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Genome-wide association studies have been successful in identifying genes involved in polygenic traits and are valuable for crop
improvement. Tomato (Solanum lycopersicum) is a major crop and is highly appreciated worldwide for its health value. We used a
core collection of 163 tomato accessions composed of S. lycopersicum, S. lycopersicum var cerasiforme, and Solanum pimpinellifolium
to map loci controlling variation in fruit metabolites. Fruits were phenotyped for a broad range of metabolites, including amino
acids, sugars, and ascorbate. In parallel, the accessions were genotyped with 5,995 single-nucleotide polymorphism markers
spread over the whole genome. Genome-wide association analysis was conducted on a large set of metabolic traits that were
stable over 2 years using a multilocus mixed model as a general method for mapping complex traits in structured populations
and applied to tomato. We detected a total of 44 loci that were significantly associated with a total of 19 traits, including sucrose,
ascorbate, malate, and citrate levels. These results not only provide a list of candidate loci to be functionally validated but also a
powerful analytical approach for finding genetic variants that can be directly used for crop improvement and deciphering the
genetic architecture of complex traits.

In crops, linkage mapping has proved invaluable for
detecting quantitative trait loci (QTLs) for traits of in-
terest and to unravel their underlying genetic archi-
tecture. This approach is based on the analysis of the
segregation of polymorphism between the parental
lines and their progeny. However, one of the limita-
tions of this approach is the reduced number of re-
combination events that occur per generation (for
review, see Korte and Farlow, 2013). This leads to ex-
tended linkage blocks that reduce the accuracy of the
linkage mapping. An alternative to linkage-based
mapping studies is to perform linkage disequilibrium
(LD) mapping in a population of theoretically unre-
lated individuals. The ancestral polymorphism segre-
gating through this population (or panel) is far more
informative compared with the polymorphism of the
parental lines of the linkage mapping population
(Mauricio, 2001). LD mapping, also known as genome-
wide association (GWA), relies on the natural patterns
of LD in the population investigated. The aim of GWA

is to reveal trait-associated loci by taking advantage of
the level of LD. Depending on the decay of LD, the
mapping resolution can be narrowed from a large
genomic portion where the level of LD is relatively
high to a single marker when the LD level is very low.

Following domestication, crops are prone to (1) in-
creased levels of LD, (2) population structure (remote
common ancestry of large groups of individuals), and
(3) cryptic relatedness (the presence of close relatives in
a sample of unrelated individuals; Riedelsheimer et al.,
2012). Population structure and cryptic relatedness
may lead to false-positive association in GWA studies
(Astle and Balding, 2009), but their effect is now rela-
tively well accounted for in mixed linear models (for
review, see Sillanpää, 2011; Listgarten et al., 2012). The
problem of high LD in GWA scans also must be taken
into account: Segura et al. (2012) investigated this
difficulty by proposing a multilocus mixed model
(MLMM) that handles the confounding effect of
background loci that may be present throughout the
genome due to LD. This approach revealed multiple
loci in LD and associated with sodium concentration in
leaves in Arabidopsis (Arabidopsis thaliana), while
previous methods failed to identify this complex pat-
tern (Segura et al., 2012).

In parallel, the development of cost-effective high-
throughput sequencing technologies has identified
increasingly dense variant loci necessary to conduct
GWA scans, especially in model species such as rice
(Oryza sativa) for agronomic traits (Huang et al., 2010)
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or maize (Zea mays) for drought tolerance (Lu et al.,
2010; for review, see Soto-Cerda and Cloutier, 2012).
However, GWA is not restricted to model species and
is becoming increasingly widespread in nonmodel
ones such as sunflower (Helianthus annuus; Mandel
et al., 2013) and tomato (Solanum lycopersicum; Xu
et al., 2013), where numerous associations have been
successfully identified for traits related to plant
architecture (branching in the case of sunflower) and
fruit quality (e.g. fresh weight in tomato).
Tomato is a crop of particular interest, as the fruit are

an important source of fiber and nutrients in the human
diet and a model for the study of fruit development
(Giovannoni, 2001). Over the last two decades, numer-
ous QTLs have been identified for traits such as fresh
weight using linkage approaches (Frary et al., 2000;
Zhang et al., 2012; Chakrabarti et al., 2013) but also for
other fruit-related traits such as fruit ascorbic acid levels
(Stevens et al., 2007), sensory and instrumental quality
traits (Causse et al., 2002), sugar and organic acids
(Fulton et al., 2002), and metabolic components (Schauer
et al., 2008). Large tomato germplasm collections have
been characterized at the molecular level using simple
sequence repeat (Ranc et al., 2008) and single-nucleotide
polymorphism (SNP) markers (Blanca et al., 2012;
Shirasawa et al., 2013), giving insights into population
structure, tomato evolutionary history, and the genetic
architecture of traits of agronomic interest. These screens
of nucleotide diversity were made possible (for review,
see Bauchet and Causse, 2012) in the last couple of years
due to the release of the tomato genome sequence (To-
mato Genome Consortium, 2012) and derived genomic
tools such as a high-density SNP genotyping array (Sim
et al., 2012). The combination of large germplasm col-
lections, high-throughput genomic tools, and traits of
economic interest provide a framework to apply genome-
wide association study (GWAS) in this species. In to-
mato, previous association studies have been limited to
a targeted region (e.g. chromosome 2; Ranc et al., 2012),
used low-density genome-wide-distributed SNPmarkers
(Xu et al., 2013), or investigated a limited number of
agronomic traits with low precision on the association
panel (Shirasawa et al., 2013).
Using tomato as a model, we aimed to investigate

the genetic architecture of traits related to fruit meta-
bolic composition at high resolution. To reach this
objective, we carried out an investigation into LD
patterns at the genome-wide scale and a GWA scan
using the MLMM approach. We present results on the
genetic architecture of fruit metabolic composition for
metabolites such as organic acids, amino acids, sugars,
and ascorbate in tomato.

