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Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely
recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes,
such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in
various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the
atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may
directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for
example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury.
In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative
activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In
this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in
the cardiovascular context.

Abbreviations
CVD, cardiovascular disease; ECs, endothelial cells; LDL, low-density lipoproteins; ROS, reactive oxygen species; VSMC,
vascular smooth muscle cell
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Introduction

Oxidative stress in biological systems is defined as an imbal-
ance between the generation of reactive oxygen species (ROS)
and antioxidant defence mechanisms (Dalle-Donne et al.,
2006; Giustarini et al., 2009). In contrast to the physiological
condition, during which ROS are only present at moderate
levels and play an important role as messengers in redox
signalling, in pathological conditions, when the physiologi-
cal redox state of cells is disturbed, ROS can severely affect
cellular signalling and function. Indeed, ROS which are not
neutralized or scavenged by antioxidant molecules, such as
GSH or superoxide dismutase, may react with nucleic acids
and proteins and thereby alter the biochemical and physical
properties of these important cellular components. Moreover,
exposure of lipids to free radicals induces a non-enzymatic
reaction cascade resulting in an increased formation of bio-
active molecules named isoprostanes. Consequently, sys-
temic isoprostane formation is significantly increased in a
variety of pathological processes associated with oxidative
stress, for example, cancer as well as, cardiovascular, meta-
bolic and neurodegenerative diseases, and isoprostanes are
increasingly recognized not only as markers of oxidative
stress but also as mediators of disease progression (Praticò
et al., 1997; Reilly et al., 1998; Davì et al., 1999; Minuz et al.,
2002; Vassalle et al., 2003; Schwedhelm et al., 2004, Xia et al.,
2005; Montuschi et al., 2007; Schwedhelm et al., 2010;
Barocas et al., 2011; Davies and Roberts, 2011; Khadem-
Ansari et al., 2011; Montine et al., 2011; Sbardella et al.,
2013).

Isoprostanes are PG-like compounds derived from lipid
peroxidation of esterified unsaturated fatty acids, for
example, arachidonic acid, which are primarily generated in
a free radical-dependent and non-enzymatic fashion
(Figure 1; nomenclature follows Alexander et al., 2013a). First
being described in 1976 as a product of the autoxidation of
polyunsaturated fatty acids (PUFA; Pryor et al., 1976), free
radical-induced formation of isoprostanes under conditions
of oxidative stress has been demonstrated in the 1990s in
vitro as well as in vivo (Morrow et al., 1990a,b; 1992). In the
following years, the biological activities of isoprostanes
have been intensely studied, demonstrating, that is, an
isoprostane-mediated modification of platelet aggregation
and vascular tone (Yin et al., 1994; Kromer and Tippins,
1996; Möbert et al., 1997; Minuz et al., 1998). These
isoprostane-induced effects are mediated via the prostanoid
TP receptor, thus pointing to a predominant role of this
receptor in isoprostane signal transduction (receptor nomen-
clature follows Alexander et al., 2013b). Moreover, the close
isoprostane–TP receptor interaction may explain why iso-
prostane levels have been shown to correlate in clinical trials
with the extent and severity of, for example, cardiovascular
disease (CVD), and why isoprostanes may directly affect
prognosis of various pathological processes (Vassalle et al.,
2003; Schwedhelm et al., 2004; Di Minno et al., 2012). In this
review, we will summarize the current understanding of iso-
prostane formation, biochemistry and (patho) physiology. In
addition, we will give an overview of the TP receptor receptor
as the main target of isoprostane-mediated signalling in the
cardiovascular system.

Formation of isoprostanes

In contrast to enzymatically formed prostanoids, such as
PGE2 or TxA2, isoprostanes are generated in vitro as well as in
vivo, primarily independent of COX via free radical-induced
peroxidation of unsaturated fatty acids (Figure 1; Morrow
et al., 1990a). Under physiological conditions, these PG-like
compounds can only be detected as esterified at very low
concentrations in the nanomolar range or as free compounds
in the picomolar range in biological fluids, for example,
plasma and urine (Morrow et al., 1990b). In conditions of
oxidative stress, the burst of free radical formation leads to a
significant increase in isoprostane levels (Morrow et al.,
1990b; 1992). For instance, systemic application of CCl4, a
strong inducer of free radical formation, in a rat model of
hepatic failure, resulted in a more than 100-fold increase in
hepatic isoprostane formation as compared with untreated
animals (Morrow et al., 1992). This effect was even more
pronounced in rats treated simultaneously with diquat and
CCl4 (Morrow et al., 1990b). In contrast, non-selective COX
inhibitors do not significantly alter plasma isoprostane levels,

A

B

Figure 1
(A) Enzymatic and non-enzymatic formation of PGs and isoprostanes.
(B) Non-enzymatic formation of isoprostanes exemplified for 8-iso-
PGF2α (15-F2t-IsoP, iPF2α -III) and 5-F2t-IsoP (iPF2α -IV). Arachi-
donic acid (AA) is released from phospholipids by PLA2 and
subsequently converted to PGs by COX. Esterified AA is converted
non-enzymatically by ROS to phospholipid-bound isoprostanes. The
latter being subsequently released as non-esterified congeners.
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thereby supporting the notion of isoprostanes being primar-
ily a product of non-enzymatic lipid modifications (Morrow
et al., 1990b). In addition, simple storage of plasma from
normal volunteers resulted in a time-dependent ex vivo for-
mation of isoprostanes, underlining the predominant role of
enzyme-independent lipid peroxidation in the formation
of isoprostanes (Morrow et al., 1990a). Nevertheless, as
described afterwards in more detail, COX, in particular the
inducible isoform COX-2, may contribute to the generation
of isoprostanes in monocytes and in vascular cells in the
pulmonary circulation during pathological situations (Praticó
and FitzGerald, 1996; Delannoy et al., 2010). In contrast to
F2-isoprostanes, D2/E2-isoprostanes are hardly detectable
under physiological conditions (Morrow et al., 1994),
whereas after induction of lipid peroxidation, the concentra-
tions of D2/E2-isoprostane are increased in the circulation.
These data emphasize the role of free radicals and oxidative
stress in the formation of isoprostanes and indicate that lipid
peroxidation is able to give rise to a variety of heterogeneous
yet biologically active isoprostanes (Morrow et al., 1994).

