrast recovery is shown in Figure 8. The

neighborhood window was set to 3×3 and the hyper-parameter δ was 0.01. Except for the

patch size H = 1, which reduces to the pixel-based regularization, there are little difference

in the performance among the other three patch sizes (3 × 3, 5 × 5, 7 × 7).

The effects of neighborhood window size and patch size were also investigated at a lower

count level of 150k events and 25% background. The results are shown in Figure 9. Except

with an increase of background noise, the plots are similar to those at 500k count level.

Overall, 3 × 3 pixels appears to be a good choice for the neighborhood size and patch size.

VI. Application to Real 3D Data

We applied the proposed algorithm to a 3D nonhuman primate data set acquired on a

microPET P4 scanner [38]. The radiotracer is 11C-SCH 23390 which binds to dopamine D1

receptors in the brain [39]. The total number of prompt events is 3.6M and number of

delayed events is 1.3M. Randoms were pre-corrected by the delayed window technique. A

transmission scan was performed to estimate the attenuation map. Scatter sinogram was

estimated by using the single-scatter simulation method [40]. The estimated scatter fraction

was 24%. The estimated scatter sinogram and attenuation factors were incorporated into the

forward model of the PL reconstruction. All images were reconstructed using an array of

128 ×128 ×63 voxels with a voxel size of 1.0 × 1.0 ×1.2 mm3.
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Figure 10 shows the images reconstructed using the pixel-based quadratic regularization and

the patch-based Lange regularization. The pixel-based Lange regularization was not shown

here because the result highly depends on the hyper-parameter δ. Within each group, the left

column shows the transverse, coronal and sagittal slices through the striatum regions, while

the right column shows the slices through the eye glands. These regions were chosen

because of their high uptake of the PET tracer. In the patch regularization, both the

neighborhood and patch size were 3 × 3 × 3 voxels. The hyper-parameter δ in the Lange

function was set to 0.001. The regularization parameters were β = 2 × 104 for the quadratic

regularization and β = 1 × 104 for the patch regularization. They were chosen to match the

background noise level.

Uptakes in regions of interest were quantified using the AMIDE software [41] to compare

the quadratic regularization and the patch regularization. Ten spherical ROIs of 8 mm in

diameter were randomly placed in the background regions of the brain as shown in figure

11. Another four ROIs were drawn in the striatum and gland regions, which have higher

uptake. The mean and standard deviation of the activities inside each ROI are shown in

figure 12. As expected, the two regularization methods have similar quantitative results for

the background ROIs. However, the patch regularization produces higher uptake in the

striatum and gland regions than the quadratic regularization. In particular, the average

intensity of the two gland ROIs (3 and 4) obtained by the patch regularization is more than

30% higher than that obtained by the quadratic regularization. The higher contrast recovery

of the patch regularization is consistent with the expectation and simulation results.

However, because no ground truth is available, we cannot perform any conclusive

comparison for the real data.

VII. Conclusion

In this paper, we have proposed a patch-based regularization method for PET image

reconstruction and developed an optimization algorithm to find the penalized likelihood

solution. The proposed algorithm is validated by computer simulations. The results show

that the patch-based regularization can achieve better quantitative performance than the

commonly used quadratic regularization and the traditional pixel-based non-quadratic

regularization. The application to the real primate brain data also showed promising results.

The full benefit of the proposed algorithm for real PET studies will be evaluated in future.
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Fig. 1.
The noise-free and noisy edge images. Pixel j is marked by ‘×’.
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Fig. 2.
Images of the weights wjk in the pixel-based regularization and patch-based regularization

with different δ values for the noise-free and noisy step images shown in Fig. 1. The jth

pixel is marked by ‘×’.
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Fig. 3.
(a) The original phantom image with a marker line going through the tumor spot

horizontally. (b–i) Reconstructed images by the ML-EM with 20 iterations (b), quadratic

regularization with β = 0.1 (c), pixel-based Lange regularization (d–f), and patch-based

Lange regularization (g–i). The smoothing regularization parameter β is 0.2 for the pixel and

patch Lange regularizations.
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Fig. 4.
Intensity profiles along the horizontal line through the tumor as indicated in Fig. 3(a). The

reconstruction methods and corresponding parameters are the MLEM algorithm with 20

iterations, the quadratic regularization (β = 0.1), the pixel Lange regularization (β = 0.2, δ =

0.01), and the patch Lange regularization (β = 0.2, δ = 0.01).

Wang and Qi Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5.
The tumor contrast recovery versus background standard deviation curves for the quadratic

regularization and patch-based regularization. The curves are plotted by varying the

regularization parameter β.
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Fig. 6.
The tumor contrast recovery versus background standard deviation curves of the pixel-based

(dash lines) and patch-based (solid lines) Lange regularizations. The curves are plotted by

varying the smoothing parameter β for different hyper-parameter δ values: δ = 1.0 (+),δ =

0.1 (◇), δ = 0.01 (*),δ = 0.001 (○).
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Fig. 7.
The tumor contrast recovery versus background standard deviation curves of the patch

regularization with different neighborhood sizes. Curves are plotted by varying the

regularization parameter β.
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Fig. 8.
The tumor contrast recovery versus background standard deviation curves of the patch

regularization with different patch sizes. Curves are plotted by varying the regularization

parameter β.
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Fig. 9.
Effect of (a) neighborhood window size W and (b) patch size H on the tumor contrast

recovery versus background noise curve of the patch-based regularization at 150k count

level.
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Fig. 10.
Reconstructed images of the real 3D primate data using (a) the quadratic regularization and

(b) the patch regularization. Transverse, coronal and sagittal slices are shown in row 1, 2 and

3, respectively. The left column in (a) and (b) shows the slices through the striatum regions

and the right column shows the slices through the gland regions.
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Fig. 11.
The ten spherical ROIs drawn in the brain background.
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Fig. 12.
Comparison of the mean and standard deviation of the activities inside (a) the background

ROIs and (b) the high-uptake ROIs.
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Algorithm 1

The optimization transfer algorithm for PET image reconstruction using patch regularization

1: Initialize parameters: maximum iteration number MaxIter, regularization parameter β;

2:

Initialize image: 

3: for n = 1 to MaxIter do

4:  EM image update from sinogram {yi}:

  

 where pj = Σipij and  is the expected projection calculated by (25);

5:  Image smoothing:

  

 where the weight wjk (xn) is calculated by (34) and 

6:  Pixel-by-pixel image fusion:

  

 where  is defined by Eq. (44).

7: end for

8: return The image estimate x̂n +1
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