RESULTS

Phenotyping

We phenotyped a panel composed of 163 accessions
for a total of 76 metabolic traits, including amino acids,
organic acids, and sugars. The tomato diversity panel

was composed of 28 S. lycopersicum (S.L), 119 S. lyco-
persicum var cerasiforme (S.C), and 16 Solanum pimpi-
nellifolium (S.P) samples derived from the previously
published core collection described by Xu et al. (2013).
From the set of 76 phenotypes, 36 of these (47.3%) were
highly correlated over the 2 years of sampling. Of
these 36 phenotypes, significant differences between
the three groups of tomato accessions were identified
for 26 phenotypes (70.3%; Fig. 1). The post hoc Tukey’s
honestly significant difference test provided a more
thorough investigation of the significant differences
among the three groups for each trait. Comparisons
including S.P (S.P-S.L and S.P-S.C) were more signifi-
cantly different than the comparison S.L-S.C (Fig. 2).

The correlation pattern revealed clusters of highly cor-
related compounds in the metabolic profile that largely
corresponded to a functional classification of the metab-
olites (Fig. 1). For example, the concentration of Fru, Suc,
maltitol, erythritol, and maltose clustered together with
soluble solid content (SSC), while amino acids (e.g. Ser,
Thr, Met, and Asn) also clustered together. We conducted
GWA on this set of 36 phenotypes, which were stable
(correlated) over the 2 experimentation years using the
MLMM approach (for the complete phenotype data set,
see Supplemental Table S1).

Genotyping

From the initial 8,784 SNPs of the SOLCAP genotyping
array, 7,720 (87.8%) passed the manufacturing quality
control and constituted our raw data set (see “Materials
and Methods”). From this raw data set, the quality fil-
tering gave a total of 5,995 reliable SNPs (77.6%), thus
constituting the analyzed data set for GWA. The overall
average percentage of missing data per locus was esti-
mated at 3.84% in the whole population while ranging
from 2.25% in S.L to 4.07% in S.P. The missing data were
imputed by the most common allele of the SNP, as no
missing data are allowed in the MLMM.

The minor allele frequency (MAF) values were
evenly distributed from 0.001% to 0.5% and showed
differences in their distribution between groups. The S.
L accessions showed an excess of rare variants with a
skewed distribution of the MAF values (median MAF =
0.107), while the S.C and S.P accessions showed a
broader distribution of the MAF values (median MAF =
0.161 and 0.214, respectively). Such a low median MAF
in the S.L accessions may be attributed to (1) a higher
proportion of nearly monomorphic SNPs and (2) the
shared ancestry within this group. This observation is
supported by a previous study that investigated the
MAF pattern in subpopulations of tomato (Sim et al.,
2012).

Population Structure

The pairwise-population genetic differentiation in-
dex was estimated to be approximately 1% (0.0102)
between S.L and S.C, while between S.L and S.P and
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between S.C and S.P, stronger population differentia-
tion values, estimated to be 0.2132 and 0.1583, re-
spectively, were detected. These results are supported
by the estimation of the population structure using the
Structure software. Following the ad hoc statistic DK,
population structure was apparent with the number of
ancestral populations estimated to be 2 (K = 2). Whereas
the first group was composed of a cluster of the S.L.
accessions and the S.C accessions (n = 147), the second
group was composed of a cluster of the S.P accessions
only (n = 16).

Estimates of Kinship and LD in the Collection

Within the 163 accessions, the pairwise kinship es-
timates revealed a low degree of relatedness between
individuals, with a mean overall estimate of 0.0738.
Pairwise LD estimates (rs

2) within each group revealed
different levels of LD along chromosomes. On aver-
age, LD was higher in S.L (rs

2 = 0.57), medium in S.C
(rs

2 = 0.54), and lower in S.P (rs
2 = 0.34). Within each

group and for the 12 chromosomes, rs
2 estimates

ranged from 0.29 (K3) to 0.39 (K12) in S.P, from 0.5117
(K12) to 0.5619 (K11) in S.C, and from 0.52 (K9) to 0.62
(K6) in S.L. More details on LD estimates for each
chromosome in the three groups by chromosome are
given in Table I.

GWA

GWA was conducted trait by trait in order to dissect
the optimal model obtained from the MLMM. After
correcting for multiple testing, GWA scan identified a
total of 44 loci that were significantly associated with
19 of the 36 traits (52.7%). These 44 loci were spread
unevenly over the genome, as all chromosomes carried
at least one association (chromosomes 1 and 12) but up
to 10 associated loci were located on chromosome 2.
Moreover, the number of associated loci per trait
ranged from one (for eight traits in total) to nine (for
SSC). Table II reports the detailed statistics of GWA
(i.e. P value and genomic location) for the loci associ-
ated with these 19 traits. For each trait, the heritability
(estimated at step 0 of the model, based on the vari-
ance component s2

g, computed for all markers and
representing the estimated genetic variance of the trait)
ranged from 0.168 (threonate level) to 0.773 (Pro level),
with a median value of 0.553 (overall traits), while the
missing heritability (not explained by the markers in-
cluded in the model) ranged from 0.007 (Thr level) to
0.458 (nicotinate level), with a median value of 0.250.
The percentage of variation explained for each trait
was estimated from the optimal model obtained from
the MLMM. The percentage of variation explained
ranged from 16.2% to 74.3% for the Asp level and the
dehydroascorbate level traits, respectively, while for

Figure 1. Lower matrix displaying the correla-
tions between each analyzed phenotype adjusted
for the year effect. The correlation coefficient
(Spearman) ranges from21 (red color) to +1 (blue
color). GABA, g-Aminobutyrate; ASA, ascorbic
acid; DHA, dehydroascorbate.
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the SSC, the percentage of variation was estimated as 0.611
(61%; for details, see Table III). For each trait, the Man-
hattan plot displaying P values for each locus in relation
to its genomic location are shown in Supplemental
Figure S1.
Finally, the peak SNP associated with SSC (SOL-

CAP_snp_sl_26678) that belongs to a candidate gene
(Solyc09g010080.2 [lin5], a fruit-specific b-fructofuranosid-
ase or invertase), which plays a role in sugar metabolism

(Fridman et al., 2004), validates the methodological
approach we employed by its mapping in our pa-
nel. We identified putative candidate genes in this
study, especially in close proximity to four peak SNPs.
For example, the peak SNP SOLCAP_snp_sl_26678
(chromosome 9, position: 2,411,368 bp) is associated
with fruit ascorbate content and is located approxi-
mately 423 kb upstream of a monodehydroascorbate re-
ductase (NADH)-like protein (MDHAR; Solyc09g009390.2,