In 1976, Pryor et al. first described the formation of
PG-like compounds during autoxidation of PUFA (Pryor et al.,
1976). In the 1990s, Morrow et al. could show the formation
of isoprostanes from unstable endoperoxide intermediates
in vitro as well as in vivo (Morrow et al., 1990a; 1992). As
shown in Figure 1, formation of F2-isoprostanes, a group of 64
compounds isomeric to COX-derived PGF2α, was described
through intermediates, which undergo endo-cyclization
to yield PGG2-like bicyclic endoperoxides, which are then
further reduced to form F-ring isoprostanes (Morrow et al.,
1990a). The rearrangement of endoperoxide intermediates
results in the formation of D2/E2-isoprostanes (Morrow et al.,
1994; Chen et al., 1999a). D2/E2-isoprostanes are formed in
competition to F2-isoprostanes and the depletion of reducing
agents such as α-tocopherol and ascorbic acid favours the
formation of D2/E2-isoprostanes over that of F2-isoprostanes
(Montine et al., 2003). D2/E2-isoprostanes can undergo
further rearrangements generating A/J-isoprostanes, which
are known as cyclopentenone isoprostanes (Chen et al.,
1999a,b; Brooks et al., 2008; Hardy et al., 2011). Interestingly,
degradation of A-isoprostane derivatives has been shown to
occur during physiological conditions and has been demon-
strated to give rise to biologically active intermediates
(Benndorf et al., 2008). Furthermore, the reduction of endop-
eroxide intermediates from docosahexanoic acid leads to the
formation of so-called neuroprostanes in the nervous system
(Roberts et al., 1998).

In general, isoprostanes are formed by two routes of
lipid peroxidation consisting of the endoperoxide and the
dioxetane/endoperoxide mechanism. However, the contribu-
tion of the latter route to the generation of isoprostanes in
vivo remains unclear (Montuschi et al., 2007). The isoprostane
pathway leading to the generation of F2-isoprostanes starts
with the formation of three arachidonoyl radicals followed by
the formation of four peroxyl radical isomers which subse-
quently undergo endo cyclization (Morrow, 2006). Four
bicycloendoperoxide regioisomers are then reduced to
generate F2-isoprostanes (Morrow, 2006). In the dioxetane/
endoperoxide route, the formation of the same regioisomers
can be observed, but in this cascade, the second and not the
first oxygen molecule is incorporated into the PGF ring

(Lawson et al., 1999). In contrast to PGs, bioactive com-
pounds generated by COX, isoprostanes have cis- or trans-
stereochemistry at the five-membered ring junction as
compared to the exclusive trans-ring junction in PGs
(Figure 1). Unlike PGs, which are generated from free arachi-
donic acid, isoprostanes are formed in situ on arachidonoyl-
containing lipids and then subsequently released in free form
into the circulation via an enzyme-dependent mechanism
(Morrow et al., 1992; 1994). This process is dependent on the
activity of PLA2 because an incubation of lipid extracts with
this enzyme leads to a release of free F2-isoprostanes (Morrow
et al., 1992). Furthermore, both plasma and intracellular
platelet-activating factor (PAF) acetylhydrolase are able to
hydrolyse phospholipids to release esterified F2-isoprostanes
increasing free F2-isoprostane concentrations (Stafforini et al.,
2006). However, little is known regarding the mechanisms
responsible for the extrusion or liberation of isoprostanes
from the intracellular space to the extracellular milieu, a
process that is likely to significantly affect auto-, para- and
endocrine activities of intracellularly formed isoprostanes.
Having reached the systemic circulation, isoprostanes, such
as 8-iso-PGF2α, are partly metabolized by mechanisms involv-
ing, for example, peroxisomal β-oxidation (Schwedhelm
et al., 2000). Moreover, direct conjugation to GSH has been
described for cyclopentenone isoprostanes, such as 15-A2t-
isoprostane, in HepG2 cells indicating that phase II metabo-
lism may also play a role in isoprostane metabolism (Milne
et al., 2004). Finally, isoprostanes and isoprostane metabolites
are freely filtered in the glomerular apparatus of the kidneys
and excreted in urine.

Contribution of enzymatic processes
to isoprostane formation

As mentioned previously, enzymatic activity appears to at
least partially contribute to the generation of isoprostanes. In
human monocytes, LPS induced the formation of PGE2 and
the isoprostane 8-iso-PGF2α in a time- and dose-dependent
manner, accompanied with the induction of COX-2 (PGHS-
2). Incubation with the selective inhibitor of COX-2,
L-745,337, decreased the production of PGE2 and 8-iso-PGF2α,
indicating that the induction of COX-2 in monocytes is
associated with an increased production of isoprostanes
(Patrignani et al., 1996). The role of COX-2 in the formation
of isoprostanes has been confirmed also by other groups.
Stimulation of human monocytes with LPS induced the
expression of this enzyme and was accompanied by an
increased formation of PGE2, TxB2 and 8-iso-PGF2α (Praticó
and FitzGerald, 1996). Furthermore, inhibition of COX-2 as
well as pretreatment with superoxide dismutase suppressed
the formation of 8-iso-PGF2α, indicating that monocytes may
form bioactive 8-iso-PGF2α in an enzyme- and free radical-
catalysed pathway (Praticó and FitzGerald, 1996). As men-
tioned above, COX is the first enzyme catalysing the
formation of traditional PGs from arachidonic acid. While
COX-1 is expressed constitutively in a variety of different
cell types, expression of COX-2 is primarily induced via
inflammatory stimuli (Grosser et al., 2010). Human vascular
endothelial cells (ECs) treated with pro-inflammatory
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cytokines, such as IL-1β or TNF-α, showed a significantly
increased release of 8-iso-PGF2α, which was blocked by COX-1
and COX-2 inhibitors (Jourdan et al., 1999). In addition,
superoxide-producing enzyme xanthine oxidase elevated the
release of isoprostanes in these cells, thereby emphasizing the
role of oxygen-derived radicals in isoprostane formation
(Jourdan et al., 1999). Under hypoxic conditions, an
up-regulation of COX-2 in murine pulmonary arteries has
been described, which was accompanied by an increase in
8-iso-PGF2α release, suggesting a putative role of COX-2 in
the generation of isoprostanes under hypoxic conditions
(Delannoy et al., 2010). Furthermore, in a model of renal
ischaemia reperfusion injury, accumulation of 8-iso-PGF2α
was successfully blocked by administration of acetylsalicylic
acid, thereby indicating that COX-dependent generation of
isoprostanes may play a role under ischemic conditions
(Favreau et al., 2004). In human platelets, a minor role for
COX-1 in the production of 8-iso-PGF2α has been shown
(Pratico et al., 1995; Pignatelli et al., 2011). In this context, it
is proposed that platelet 8-iso-PGF2α formation is mainly
associated with NADPH oxidase-dependent superoxide
release and only to a minor extent derives from COX-1 acti-
vation (Pratico et al., 1995; Pignatelli et al., 2011). In addi-
tion, NOS pathways may be involved in the generation and
release of isoprostanes (Jourdan et al., 1997). Interestingly,
GSH, one of the most important and abundant intracellular
antioxidants, has been shown to promote the formation of
oxidative stress markers like malondialdehyde and 8-iso-
PGF2α from arachidonic acid in a COX-dependent way, indi-
cating that antioxidants may have a paradoxical role in the
generation of isoprostanes (Tsikas et al., 2012). In summary,
isoprostanes are predominantly generated in the free radical-
dependent process of lipid peroxidation, but enzymatic pro-
cesses may also contribute to the formation of these lipid
mediators especially in the context of hypoxia or oxidative
burst. Nevertheless, enzyme-dependent isoprostane genera-
tion should be analysed in more detail to help to fully eluci-
date the complex process of isoprostane formation.

Nomenclature of isoprostanes

Currently, two nomenclature systems for isoprostanes are
used (Rokach et al., 1997; Taber et al., 1997). The Taber/
Roberts nomenclature system has been approved by the
IUPAC and Eicosanoid Nomenclature Committee and follows
the normal PG conventions. In this system, the different
regioisomers are designated by the carbon number of the side
chain where the hydroxyl is located, with the carboxyl carbon
designated as C-1. Based on this nomenclature, four isopros-
tane regioisomer classes derived from arachidonic acid are
then denoted as either 5, 8, 12 or 15 series (Taber et al., 1997).
The abbreviation 2t in the prominent isoprostane (IsoP)
15-F2t-IsoP refers to the number of double bonds (two) and the
trans-orientation of the side chains at the five-membered ring.
15-F2t-IsoP is also called 8-iso-PGF2α because the chemical
structure of this molecule differs from COX-derived PGF2α
only in the stereochemistry of the carbon atom 8. The second
nomenclature system was evolved by Rokach et al. creating
different regioisomer classes based on the ω-carbon being
attacked to form the arachidonoyl radical (Rokach et al.,

1997). Free radical attack at carbon ω-8, −11 and −14 leads to
the formation of regioisomers type III, IV and VI respectively.
The four classes of F2-isoprostanes are designated as type III,
IV, V and VI, whereas the oxidation of ω-3 lipids induces the
formation of compounds starting with type I.

TP receptors as important mediators
of isoprostane-induced
signal transduction

As mentioned previously, isoprostanes most likely exert their
effects exclusively via activation of the TP receptor (Minuz
et al., 1998; Huber et al., 2003; Tang et al., 2005; Benndorf
et al., 2008). Thus, the aim of this section is to give an overview
of the TP receptor and its main ligand, TxA2, and to briefly
outline the role of the TP receptor in the pathogenesis of CVD.

TxA2 is a PG derivative with chemical characteristics of
prostanoids but structural differences especially in the ring
structure (heterocyclic oxane ring structure vs. 5-carbon
ring). It is a short-lived but highly bioactive molecule that
mediates its effects via activation of the heptahelical
G-protein-coupled TP receptor. TxA2 acts as an autacoid in
autocrine or paracrine systems and is involved in a wide
variety of physiological and pathophysiological processes,
such as vasospasm, hypertension, thrombosis, angiogenesis,
inflammation, atherogenesis and myocardial infarction
(Palmer et al., 1970; Needleman et al., 1976; Wilson et al.,
2005; Nakahata, 2008). Being an unstable intermediate in
arachidonate metabolism with a chemical half-life of about
30 s, TxA2 was detected in the conversion of PGG2 into
inactive TxB2 in platelets (Hamberg et al., 1975). In a first
biosynthetic step, PLA2 catalyses the release of arachidonic
acid from membrane phospholipids, which is further con-
verted via COX into the PG endoperoxides PGG2 and PGH2

(Daniel et al., 1999; Nakahata, 2008). Via Tx synthase, an
enzyme abundantly expressed in a wide variety of different
tissues (Sun et al., 1977), these endoperoxides are then further
converted into TxA2 and subsequently non-enzymatically
degrade into biologically inactive TxB2 (Needleman et al.,
1976).

The TP receptor gene is located at 19p13.3 of human
chromosome, spans over 15 kb and contains three exons
divided by two introns (Nüsing et al., 1993). The TP receptor
protein is widely expressed in different organs and localized
on both cell membranes and intracellular structures
(Armstrong et al., 1983; Hedberg et al., 1989; Borg et al., 1994;
Bowling et al., 1994; Raychowdhury et al., 1994; Fennekohl
et al., 1999; Muja et al., 2001). Based on the sequence of the
purified protein from human platelets, a GPCR human cDNA
was cloned from human placenta, consisting of seven trans-
membrane spanning regions, three extracellular and three
intracellular loops (Ushikubi et al., 1989; Hirata et al., 1991).
In mice and rats, TP receptor analogues have been described
that are similar to the human TP receptor from placenta
(TP-α; Namba et al., 1992). In addition to the TP receptor-α-
isoform, a second isoform has been described in ECs, called
TP receptor-β (Raychowdhury et al., 1994). TP receptor-β
results from alternative splicing of the cytoplasmic carboxyl
tail (Raychowdhury et al., 1994). In most cells and tissues,
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both TP receptor isoforms are expressed, for instance, in vas-
cular smooth muscle cells. However, in most cells, the TP
receptor-α dominates over TP receptor-β expression, probably
through pronounced constitutive and agonist-induced endo-
cytosis of the TP receptor-β and increased subsequent degra-
dation of this TP receptor isoform by the proteasome (Miggin
and Kinsella, 1998; Sasaki et al., 2007). In HUVECs approxi-
mately sixfold greater mRNA levels of TP receptor-α than TP
receptor-β has been found (Miggin and Kinsella, 1998). Both
TP receptor isoforms are able to form homo- and heterodi-
mers via the formation of disulfide bonds (Laroche et al.,
2005). Interestingly, formation of (hetero) oligomers of TP
receptors is an agonist-independent process regulating both
TP receptor-α internalization and TP receptor-mediated sig-
nalling (Laroche et al., 2005; Sasaki et al., 2006). In TP recep-
tors, as in many other members of the eicosanoid receptor
family, the seventh transmembrane domain is highly critical
for ligand binding (Funk et al., 1993). Point mutations in this
domain inhibited the binding of the TP receptor antagonist
SQ29548 ([1S-[1α,2β (5Z),3β,4α]-7-[3-[[2-[(phenylamino)
carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-
heptenoic acid) to the receptor supporting the role of this
structure in ligand binding (Funk et al., 1993). Furthermore,
residues in the transmembrane domains 4, 5 and 6 are impli-
cated in ligand binding (Dorn et al., 1997). Various muta-
tional analyses identified critical residues in the first, second
and third extracellular loop regulating ligand–TP interaction
partially by forming hydrogen bonds (Chiang et al., 1996;
D’Angelo et al., 1996; Turek et al., 2002; So et al., 2003). The
N-terminal region of TP receptors contains two consensus
glycosylation sites, which are supposed to be critical for
ligand binding. Inhibition of these N-glycosylations reduced