Figure 2. Box-plot representations of the distribution for the 19 traits that showed significant association. In all graphs, mean
values labeled with different letters are significantly different, whereas those with the same letters are not (Tukey’s test, P ,
0.05).
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position: 2,835,367 bp) shown previously to be linked
to fruit ascorbate levels under stress conditions
(Stevens et al., 2008). Similarly, the peak SNPs associated
with nicotinate (SOLCAP_snp_sl_29349), malate (SOLCAP_
snp_sl_19899), and Suc (SOLCAP_snp_sl_17956) levels are
located at 680, 7.9, and 68 kb, respectively, from three pu-
tative candidate genes that play roles in the genetic archi-
tecture of the variations of these traits, which are described
as a nicotinate phosphoribosyl transferase protein (Soly-
c02g093290.2, position: 48,771,224 bp), an aluminum-
activated malate transporter-like (Solyc06g072910.2,
position: 41,337,629 bp), and a sugar transporter (gal-
actosylgalactosylxylosyl protein 3-b-glucuronosyl-
transferase; Solyc04g076920.2, position: 59,461,803 bp),
respectively.

As a case study, we focused on the results associated
with fruit malate content by compiling all the results
obtained for this trait. Figures 3 and 4 illustrate these
results. Malate levels were stable over the 2 years of the
experiment (r2 = 0.621; Fig. 3A), differences in malate
levels were significant between groups (Figs. 2 and 3B),
and the trait was normally distributed within the panel
of accessions (Fig. 3C). GWA identified two significant
SNPs associated with malate levels (Fig. 3D) without
inflation in the distribution of P values at the optimal
step of the model (Fig. 3E), suggesting that population
structure was well controlled. These two SNPs explained
a proportion of the trait variation estimated at 39% (Fig.
3F). For each peak SNP, located on chromosomes 2 and 6,
the allelic effects of each genotypic class (homozygote and
heterozygote) were estimated (Fig. 3, G and H). Finally,
we used the pairwise LD estimates (rs

2) for each genomic
location to (1) narrow the genomic interval and (2) seek
putative candidate genes in the vicinity of the two peak
SNPs (Fig. 4), providing a local overview of the extent
of LD and revealing an aluminum-activated malate
transporter-like (Solyc06g072910.2, position: 41,337,629
bp) as a good candidate gene (see above).

DISCUSSION

The aims of this study were to (1) investigate LD
patterns in a panel of 163 tomato accessions, including
wild, admixed, and cultivated accessions, and (2) im-
plement a stepwise GWA approach to reveal associa-
tions between SNP markers and traits related to fruit
metabolites. We successfully achieved this objective
with (1) the investigation of the LD patterns revealing
different levels of LD along chromosomes and between
the three groups constituting the panel, and (2) the
detection of GWA for 19 fruit metabolic traits. Finally,

we demonstrated that GWA is powerful enough to link
the metabolic composition of fruits in tomato with ge-
netic variation at a high resolution, despite a high level
of LD and population structure.

Metabolite Profiling and Phenotyping of Traits

The phenotypic traits focused on in this study were
measured for 2 years in a row (2007 and 2008) under
similar growth conditions on an identical set of 163
tomato accessions. Only 36 traits (47.3%) were stable
over the 2 years, suggesting that metabolite profiling is
highly sensitive to the environmental conditions. Pre-
vious studies have reported developmental stage 3
genotype or environment 3 genotype interactions for
metabolite profiles, supporting our results. For exam-
ple, in tomato, metabolite profiling of 26 compounds
revealed significant genotype 3 ripening stage inter-
actions, whereas in durum wheat (Triticum durum),
significant variations in metabolites were attributed to
genotype 3 environment interactions (Beleggia et al.,
2013).

Investigation of the correlations between the me-
tabolites revealed significant relationships between
traits (Fig. 1). For example, a first cluster composed of
sugar-related traits (i.e. Suc and Fru) as well as as-
corbate and dehydroascorbate levels were positively
correlated. A second cluster of positively correlated
metabolites composed of eight proteogenic amino
acids could be distinguished. The traits of these two
clusters were related and had significant and negative
correlations. These relationships have already been
shown, notably between several amino acids and sugar-
related traits (i.e. Fru and Glc).

Within the set of stable traits, ANOVA revealed
significant differences between the three groups of
accessions (S.L, S.C, and S.P) for 25 of 37 (67.5%) of
these traits (for a box-plot representation, see Fig. 2).
For example, the most significant differences (P , 1 3
1029) were observed for ascorbate and dehy-
droascorbate levels or SSC with higher levels in S.P
compared with S.C and S.L. This was previously ob-
served through the detection of QTLs related to as-
corbate levels (Stevens et al., 2007) and related to SSC
(Prudent et al., 2009) as well as through GWA for SSC
(Xu et al., 2013).

Exploitation of the Patterns of LD

The clear population structure allowed us to esti-
mate the patterns of intrachromosomal LD in the three

Table I. Intrachromosomal LD (rs
2) in each tomato group

This estimate takes into account the effect of population structure (Mangin et al., 2012).

Mean Pairwise rs
2 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 All K

S.L 0.5508 0.5988 0.5895 0.5570 0.6029 0.6235 0.5416 0.5397 0.5231 0.5539 0.5938 0.5389 0.5678
S.C 0.5391 0.5318 0.5394 0.5191 0.5500 0.5530 0.5320 0.5337 0.5204 0.5315 0.5619 0.5117 0.5353
S.P 0.3323 0.3239 0.2884 0.3872 0.3557 0.2604 0.3478 0.3338 0.3431 0.3923 0.2917 0.3968 0.3378
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groups of accessions (S.L, S.C, and S.P) using a total of
5,995 genome-wide markers. Our analysis of LD
revealed considerable variation across the tomato

genome in the populations investigated. The same
observation was made in two previous studies that
investigated LD patterns in tomato on a genome-wide

Table II. Detailed information for the 44 significant associations detected within the 36 traits analyzed using the MLMM