the binding of SQ29548 to TP receptors and affected receptor
signalling and efficient transmembrane expression (Walsh
et al., 1998). A study from Ruan et al. demonstrated that TP
receptor agonists and antagonists share the ligand-binding
pocket in general, but the configuration of this binding poc-
ket for the agonist and antagonist are quite different (Ruan
et al., 2009). They proposed a model, in which antagonist
binding to TP receptors induces an increase in β-sheet and a
decrease in α-helical content inducing an unfavourable con-
formation for G-protein coupling (Ruan et al., 2009). Addi-
tional critical residues for antagonist binding to TP receptors
have been identified (Khasawneh et al., 2006). The first and
third intracellular domains of TP receptors have been shown
to mediate the coupling to G-proteins through charge
contact and therefore regulating intracellular signalling
(D’Angelo et al., 1996; Chung et al., 1999; Geng et al., 2004).

TP receptor signalling

Early studies demonstrated that TP receptor agonists, such as
U44069 (9, 11-dideoxy-9α, 11α-epoxymethano-prosta-5Z,
13E-dien-1-oic acid) induced GTPase activity in platelet mem-
branes accompanied by a stimulation of inositol phospho-
lipid metabolism (Houslay et al., 1986). Later it has been
shown that TP receptors functionally couple to the Gq-family
members Gq/11, G15 and G16 (Figure 2; Offermanns and Simon,
1995; Kinsella et al., 1997). After TP receptor stimulation,
these G-proteins mediate the activation of PLC-β, catalysing
the conversion from PI-4,5-biphosphate to inositol-1,4,5-
trisphosphate and DAG resulting in the release of intracellu-
lar Ca2+ stores and activation of PKC (Offermanns and Simon,

Figure 2
Isoprostane-mediated signalling via TP receptor activation in ECs associated with endothelial function and homeostasis.
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1995; Kinsella et al., 1997). In addition to Gq/11-proteins,
members of the G12-family are involved in TP receptor-
mediated cell signalling (Offermanns et al., 1994; Moers et al.,
2003; Miyosawa et al., 2006). A lack of Gα13 reduced the TP
receptor-mediated activation of RhoA, significantly decreas-
ing the ability of TxA2 to induce platelet shape changes and
aggregation in vivo resulting in severe defects in primary
haemostasis and an almost complete protection against arte-
rial thrombosis (Moers et al., 2003). Under pathological con-
ditions, a modulation of TP receptor-coupled G-proteins can
be observed. Hypoxia induces actin polymerization of pul-
monary arteries independently of RhoA, reflecting a
decreased association with G12/13 in favour of Gq (Fediuk et al.,
2012).

Stimulation of TP receptor-α and -β result in differential
activation of downstream signalling pathways. Agonist acti-
vation of TP receptor-α induced, via the dimeric G-protein
Gh, a stimulation of PLC-mediated inositol phosphate pro-
duction, whereas agonist activation of TP receptor-β had no
effect (Vezza et al., 1999). Interestingly, the TP receptor iso-
forms are differentially regulated in response to the vasore-
laxant molecules prostacyclin and NO (Reid and Kinsella,
2003; Wikström et al., 2008). Whereas TP receptor-α under-
goes both NO- and prostacyclin-mediated desensitization
involving direct PKA and PKG phosphorylation within the
C-terminal domain, signalling by TP receptor-β is unaffected
by either NO or prostacyclin (Reid and Kinsella, 2003). Fur-
thermore, in human aortic smooth muscle cells, both TP
receptor isoforms independently regulate RhoA activation
(Wikström et al., 2008). But, although TP receptor-α-
mediated RhoA signalling was directly impaired by prostacy-
clin and NO, TP receptor-β-mediated RhoA signalling was not
affected (Wikström et al., 2008).

Relevance of TP receptors in CVD

The role of TxA2 and TP receptors in atherosclerosis and CVD
has been investigated in a wide range of experimental and
clinical studies. For instance, increased TxA2 biosynthesis has
been described in atherosclerosis (Mehta et al., 1988). The
initiation and progression of this chronic inflammatory
disease and its complications is promoted by TxA2 most
likely via regulation of platelet activation, endothelial integ-
rity and leukocyte–EC interaction (Kobayashi et al., 2004).
Moreover, the abundance and expression level of TxA2

and TP receptors, respectively, increase during progression
of atherogenesis, thereby indicating that TP receptor-
dependent signalling pathways become increasingly impor-
tant in patients with advanced atherosclerotic disease (Cyrus
et al., 2010). For instance, in patients with coronary artery
disease, an increase in TP receptor expression level was
observed in diseased vessels correlating with progression
accompanying the increase in endogenous TxA2 levels in
CVD (Katugampola and Davenport, 2001; Katugampola
et al., 2002). Interestingly, pharmacological inhibition of TP
receptors by its antagonist S18886 rather than systemic
depletion of TxA2 levels, was effective in reducing the devel-
opment of atherosclerotic plaques in the ApoE knockout
mouse model (Cayatte et al., 2000). These findings indicate
that TP receptor agonists other than TxA2, for example,

isoprostanes, may be important in the initiation and progres-
sion of atherosclerosis.

Moreover, clinical and experimental data point to a criti-
cal role of the TP receptor in ischaemia and myocardial
infarction. Inhibition of TP receptors by receptor antagon-
ists, for example, SQ29548 or AH-23848 ((4Z)-7-[(rel-1S,
2S,5R)-5-((1,1-biphenyl-4-yl)methoxy)-2-(4-morpholinyl)-3-
oxocyclopentyl]- 4-heptenoic acid), prevented the extension
of ischaemic damage in myocardial ischaemia and improved
early survival following permanent coronary artery ligation
(Brezinski et al., 1985; 1987; Hock et al., 1986). Furthermore,
the application of the TP receptor agonist BAY u3405 ((3R)-
3-[[(4-fluorophenyl)sulfonyl]amino]-1,2,3,4-tetrahydro-9H-
carbazole-9-propanoic acid), reduced myocardial infarct size
as well as myocardial leukocyte accumulation, underlining
the relevance of TP receptors and also indicating a role of
immune cells in myocardial infarction and ischaemia-
reperfusion injury, which has been confirmed by several
further studies (Crawford et al., 1988; Squadrito et al., 1993;
Vinten-Johansen, 2004).

On platelets from patients with acute myocardial infarc-
tion as well as stable and unstable angina pectoris, respec-
tively, an increase in TP receptor expression level has been
detected, correlating with the duration of chest pain (Dorn
et al., 1990; Modesti et al., 1995). Furthermore, an increase
in the maximal velocity of U46619-induced platelet
aggregation has been observed in these patients, indicating a
significant role of induced TP receptor expression in throm-
bogenesis (Dorn et al., 1990). Indeed, the role of TxA2 as an
important activator of platelet aggregation especially in the
context of endothelial dysfunction and CVD has been clearly
demonstrated (Ally and Horrobin, 1980; Dorn and DeJesus,
1991). TxA2, an important member of the second-wave ago-
nists of platelet aggregation, is able to alter platelet shape, to
amplify integrin activation on adherent platelets and to
mediate thrombus growth by recruiting additional platelets
via the activation of TP receptor-coupled G-proteins (Moers
et al., 2003; Stegner and Nieswandt, 2011). Moreover, the
clinical effectiveness of aspirin in preventing thrombotic
events in patients with cardiovascular or cerebrovascular
disease strongly emphasizes the biological relevance of
platelet-derived TxA2 in the pathological interaction of plate-
lets and dysfunctional vascular ECs. Interestingly, during
chronic hypoxia, platelet activation is enhanced indicating a
correlation between hypoxia and TP receptor expression
(Pidgeon et al., 2004). In addition, hypoxia directly affects TP
receptor localization, stability and avidity (Valentin et al.,
2004; Hinton et al., 2006; 2007). Under normoxic condi-
tions, the TP receptor-β is preferentially located intracellu-
larly, presenting a significant ER-localized population
(Valentin et al., 2004). By inducing oxidative stress, an
enhanced TP receptor translocation from the ER to the Golgi
in COS-7 cells has been observed accompanied by an
increased receptor stability and density at the membrane
(Valentin et al., 2004). These data indicate that oxidative
stress induces maturation and intracellular translocation of
TP receptors to increase its functional fraction in the cell
membrane (Valentin et al., 2004). In addition to TP receptor
maturation and translocation, hypoxia induces an increase
in TP receptor ligand binding and avidity (Hinton et al.,
2006; 2007). Modified receptor cycling as well as increased
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Gq coupling seems to be critical in hypoxia-induced TxA2

hypersensitivity in exposed myocytes (Hinton et al., 2006;
2007; Fediuk et al., 2012). In summary, the expression of TP
receptors correlates with the extent and the severity of CVD.
Conditions of oxidative stress seem to promote the expres-
sion, stability and avidity of TP receptors. These phenomena
may enhance the biological relevance of endogenous TP
receptor agonists, such as isoprostanes, in the context of
cardiovascular pathologies.

Functional consequences of
isoprostane–TP receptor interaction

Experimental data strongly suggest that isoprostane signal-
ling is exclusively regulated via the interaction with TP
receptors. In the context of isoprostane/TP signalling, an
association of TP receptors with G-proteins such as Gq, Gi and
G11 has been described (Kinsella et al., 1997; Acquaviva et al.,
2013). A co-transfection of TP receptor-α with G11 produced
greater mobilization of Ca2+ than did co-transfection of Gq in
response to 8-iso-PGF2α stimulation, indicating a preferential
association of TP receptors with G11 in isoprostane/TP recep-
tor signalling in human platelets (Kinsella et al., 1997). Het-
erodimerization of TP receptor-α/β not only influences TxA2

signalling, but stimulates isoprostane-mediated inositol
phosphate generation thereby enhancing isoprostane-
dependent signal transduction (Wilson et al., 2007). Muta-
genic analysis revealed that distinct amino acid residues of
the TP receptor are responsible for isoprostane/ TP receptor
interactions (Khasawneh et al., 2008). 8-iso-PGF2α interacts
with two hydrophobic sites (Phe196/184) and one hydrogen
binding site (Asp193) residing in transmembrane domain 5
and extracellular loop 2 of TP receptors (Khasawneh et al.,
2008). Experimental work of Khasawneh et al. additionally
indicated that in human platelets, two separate 8-iso-PGF2α
signalling pathways exist, being TP receptor-dependent and
TP receptor-independent, possibly mediated via a so far
unknown isoprostane receptor bearing close homology to TP
receptors (Khasawneh et al., 2008). Moreover, 8-iso-PGE2, an
isoprostane generated from the same endoperoxide interme-
diate as 8-iso-PGF2α, has been proven to be a partial agonist of
the TP receptor (Longmire et al., 1994; Audoly et al., 2000;
Benndorf et al., 2008; Tables 1 and 2). These results from in
vitro studies indicate that isoprostanes are partial agonists at
TP receptors and that the biological activity of isoprostanes
may be additionally mediated via an isoprostane-specific
receptor. However, so far, no molecular evidence has been
found for the existence of such an isoprostane-specific recep-
tor. Furthermore, results from our and other groups strongly
support the concept that isoprostanes mediate their biologi-
cal functions exclusively via activation of TP receptors
(Audoly et al., 2000; Benndorf et al., 2008).

Role of isoprostanes as modulators of
platelet activation

Isoprostanes participate in oxidative injury by modulating
platelet activation and adhesion and by reducing the

antiplatelet activity of NO (Minuz et al., 1998). A treatment of
platelets with 8-iso-PGF2α in the concentration range from
10–1000 nmol·L−1 enhances platelet adhesion to fibrinogen
by increasing the functionality of the adhesion molecule
glycoprotein IIb/IIIa (Minuz et al., 1998). Furthermore, the
anti-aggregatory effect of NO, released by ECs, is reduced
by 8-iso-PGF2α (Minuz et al., 1998). All these effects
were prevented by the TP receptor antagonist GR32191
((1R-[1 α(Z),2β,3β,5α]]-(+)-7-[5-([1,1-biphenyl]-4-ylmethoxy)-
3-hydroxy-2-(1-piperidinyl) cyclopentyl]-4-heptonic acid),

Table 1
Overview of TP receptor agonists including ligand-binding capacity
and potencies