Phenotype SNPa Chromosome SNP Positionb P c UniRef Annotation

Locus Name

(International Tomato

Annotation Group 2.3)d

bp

ASA SOLCAP_snp_sl_12749 6 36,931,366 1.42e-05 Peptide transporter, Transcription
Growth Factor-b receptor,
type I/II extracellular region

Solyc06g065020.2

ASA SOLCAP_snp_sl_37057 7 63,886,939 2.94e-10 Conserved gene of unknown function Solyc07g064580.2
ASA SOLCAP_snp_sl_26678 9 2,411,418 1.09e-07 Repressor of silencing1 Solyc09g009080.2
ASA SOLCAP_snp_sl_46662 9 61,773,785 1.07e-05 Gene of unknown function Solyc09g074480.1
ASA SOLCAP_snp_sl_62616 11 3,393,838 4.66e-08 ATP-dependent RNA helicase Solyc11g010310.1
Asn SOLCAP_snp_sl_32389 2 48,943,496 1.93e-07 Copine-like protein Solyc02g093520.2
Asp SOLCAP_snp_sl_11456 4 58,318,210 1.67e-07 Basic helix-loop-helix transcription factor Solyc04g074810.2
SSC SOLCAP_snp_sl_26136 2 29,851,816 7.79e-26 Man-6-P isomerase Solyc02g063220.2
SSC CT232_snp229 2 43,207,682 7.73e-10 UV excision DNA repair protein RAD23 Solyc02g085840.2
SSC SOLCAP_snp_sl_63048 3 71,026 0.0006 CXE carboxylesterase Solyc03g005100.2
SSC SOLCAP_snp_sl_35206 6 1,748,271 2.92e-21 Auxin signaling F-box1 family protein Solyc06g007830.1
SSC SOLCAP_snp_sl_53288 7 60,078,938 1.22e-12 b-1,3-Galactosyl-O-glycosyl-glycoprotein

b-1,6-N-acetylglucosaminyltransferase7
Solyc07g054440.2

SSC SOLCAP_snp_sl_65072 8 59,477,446 5.57e-08 Agenet domain-containing protein Solyc08g078530.2
SSC SOLCAP_snp_sl_39725 9 3,477,979 1.34e-33 b-Fructofuranosidase (lin5) Solyc09g010080.2
SSC SOLCAP_snp_sl_10594 11 2,481,288 1.89e-13 Single-stranded nucleic acid-binding

R3H domain protein
Solyc11g008250.1

SSC SOLCAP_snp_sl_659 12 45,751,611 2.41e-06 Gene of unknown function Nonavailable
Citrate SOLCAP_snp_sl_19899 6 41,345,468 1.48e-07 Conserved gene of unknown function Solyc06g072930.2
DHA SOLCAP_snp_sl_69445 9 64,606,433 3.16e-39 Ubiquitin C-terminal hydrolase family

protein
Solyc09g089560.2

DHA SOLCAP_snp_sl_21770 11 3,063,738 8.49e-07 Pentatricopeptide repeat-containing
protein

SGN-U564017

Erythritol SOLCAP_snp_sl_13558 2 36,559,326 1.24e-07 Pollen allergen Chenopodium a1 Solyc02g076860.2
Erythritol SOLCAP_snp_sl_60698 10 64,445,598 5.98e-16 Flavin oxidoreductase/NADH oxidase Solyc10g086220.1
Fru SOLCAP_snp_sl_16136 5 59,787,171 9.31e-07 Conserved gene of unknown function Solyc05g050500.1
Fru SOLCAP_snp_sl_27215 6 38,384,375 9.05e-07 Katanin p60 ATPase-containing subunit Solyc06g066810.2
Fuc SOLCAP_snp_sl_20802 3 60,860,146 2.70e-07 UV excision repair protein RAD23 Solyc03g117780.2
Fuc SOLCAP_snp_sl_53149 4 53,628,534 1.63e-06 Structural constituent of ribosome Solyc04g056530.1
GABA SOLCAP_snp_sl_35255 6 1,330,594 5.53e-08 D-type of twin-arginine translocation

DNase domain-containing DNase
Solyc06g007310.2

Malate SOLCAP_snp_sl_6196 2 13,905,175 1.28e-06 Gene of unknown function SGN-U565892
Malate SOLCAP_snp_sl_19899 6 41,345,468 2.48e-08 Conserved gene of unknown function Solyc06g072930.2
Nicotinate SOLCAP_snp_sl_29349 2 49,451,582 3.83e-06 Uridylyltransferase PII Solyc02g094300.2
Pro SOLCAP_snp_sl_100675 2 28,798,838 3.71e-06 Conserved gene of unknown function Nonavailable
Pro SOLCAP_snp_sl_32499 6 21,807,134 3.91e-07 Membrane-associated progesterone

receptor component1
Solyc06g035870.2

Rha SOLCAP_snp_sl_40309 1 84,253,735 2.61e-08 Embryo-specific3 SGN-U565850
Rha SOLCAP_snp_sl_34196 3 59,102,190 2.32e-09 Conserved gene of unknown function Solyc03g115250.2
Rha SOLCAP_snp_sl_56631 8 1,403,227 9.41e-06 Patatin1-Kuras2 Solyc08g006860.2
Rha SOLCAP_snp_sl_39722 9 3,484,890 2.10e-10 Gene of unknown function SGN-U565153
Suc SOLCAP_snp_sl_13549 2 36,490,995 2.57e-06 Conserved gene of unknown function Solyc02g076800.1
Suc SOLCAP_snp_sl_17956 4 59,392,982 6.01e-05 Glutamyl-tRNA reductase Solyc04g076870.2
Suc SOLCAP_snp_sl_29483 5 4,037,126 9.51e-09 Glycosyltransferase family GT8 protein Solyc05g009820.2
Threonate SOLCAP_snp_sl_11456 4 58,318,160 5.73e-06 Basic helix-loop-helix transcription

factor
Solyc04g074810.2

Thr SOLCAP_snp_sl_32389 2 48,943,446 3.75e-07 Copine-like protein Solyc02g093520.2
Tocopherol SOLCAP_snp_sl_46445 10 2,199,297 4.35e-07 Conserved gene of unknown function Solyc10g008030.2
Tyramine SOLCAP_snp_sl_14531 8 2,587,919 1.12e-05 Conserved gene of unknown function Solyc08g008120.2
Tyramine SOLCAP_snp_sl_64706 8 57,571,484 1.18e-07 Lys-specific demethylase5A Solyc08g076390.2
Tyramine SOLCAP_snp_sl_36166 11 762,353 1.54e-06 Transcription regulator SGN-U275742

aSNP names as given in the SOLCAP SNP array (http://solcap.msu.edu). bSNP genomic position on the tomato reference genome
(version 2.40). cSNP P values. dName of the locus to which the peak SNP belongs (according to the tomato genome annotation version 2.30).
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scale. Similar average r2 estimates (r2 = 0.464) were
obtained in fresh market tomato populations, reflect-
ing the effects of selection on genome variation and the
breeding history of tomato toward market specializa-
tion (Robbins et al., 2011). However, a second study
highlighted a biased decay of LD between euchromatic
and heterochromatic regions (Shirasawa et al., 2013).
These previous studies support the high level of LD
identified in our study. The different levels of LD may
be interpreted as a direct effect of the domestication
that tomato (especially in S.L) has undergone during
its history, through bottlenecks and selective breeding,
that has led to a reduction in nucleotide diversity and
an extended LD following the elimination of recom-
binant lineages (Hamblin et al., 2011).

In cultivated tomato, LD decays over large genomic
regions (i.e. several hundreds of kb up to several Mb) and
is advantageous for an association mapping approach, as
it requires fewer markers to cover the entire genome. On
the other hand, the difficulty in identifying the underlying
causal polymorphism responsible for the phenotypic
variation represents the main drawback of these large
blocks of LD. Identifying the causal polymorphism from
GWA signals remains challenging, especially in species
where dense genome coverage is still not achieved. To
overcome these limitations, the MLMM proposed by
Segura et al. (2012) handles the confounding effect of
background loci due to LD at the GWA scan step. This
approach outperformed the existing mixed linear models,
notably by reducing the number of significantly associ-
ated SNPs rather than the number of peaks. This reduced

the number of candidate loci it was necessary to screen in
order to identify the causal polymorphism.

GWA for Metabolic Traits

The GWA scan revealed a total of 44 loci (or peak
SNPs) associated with the variation of 19 traits. These
44 loci accounted for various levels of estimated trait
heritability (from 0.168 to 0.773), missing heritability
(from 0.007 to 0.458), and percentage of trait variation
(from 16.2% to 74.3%). These results suggest that dif-
ferent traits have different genetic architectures: in
some cases, a few genes may explain a large propor-
tion of the phenotypic variation (i.e. two loci explain
74.3% of the variation in fruit dehydroascorbate),
while numerous genes may only explain a fraction of
the phenotypic variation (i.e. five loci explain 33.2% of
the ascorbate level variation). These results are sup-
ported by similar observations in rice, where various
genetic architectures were revealed using a GWAS
approach for different traits of agronomic interest
(Zhao et al., 2011). However, it should be noted that in
most GWAS, significantly associated loci might con-
tribute to a larger proportion of phenotypic variation,
as many other small- to medium-effect loci were not
detected due to the stringent threshold used in GWAS
(false discovery rate [FDR]) and the lack of statistical
significance for the control of false negatives caused by
small effect sizes (Visscher et al., 2012). Furthermore,
the estimates of the missing heritability suggest that
for some traits, most (or nearly all) loci underlying the
variation in these traits have been identified through
the genome scan we conducted. For example, for Thr,
the missing heritability has been estimated to be 0.007,
which means that (1) all the loci responsible for the
variation of this trait may have been identified, and (2)
the genetic architecture of this trait may rely on a small
number of genes (only one associated locus in our
study). Conversely, for nicotinate, the genetic archi-
tecture of the trait requires further investigation, since
the missing heritability has been estimated at 0.458,
which means that a large number of small-effect loci or
a limited number of large-effect loci remain to be
identified. Taken together, these observations suggest
that the investigated genetic architecture is usually
more complex than it appears.

A total of 35 of the 44 associated loci (79.5%) were
associated with the metabolic traits (nine loci are as-
sociated with SSC) and accounted for between 16.2%
(Asp) and 50.4% (Rha) of the variation of these traits.
In a previous investigation of QTLs related to meta-
bolic traits using a lower number of lines (n = 76),
Schauer et al. (2008) detected 104 metabolite QTLs for
22 distinct amino acids in tomato. Our results obtained
using a GWAS approach contrast with these results in
terms of the number of QTLs. However, this difference
may reflect the methodological principles underlying
both approaches. The more stringent threshold used
in GWAS (i.e. FDR) and the confounding effect of

Table III. Summary of trait associations showing the heritability of the
trait (h2; step 0 in the MLMM), the missing heritability (h2 at the optimal
model), the percentage of associated variation of the trait (PVE), and the
number of significant loci associated with the trait variation

Phenotype Trait h2 Missing h2 PVE No. of Associations

ASA 0.553 0.333 0.561 5
Asn 0.417 0.208 0.220 1
Asp 0.284 0.301 0.162 1
Brix 0.600 0.185 0.611 9
Citrate 0.423 0.299 0.181 1
DHA 0.595 0.192 0.743 2
Erythritol 0.534 0.286 0.358 2
Fru 0.565 0.250 0.386 2
Fuc 0.415 0.365 0.481 2
GABA 0.415 0.184 0.237 1
Malate 0.642 0.182 0.390 2
Nicotinate 0.595 0.458 0.279 1
Pro 0.773 0.282 0.461 2
Rha 0.579 0.195 0.504 4
Suc 0.585 0.220 0.439 3
Threonate 0.168 0.174 0.170 1
Thr 0.348 0.007 0.187 1
Tocopherol 0.306 0.261 0.224 1
Tyramine 0.612 0.347 0.472 3
Minimum 0.168 0.007 0.162 1
Maximum 0.773 0.458 0.743 9
Median 0.553 0.250 0.386 2
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population structure may explain this difference. This
has been observed in a study of glucosinolate metab-
olites in Arabidopsis (Chan et al., 2010) and a study of
leaf metabolic profiles in maize (Riedelsheimer et al.,
2012). In the latter study, when comparing a linkage
mapping experiment and a GWA scan, increased

genetic variation was reported, suggesting that the
genetic variability is greater in the GWAS, as it relies
on a larger genetic pool (from several up to hundreds
of individuals), whereas a linkage experiment relies on
a much narrower genetic pool (i.e. a couple of parental
lines; Riedelsheimer et al., 2012).