TP agonists

Ligand binding
(Kd)/potency
(pD2 = −log EC50) References

U-46619 Kd: 6.19–16 nM Saussy et al., 1991

Kd: 3.6–18.7 nM Hedberg et al., 1988

pD2: 8.34–8.79 Hou et al., 2000

U-46609 Kd: 4.4–7 nM Hedberg et al., 1988

I-BOP Kd: 5.5 nM D’Angelo et al., 1994

Kd: 0.322–7.9 nM Saussy et al., 1991

SQ 26655 Kd: 1.12–3 nM Saussy et al., 1991

PGF2α Kd: 17.4 nM Balapure et al., 1989

pD2: 7.18–7.3 King et al., 1991; Hou
et al., 2000

PGD2 King et al., 1991

8-iso-PGE1 pD2: 5.5 Janssen et al., 2001

pD2: 5.4 Oliveira et al., 2000

8-iso-PGE2 pD2: 6.7 Sametz et al., 2000;
Janssen et al., 2001

8-iso-PGF2α Kd: 31.8 nM Yura et al., 1999

pD2: 7.41–7.75 Hou et al., 2000

Table 2
Overview of TP receptor antagonists including ligand-binding
capacity

TP receptor antagonists

Ligand binding
(Kd) References

SQ 29548 Kd: 1.2–12 nM Raychowdhury et al., 1994

Kd: 9.8–20.9 nM Saussy et al., 1991

BM 13505 Kd: 24.3–184 nM Saussy et al., 1991

I-PTA-OH Kd: 14.5–384 nM Saussy et al., 1991

S-145 Kd: 1.2–3.3 nM Hirata et al., 1991; Namba
et al., 1992
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underlining the importance of isoprostane/TP receptor inter-
action in platelet activation (Minuz et al., 1998). Indeed,
8-iso-PGF2α acts as a partial agonist of TP receptors on plate-
lets (Yin et al., 1994). Whereas 8-iso-PGF2α can cause platelet
shape change itself, in the presence of full TP receptor ago-
nists, such as U46619 and I-BOP ([1S- [1α, 2α(Z), 3β(1E, 3S),
4α]]-7-[3-[3-hydroxy-4- (4-iodophenoxy)- 1- butenyl]- 7-
oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid), it exhibits
anti-aggregatory effects. In contrast, 8-iso-PGF2α may pro-
mote ADP-dependent platelet aggregation in a TP receptor-
dependent fashion (Yin et al., 1994; Audoly et al., 2000;
Schwedhelm et al., 2010).

Isoprostanes regulate immune and
EC interaction

In addition to altered platelet behaviour, CVD is character-
ized by an enhanced interaction of ECs with immune cells
such as monocytes and neutrophils (Aukrust et al., 2010).
8-iso-PGE2 and 8-iso-PGF2α may promote atherosclerosis by
enhancing the interaction of monocytes with ECs (Leitinger
et al., 2001; Huber et al., 2003). This process was mediated
via a TP receptor-dependent activation of PKA and p38
(Leitinger et al., 2001; Huber et al., 2003). Interestingly, the
effects of 8-iso-PGF2α on the monocyte–endothelial interac-
tion are dependent on the origin of the vascular beds. While
inhibiting dose dependently the adhesion to human dermal
microvascular ECs in a TP receptor-dependent manner, 8-iso-
PGF2α stimulates the binding of monocytes to HUVECs
(Kumar et al., 2005). In addition to monocytes, the binding
of neutrophils to ECs is regulated by isoprostanes. Whereas
8-iso-PGE2 has no effect on the adhesion of neutrophils,
8-iso-PGF2α enhances adhesion in a TP receptor-dependent
as well as a TP receptor-independent manner (Zahler and
Becker, 1999; Fontana et al., 2001; 2002; Huber et al., 2003).
The capacity of isoprostanes to regulate endothelial/immune
cell interaction and thereby affecting the process of athero-
sclerosis has been confirmed in vivo. Peritoneal injection of
1 μg·kg−1 body weight 8-iso-PGF2α displayed a TP receptor-
dependent significant increase in macrophage density and
atherosclerotic burden in aortic root sections of mice (Tang
et al., 2005). This increased adhesion of macrophages to
aortic ECs was accompanied by increased expression of
sICAM-1 and CCL2, the latter being a chemokine, crucial in
recruiting immune cells to the site of inflammation (Tang
et al., 2005). Furthermore, treatment of human macrophages
with 8-iso-PGF2α resulted in a NF-κB-independent increase in
the expression of the pro-atherogenic molecule IL-8 (Scholz
et al., 2003). This underlines the importance of isoprostanes
in atherosclerosis and other inflammatory disorders. The
effect of isoprostanes on immune cells is not restricted to a
modulation of their adhesive properties. Furthermore, 8-iso-
PGF2α can induce the activation of CD11b/CD18 and
CD11c/CD18 in neutrophils resulting in the activation of
NADPH oxidase (Fontana et al., 2001). NADPH oxidase and
its catalytic subunit gp91 play an important role in the gen-
eration of platelet-derived 8-iso-PGF2α (Pignatelli et al.,
2011). Furthermore, it has been demonstrated that function-
ally active NADPH oxidase in microglial cells generates ROS

during inflammation in the CNS, thus exacerbating cerebral
injury (Green et al., 2001). These data indicate that isopros-
tanes can enhance their own generation by activating
NADPH oxidase in immune cells. In addition to an increased
interaction between immune and ECs, the oxidation of
low-density lipoproteins (LDL) plays an important role
in the formation of atherosclerotic lesions (Tomkin and
Owens, 2001). The incubation of LDL with Cu2+ resulted
in a decrease in esterified F2-isoprostane levels and a sig-
nificant increase in free isoprostane levels (Lynch et al.,
1994). This indicates that LDL is a critical source for local
isoprostane generation and liberation in the process of
atherogenesis.

Isoprostanes act as vasoconstrictors

An increase in vascular tone plays an important role in a
variety of pathological processes, such as hypertension and
ischaemia. Interestingly, a significant vasoconstrictory poten-
tial of isoprostanes has been described. In isolated guinea pig
hearts, 8-iso-PGF2α and 8-iso-PGE2 caused a sustained and
concentration-dependent coronary vasoconstriction with
EC50 values in the range of 10−5 M resulting in a decrease
of coronary flow by as much as 50% (Möbert et al., 1997).
Simultaneous administration of SQ29548 abolished the
vasoconstrictor effect of both isoprostanes indicating a TP
receptor-dependent mechanism (Möbert et al., 1997). This
pro-vasoconstrictor potential of 8-iso-PGF2α and 8-iso-PGE2