Figure 3. A focus on malate level results. A, Correlation for the malate level over the 2 years of sampling in the collection of
163 accessions. B, Variation of malate level adjusted for the year effect within the three groups. C, Distribution of the adjusted
malate level in the collection. D, Manhattan plot for the 12 tomato chromosomes (x axis) and associated P values for each
marker (y axis). E, QQplots of the observed P value distribution. F, Evolution of genetic variance at each step of the MLMM
(blue, genetic variance explained; green, total genetic variance; red, error) for the optimal model (step indicates extended
Bayesian information criterion). G and H, Allelic effect for the two associated markers on chromosomes 2 and 6.
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The 44 associated loci are spread over the tomato ge-
nome, as every chromosome carries at least one association
(chromosomes 1 and 12), with up to 10 on chromosome 2.
In tomato, chromosome 2 was suggested to be interest-
ing, as it carries a lot of QTLs for traits of interest such as
fresh weight (fw2.2; Frary et al., 2000), fruit morphology
(Causse et al., 2002), and locule number (lcn2.1; Muños
et al., 2011), to name a few (Ranc et al., 2012; Xu et al.,
2013), supporting the identification of numerous associ-
ations on this chromosome in our study.

In several cases, peak SNPs of different traits colo-
calized or the same peak SNP was associated with
different traits. For example, peak SNPs for Suc and
erythritol levels (SOLCAP_snp_sl_12459 and SOLCAP_
snp_sl_13558) colocalized in a region of 68 kb on
chromosome 2. In a similar way, peak SNPs associ-
ated with Asn, Thr, and nicotinate levels were local-
ized within an interval of 508.1 kb on chromosome 2
(SOLCAP_snp_sl_32389 and SOLCAP_snp_sl_29349,
respectively). Such colocalization of peak SNPs has
been observed in other GWAS experiments in tomato
(Xu et al., 2013), Arabidopsis (Bergelson and Roux,
2010), and rice (Zhao et al., 2011), suggesting the
presence of genes with pleiotropic effects or closely
linked genes.

On chromosome 2, both Asn and Thr level traits
are associated with the same peak SNP (SOLCAP_
snp_sl_32389, annotated as a copine-like protein).
These two a-amino acids belong to the class of polar

uncharged side chain amino acids and are indirectly
linked to the Krebs cycle, as their biosynthesis relies on
oxaloacetate, which, as an acceptor compound of this
cycle, is one of its major metabolic intermediates. The
identification of an association between Asn and Thr
levels at the same peak SNP means that this locus is
located in close proximity to one or several crucial and
pleiotropic effect gene(s) directly involved in the met-
abolic pathway of both Asn and Thr synthesis. This
observation suggests that the genomic region around
the peak SNP (SOLCAP_snp_sl_32389) has to be in-
vestigated further to seek for causal polymorphisms
and candidate genes underlying the genetic architec-
ture of the Asn and Thr level traits.

Malate and citrate levels were associated with one peak
SNP located on chromosome 6 (SOLCAP_snp_sl_19899)
and two peak SNPs located on chromosomes 2 and 6
(SOLCAP_snp_sl_6196 and SOLCAP_snp_sl_19899),
respectively (for detailedManhattan plots and LD patterns,
see Fig. 4). Interestingly, malate and citrate were associ-
ated with the same peak SNP (SOLCAP_snp_sl_19899),
located on chromosome 6 and annotated as a conserved
gene of unknown function. This observation suggests
either that, in this genomic region, the LD block that this
peak SNP belongs to is particularly extended or, alter-
natively, this peak SNP was identified close to a gene
involved in the citrate and malate metabolic pathways.
Figure 4B, representing the local pattern of LD around
the peak SNP, suggests that the LD level is relatively

Figure 4. Manhattan plots displaying the –log10 P values (y axis) over genomic positions (x axis) in a window of 2.5 Mb up-
stream and downstream of the two loci associated with the malate level trait that are located on chromosome 2 (A) and
chromosome 6 (B). Different colors are used to represent the pairwise LD estimates (rs

2) for each genomic location.
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low in this genomic region. From a functional point of
view, citrate and malate are two organic compounds
found in most ripe fruits (Etienne et al., 2013) and have
been demonstrated to be highly correlated with many
important regulators of ripening in studies that have
investigated early fruit development (Mounet et al.,
2009; Centeno et al., 2011). This result suggests that, in
this study, we were able to identify a peak SNP that is
located near one or several putative candidate gene(s)
playing a crucial role in the citrate and malate meta-
bolic pathways. Moreover, for the malate level trait, the
phenotype of heterozygous individuals is intermediate
to that of homozygotes (Fig. 3), suggesting an incom-
plete dominance effect.

Searching for Candidate Genes

In this study, we conducted GWA using an MLMM
to identify more precisely putative candidate genes in-
volved in the genetic architecture of fruit metabolic
traits by taking advantage, notably, of the LD pattern.
For numerous peak SNPs, their functional annotation is
not directly linked to the trait they are associated with.
However, for some of these peak SNPs, they directly
target a previously characterized candidate gene or are
located in close proximity to putative candidate genes.
For example, the peak SNP associated with fruit SSC
(SOLCAP_snp_sl_26678) belongs to a previously vali-
dated candidate gene (Solyc09g010080.2, lin5) that en-
codes a cell wall invertase and is a locus for a QTL that
positively affects tomato fruit sugar content; hence, the
important soluble solids commercial trait (Schauer et al.,
2006). However, more putative candidate genes have
been identified in this study. For example, the peak
SNP (SOLCAP_snp_sl_26678) located on chromosome
9 (position: 2,411,368 bp) and associated with fruit
ascorbate levels is located near (423 kb) a mono-
dehydroascorbate reductase (NADH)-like protein
(MDHAR; Solyc09g009390.2, position: 2,835,367 bp)
that has been identified previously using a QTL fine-
mapping approach (Stevens et al., 2008). Similarly, the
peak SNPs associated with nicotinate, malate, and Suc
levels (SOLCAP_snp_sl_29349, SOLCAP_snp_sl_19899,
and SOLCAP_snp_sl_17956, respectively) are also lo-
cated near (680, 7.9, and 68 kb, respectively) putative
candidate genes that play roles in the genetic architec-
ture of the variation of these traits. Indeed, these three
putative candidate genes are described as a nicotinate
phosphoribosyl transferase protein (Solyc02g093290.2,
position: 48,771,224 bp), an aluminum-activated malate
transporter-like (Solyc06g072910.2, position: 41,337,629
bp), and a sugar transporter (galactosylgalactosylxylosyl
protein 3-b-glucuronosyltransferase; Solyc04g076920.2,
position: 59,461,803 bp), respectively. Thus, these re-
sults open the door for subsequent analyses based on
either fine localization of the putative candidate gene
using a targeted resequencing approach combined with
GWAS to identify and confirm the causal polymorphism
or functional validation, for example by transgenic

approaches to investigate the biological role of the
putative candidate gene (e.g. fine-mapping of the fw3.2
locus; Chakrabarti et al., 2013).

CONCLUSION

These results show that high-resolution GWA, by
using an MLMM, has been successful in tomato in
deciphering the genetic architecture of fruit composi-
tion traits. This led to the identification of promising
candidate loci that underlie the genetic architecture of
traits such as fruit malate and citrate levels, opening
the door to further validation and functional investi-
gation of this locus. The next analytical step will rely
on the integration of recent methodological developments
such as data imputation (Marchini and Howie, 2010;
Howie et al., 2012; Porcu et al., 2013) and haplotype-
based models (Powell et al., 2012) and should facilitate
the identification of novel loci with a higher degree of
accuracy.

MATERIALS AND METHODS

Plant Material

The tomato diversity panel consisted of 163 accessions composed of 28
Solanum lycopersicum, 119 S. lycopersicum var cerasiforme, and 16 Solanum
pimpinellifolium samples derived from the previously published core collection
described by Xu et al. (2013). Cherry-type tomato (S.C) is an admixture be-
tween tomato (S.L) and its closest wild relative (S.P), possibly resulting from
the frequent hybridizations between them (Nesbitt and Tanksley, 2002; Ranc
et al., 2008). In GWA experiments, the power to detect genetic effects is linked
to MAF at genotyped loci. The mixing of different groups, populations, or
subspecies within a panel will enhance the efficiency of the approach by
capturing rare and common variants. Using a diversity panel composed of
several subpopulations or species is a common practice in GWA experiments.
For example, in rice (Oryza sativa), Zhao et al. (2011) used a worldwide di-
versity panel composed of five different species to unravel the complex ge-
netics underlying the natural variation of 34 traits in rice. In this study, we
mixed accessions of S.L, S.C, and S.P in order to (1) cover the broader range of
phenotypic and genetic diversity, as we did not expect a uniform distribution
of SNP MAF within each group, and (2) overcome the limited statistical power
of GWA due to the skewed distribution of SNP MAF within the panel, es-
pecially in terms of the detection of false-positive associations (Tabangin et al.,
2009).

Plants (four replicates) were grown in a tunnel in Avignon, France, during
the summers of 2007 and 2008 (growth conditions are also described in
Xu et al., 2013). Fruits were harvested at the ripe stage. Pericarp tissue from
five fruits per accession was collected to be frozen in liquid nitrogen and
stored at 280°C for metabolomic profiling. DNA was isolated from 100 mg of
frozen leaves using to the DNeasy Plant Mini Kit (Qiagen) for the subsequent
genotyping assay. Leaf samples corresponded to fully expanded but non-
senescent leaves. DNA was quantified using the Quant-iT PicoGreen dsDNA
Assay Kit (Invitrogen) according to the manufacturer’s protocol.

Phenotypic Variation

Metabolite Profiling

Tomato pericarp tissue was homogenized, and the exact amount used for
metabolite extractionwas defined. Three biological replicates were analyzed for
each accession. Metabolite extraction, derivatization, gas chromatography-
mass spectrometry, and data processing were performed as described by
Schauer et al. (2006). Metabolites were identified in comparison with database
entries of authentic standards (Kopka et al., 2005; Schauer et al., 2005). A total
of 76 metabolites were measured in our experiment (for the complete list, see
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Supplemental Table S1), including amino acids, sugars and sugar alcohols,
and organic acids.

Ascorbic Acid Level

Ascorbate and dehydroascorbate were measured separately from the me-
tabolite profiling using a microplate assay as described by Stevens et al. (2006) on
the frozen pericarp material stored at 280°C. Extractions and assays were car-
ried out in ice-cold 6% (w/v) TCA in triplicate. The assay used was a spectro-
photometric assay based on the detection of dipyridyl-Fe2+ complexes following
the reduction of Fe3+ to Fe2+ by the reduced form of ascorbate present in the
samples and comparison with standards of known concentrations. Total ascor-
bate (reduced ascorbate + dehydroascorbate) was measured by mixing the
sample with 5 mM dithiothreitol, to reduce dehydroascorbate, prior to the assay.
Dehydroascorbate concentrations, therefore, were calculated to be the difference
between the samples with and without dithiothreitol added.

SSC and Sugars

The concentrations of Fru, Glc, and Suc were determined within the 163
accessions for the 2 years of sampling using the micromethod developed by
Gomez et al. (2007). This method is precise, linear, and accurate when com-
pared with HPLC methods. Measurement of SSC in degrees Brix was per-
formed as described by Xu et al. (2013) on fruit frozen powder derived from
blending fruits with liquid N2. SSC values primarily represent estimates of
sugar content in fruits and vegetables.