has been confirmed in a wide range of different blood vessels,
from human umbilical arteries, chicken embryo ductus arte-
riosus, pulmonary artery, femoral artery and porcine arteries
to bovine coronary arteries, demonstrating the general vaso-
constrictor potential of isoprostanes (Kromer and Tippins,
1996; van der Sterren and Villamor, 2011; Sakariassen et al.,
2012). Interestingly, no vasoconstriction was induced in
bovine coronary arteries indicating a putative species-
dependent functionality of 8-iso-PGF2α (Kromer and Tippins,
1996). The vasoconstrictor effect of isoprostanes, such as
8-iso-PGF2α and 8-iso-PGE2, is mainly mediated via TP recep-
tors leading to the release of internally sequestered Ca2+ and
activation of the RhoA/Rho kinase 1 and 2 signalling
pathway (Kromer and Tippins, 1996; Möbert et al., 1997;
Mueed et al., 2008; Sakariassen et al., 2012). On the other
hand, bovine aortic ECs possess two distinct binding sites for
isoprostanes, indicating that the vasoconstrictor effect of
these PG-like compounds may also be mediated by a so far
not identified TP receptor-related isoprostane receptor (Yura
et al., 1999; van der Sterren and Villamor, 2011). The vaso-
constriction of pulmonary vasculature and intestine epithe-
lium mediated via 8-iso-PGE2 was mediated via TP receptors
and the PGE receptor, indicating that receptors other than
TP receptors may be involved in the mediation of the vaso-
constrictor capacity of isoprostanes (Elmhurst et al., 1997;
Janssen and Tazzeo, 2002). The modulation of the vascular
tone by isoprostanes can also occur in an indirect way. 8-iso-
PGF2α concentrations in the range of 10−7 M, stimulate, prob-
ably through transcriptional regulation, the production of
endothelin-1, a mitogen for ECs with vasoconstrictor poten-
tial, thereby inducing strong vasoconstriction (Yura et al.,
1999).
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Angiogenesis is affected
by isoprostanes

Angiogenesis is a central process in several pathological dis-
orders, such as cancer and diabetes (Folkman, 2002; Martin
et al., 2003) and is a key event in cardiovascular homeostasis
and regeneration, a process often impaired in CVD patients
(Griffioen and Molema, 2000; Khurana et al., 2005). Isopros-
tanes regulate the formation of new blood vessels from
pre-existing ones by various mechanisms. First, our group
demonstrated that 8-iso-PGF2α and 8-iso-PGA2 synergistically
and dose-dependently inhibit the migration and tubule for-
mation of ECs in vitro via the activation of TP receptors
(Benndorf et al., 2008). In these studies, we additionally
observed that 8-iso-PGA2 can decompose into two biologi-
cally active compounds indicating that unstable isoprostanes
may exert synergistic effects with endogenous isoprostanes
affecting angiogenesis (Benndorf et al., 2008). Moreover, in ex
vivo and in vivo assays, the anti-angiogenic effect of 8-iso-
PGF2α was confirmed, being again mediated via TP receptors
(Benndorf et al., 2008). Interestingly, 8-iso-PGF2α in the pres-
ence of VEGF-A induced an enhanced and persistent activa-
tion of the small GTPase RhoA in ECs as compared to the
transient effect of VEGF-A on RhoA activity in absence of
8-iso-PGF2α (Benndorf et al., 2008). This may be crucial for
isoprostane-mediated inhibition of angiogenesis as blockade
of RhoA downstream effector Rho kinase completely reversed
isoprostane-mediated anti-angiogenic effects in vitro. Indeed,
persistent RhoA/Rho kinase activation may inhibit important
steps in angiogenesis, such as EC movement and sprouting,
via perturbation of cytoskeletal dynamics and focal adhesion
turnover and reduces VEGF-induced EC sprouting (Kroll
et al., 2009). Moreover, isoprostanes affect biology of further
vascular cell types, such as vascular smooth muscle cells
(VSMC) and vascular fibroblasts, which have been implicated
in vascular maturation and stiffness (Nehls et al., 1994). Iso-
prostanes induce the proliferation of these cells, an effect that
may affect the process of angiogenesis via modified VSMC–
endothelial interaction and signalling (Takahashi et al., 1992;
Kunapuli et al., 1997). These data indicate that isoprostanes
inhibit new blood vessel formation and promote vascular
stabilization via activation of TP receptors. However, in this
context, it has to be mentioned that the role of TxA2 and
TxA2 mimetics in angiogenesis, especially tumour-associated
angiogenesis, is not fully elucidated. Synthetic TxA2 mimetics
inhibit fibroblast growth factor 2 – and VEGF-induced angio-
genesis in vitro as well as in vivo (Ashton and Ware, 2004;
Ashton et al., 2004; Pal et al., 2006; Benndorf et al., 2008). In
contrast, several studies particularly focusing on tumour-
associated angiogenesis demonstrated that TxA2 may also act
as a pro-angiogenic factor (Daniel et al., 1999; Nie et al., 2000;
Wei et al., 2010). These conflicting results could be inter-
preted as showing that TP receptor isoforms may contribute,
to different extents, to the process of angiogenesis and that
TP receptor activation in cancer cells may induce production
and release of pro-angiogenic molecules, which induce angio-
genesis in a paracrine fashion. Taken together, isoprostanes
modulate the process of angiogenesis via TP receptor activa-
tion and are likely to affect endothelial homeostasis and
regeneration via this route. Nevertheless, further studies are

needed to clarify the role of TP receptors and TP receptor
agonists especially in the context of tumour-associated
angiogenesis.

Role of isoprostanes in cell cycle
regulation and cardiac ion
channel dysfunction

Under hypoxic conditions, an increase in the generation
and release of 8-iso-PGF2α has been observed (Hart et al.,
1998). In pulmonary artery ECs, this increase in isoprostane
concentration was accompanied by monolayer dysfunction,
which was in contrast to the isoprostane-induced apoptosis
in ECs, not induced via cell death (Hart et al., 1998;
Benndorf et al., 2008). Furthermore, a role of A/J isopros-
tanes in cell cycle regulation has been shown. These com-
pounds can be incorporated into cells and accumulate in the
nucleus, inducing a G1 cell cycle arrest (Chen et al., 1999a;
Brooks et al., 2008).

ROS, generated during the process of ischaemia in the
mitochondria of cardiomyocytes (Becker et al., 1999) may
affect the function of cardiac channel proteins. E2-isoketals,
highly reactive products of the isoprostane pathway, are asso-
ciated with cardiac Na+ channel dysfunction indicating a role
of isoprostanes in ischaemia-related conduction abnormali-
ties and arrhythmias (Fukuda et al., 2005). In summary, iso-
prostanes modulate platelet activation, the initiation of
inflammatory processes, vasoconstriction, the disturbance of
the vascular endothelial barrier, angiogenesis and EC cell
death, indicating a mechanistically relevant role of these
oxidative stress markers in the pathogenesis and progression
of CVDs.