Data Normalization and Statistical Analyses

All descriptive statistics and analyses were performed using R 2.15.1 except as
otherwise specified. A nonparametric Kendall test was used to assess agreement
among the biological replicates and to remove any outlier measurements. Thus,
for each year, biological replicates were averaged and the normal distribution of
the data was tested using a Shapiro-Wilk test. The normality test revealed that 29
of the 76 phenotypes (38.1%) were not normally distributed and were log10
transformed. For each phenotype, a linear regression revealed correlation be-
tween the 2 years. Only highly correlated phenotypes (r2 . 0.6) between the
2 years of sampling were averaged and used in the GWAS. The pairwise cor-
relation between phenotypes was evaluated using a Spearman test (P , 0.05).
The graphic representation of the pairwise correlation between the phenotypes
was produced using the R package Corrplot and the hclust clustering method
(Friendly, 2002). Finally, for each phenotype, an ANOVA tested significant
differences between the groups of accessions (S.L, S.C, and S.P). Then, a post-
ANOVA Tukey’s honestly significant difference test created a set of confidence
intervals on the differences between the means of each trait, for which a sig-
nificant association was detected, to test for significant differences between the
pairwise means among the three groups of the panel (i.e. significant difference
for the mean level of malate between S.L and S.P). Significance was declared at
P , 0.05. Finally, the individual missing phenotype data, which ranged from
0.033% to 12.7% (median of 0.32%), were replaced by the mean value of the trait
computed for all the accessions of the panel, as required by the MLMM.

Genotyping Array and SNP Selection

The SNP genotyping was performed using the Infinium assay (Illumina),
developed by the Solanaceae Coordinated Agricultural Project (Hamilton et al.,
2012; Sim et al., 2012) to genotype the collection of tomato accessions (according
to the manufacturer’s standard protocol). The probe sequences and SNP infor-
mation are available from the Solanaceae Coordinated Agricultural Project
(http://solcap.msu.edu). The SNP calling rate threshold per locus was set at
90%. AMAF ranging from 0.037 to 0.45 was used to filter the raw genotype data
set. The minimal MAF was set according to the formula [number of
chromosomes/(2 3 number of individuals)], as proposed by Aulchenko et al.
(2007). The minimal success rate of genotyping per accession was fixed to 90%.
All SNPs and accessions that did not respect these criteria were removed using
the –maf option implemented in Plink! (Purcell et al., 2007).

Estimation of Population Differentiation and Structure

Initially, the fixation index (Weir and Cockerham, 1984) estimation was
performed between the three groups of tomato accessions to get an overview of
the population structure. Then, the Structure software 2.3.3 (Pritchard et al.,
2000; Falush et al., 2003) was used to infer the number of ancestral populations

based on the filtered SNP data set (for the number of sites used, see “Results”)
and thus to assign the 163 individuals to populations (Q matrix). The most likely
number of clusters K in all simulations was assumed to be in the range of
K = 1 to K = 10. Ten replicates were conducted for each Kwith a burn-in period of
1 3 106, followed by 5 3 106 MCMC steps using the Bioportal computing
resource (http://www.mn.uio.no/ibv/bioportal/index.html; Kumar et al., 2009).
These parameters met the requirements for the use of the Structure software
proposed by Gilbert et al. (2012) to ensure the reproducibility of the results of this
study. The ad hoc statistic DK was used to determine the most probable K
(Evanno et al., 2005). The ancestry estimation using Admixture software (Alexander
et al., 2009), based on the maximum likelihood estimation of individual ancestries
from multilocus SNP genotype data sets, was used to support the identification of
the ancestral populations performed with the Structure software.

Kinship and LD Estimation

SPAGeDi software (Hardy and Vekemans, 2002) was used to estimate the
Ritland (1995) matrix of pairwise kinship coefficient (K matrix) from the fil-
tered SNP data set (see “Results”) using a 10,000 bootstrap resampling pro-
cedure. Then, the intrachromosomal LD between all pairs of sites was
estimated using an unbiased (as individuals are not independent) estimation
(named rs

2) that uses the population structure matrix and consisting of in-
formation about the origins of each individual and the admixture proportions
of each individual genome. The method is implemented in the R package
called LDcorSV (Mangin et al., 2012). Finally, the snp.plotter R package gave a
graphic representation of the pairwise LD estimates at a local scale (http://
cran.r-project.org/web/packages/snp.plotter/index.html).

GWA Mapping

GWA analyses were performed with correction for population structure (Q)
and modeling phenotypic covariance with the kinship (K) matrix. QQplots was
used to determine the most appropriate correcting method for each analyzed
phenotype. Thus, these matrices were implemented into a modified version of
the MLMM described by Segura et al. (2012) that takes into account the popu-
lation structure as a cofactor (see the mlmm_cof.r R script at https://cynin.gmi.
oeaw.ac.at/home/resources/mlmm). Briefly, the MLMM is based on the Emma
library (Kang et al., 2008). The approach relies on a simple, stepwise mixed-
model regression with forward inclusion and backward elimination while
reestimating the variance components of the model at each step. This method
increases the detection power and reduces the FDR when compared with tra-
ditional single-locus approaches. Two model selection criteria are implemented
in MLMM for multitesting correction: the extended Bayesian information crite-
rion (Chen and Chen, 2008) and the multiple-Bonferroni criterion, defined as the
largest model in which all cofactors have P values below a Bonferroni-corrected
threshold (we used a threshold of 0.05; for details, see Segura et al., 2012). From
the optimal model obtained with MLMM (according to both the extended
Bayesian information criterion and the multiple-Bonferroni criterion), the per-
centage of variation explained was obtained for each phenotype. Moreover, for
each trait, the phenotypic heritability was obtained at step 0 in the MLMM,
when no marker is included in the model, whereas the missing heritability (the
percentage of the variance not explained by the markers) was obtained at the
optimal step of the MLMM. Briefly, the MLMM partitions the phenotypic var-
iance into genetic, random, and explained variance at each step, suggesting a
natural stopping criterion (genetic variance of 0) for including cofactors. This
estimates the explained and unexplained heritable variance of the analyzed trait.

Data Availability

To ensure their accessibility, the genotyping (5,995 SNPs) and phenotyping
(n = 36) data, as well as the structure and kinship matrices for the 163 ac-
cessions, were deposited on the GNPis repository hosted at https://urgi.
versailles.inra.fr/association (Steinbach et al., 2013). The complete phenotype
data set is also available in Supplemental Table S1.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Manhattan plots for all the studied traits.

Supplemental Table S1. Phenotypic and genotypic data used to perform
the GWA.
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