Relevance of isoprostanes in CVD

Based on the biological activities of isoprostanes discussed
above, a role of these compounds in CVD seems to be
obvious. Isoprostane-mediated effects with potential rel-
evance for the pathogenesis of CVD are summarized in
Figure 3. In apolipoprotein E-deficient mice, overexpression
of the hydroperoxide scavenger GSH peroxidase-4 signifi-
cantly reduced aortic F2-isoprostane levels accompanied by a
significant decrease in atherosclerotic lesions sizes (Guo et al.,
2008). Furthermore, in patients with coronary heart disease,
those with advanced atherosclerotic plaque formation
exhibit significantly higher extent of 8-iso-PGF2α accumula-
tion in close proximity to the atherosclerotic lesions
(Mehrabi et al., 1999). Levels of isoprostanes correlated with
the number of risk factors for coronary artery disease present
in patients and significantly increased with the number of
diseased vessels thereby confirming the role of oxidative
stress in the atherosclerotic process (Schwedhelm et al., 2004;
Basarici et al., 2007; 2008). In several studies involving
patients with coronary artery disease, up to 2–3-fold higher
plasma and urinary levels of 8-iso-PGF2α have been detected
as compared with age- and sex-matched healthy individuals,
additionally correlating with the extent and the severity of
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the disease (Schwedhelm et al., 2000; 2004; Vassalle et al.,
2003; Wang et al., 2006; Radovanovic et al., 2008; Roest et al.,
2008; Di Minno et al., 2012). These studies indicate that iso-
prostanes are cumulative and independent risk markers in
coronary artery diseases.

Coronary endothelial dysfunction in humans is charac-
terized by local enhancement of oxidative stress without a
decrease in basal NO release (Lavi et al., 2008). Interestingly,
isoprostane concentrations measured in the coronary sinus
were 29% higher in patients with endothelial dysfunction,
emphasizing the role of 8-iso-PGF2α as a marker of regional
endothelial dysfunction in humans (Lavi et al., 2008). Fur-
thermore, by investigating changes in coronary artery diam-
eter and coronary flow, a more important role of isoprostanes
in epicardial than in microcirculatory endothelial dysfunc-
tion has been described (Lavi et al., 2008).

In the effluents of isolated and perfused rat hearts, an
increase in 8-iso-PGF2α concentration from only a few
pg·mL−1 up to nearly 100 pg·mL−1 during ischaemia has been
observed (Xia et al., 2003; 2005). This elevation in isopros-
tane levels was accompanied by an increased myocardial
infarct size and exacerbated post-ischaemic myocardial dys-
function, probably mediated via a stimulated production and
release of endothelin-1 during ischaemia (Xia et al., 2005). In
a canine model of coronary thrombolysis and in patients
with acute myocardial infarction, an increase in urinary 8-iso-
PGF2α concentrations of approximately 28 and 300%, respec-
tively, was observed, indicating that coronary reperfusion is
associated with an increased generation of isoprostanes,
which is likely to reflect oxidant stress in vivo (Delanty et al.,
1997). Furthermore, in patients undergoing coronary artery
bypass surgery or acute revascularization in the context of
myocardial infarction, a 2–3-fold increase in plasma and
urinary 8-iso-PGF2α levels has been detected, confirming the
association between ischaemia/reperfusion and isoprostane
generation (Reilly et al., 1997; Ansley et al., 2003). The gen-

eration of isoprostanes resulting from lipid peroxidation
seems to occur immediately after reperfusion because no
further increase in the isoprostane concentration could be
observed in subsequent post-operative period (Ansley et al.,
2003; Ulus et al., 2003). In contrast, in clinical ischaemia/
reperfusion injury, no increase of 8-iso-PGF2α levels in plasma
and urine during early reperfusion of the ischaemic kidney or
heart has been described, indicating a highly complex and
sensitive process of isoprostane formation under ischaemic
conditions (de Vries et al., 2013). Furthermore, in patients
with ischaemic chronic heart failure, levels of 8-iso-PGF2α
correlated significantly with indices of remodelling
(Radovanovic et al., 2008). Here, the authors demonstrated
that markers of oxidative stress, such as isoprostanes, are
unlikely to play an important role in early stages of chronic
heart failure, but might become important in the course of
this disease (Radovanovic et al., 2008). In this stage, urinary
8-iso-PGF2α could be used as a reliable indicator of sympto-
matic chronic heart failure (Radovanovic et al., 2008). Gen-
erally, a correlation between oxidative stress, elevated
isoprostane concentrations and the severity and outcome of
CVD has been demonstrated in animal and human studies.
Therefore, a targeted inhibition of isoprostane generation or
its interaction with TP receptors could help to improve
outcome in patients suffering from CVD.

Outlook

Several cardiovascular pathologies are characterized by
elevated isoprostane formation and excretion (Cracowski
et al., 2001; Cracowski and Durand, 2006; Schwedhelm et al.,
2007). Moreover, isoprostanes are involved in the patho-
physiology of CVD by activating the TP receptor (Galano
et al., 2013). The inhibition of isoprostane formation or TP
receptor activation may therefore represent a valuable clinical

Figure 3
Proposed effects of isoprostanes in the cardiovascular system. Isoprostanes act as partial agonists of the TP receptor and may represent important
alternative activators of the TP receptor especially in the context of oxidative stress.
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strategy in patients at a high cardiovascular risk. Considering
a causative role of isoprostanes in CVD, detection of isopros-
tane concentrations in plasma or further body fluids could
help to identify patients at high risk of developing cardiovas-
cular complications. Formation of isoprostanes may then
be suppressed by several therapeutic strategies such as
up-regulation of antioxidant enzymes, such as SOD and phar-
macological inhibition of ROS formation by novel low
MW NADPH oxidase inhibitors. Moreover, pharmacological
antagonism of TP receptors could represent an alternative
therapeutic strategy in patients with extensive isoprostane
formation. Several TP receptor antagonists have been devel-
oped and used in pre- and clinical testing (Davì et al., 2012),
but their clinical impact is still negligible today. In this
regard, preclinical and clinical development of TP receptor
antagonists may have suffered from insufficient specificity
and efficacy or unexpected side effects of drug candidates.
Design of more specific TP receptor antagonists and identifi-
cation of patients who may clearly benefit from additional TP
receptor blockade could thus be a rewarding challenge in the
near future. So far, the TP receptor has not been crystallized
and structural information is still incomplete. Therefore, fully
elucidating the molecular structure of the TP receptor may
foster the development of more specific and effective antago-
nists of this receptor, which may help to further reduce car-
diovascular complications in high-risk patients.
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