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Large-scale modeling of plant metabolism provides the possibility to compare and contrast different cellular and environmental
scenarios with the ultimate aim of identifying the components underlying the respective plant behavior. The existing models of
Arabidopsis (Arabidopsis thaliana) are top-down assembled, whereby the starting point is the annotated genome, in particular, the
metabolic genes. Hence, dead-end metabolites and blocked reactions can arise that are subsequently addressed by using gap-
filling algorithms in combination with species-unspecific genes. Here, we present a bottom-up-assembled, large-scale model that
relies solely on Arabidopsis-specific annotations and results in the inclusion of only manually curated reactions. While the
existing models are largely condition unspecific by employing a single biomass reaction, we provide three biomass compositions
that pertain to realistic and frequently examined scenarios: carbon-limiting, nitrogen-limiting, and optimal growth conditions.
The comparative analysis indicates that the proposed Arabidopsis core model exhibits comparable efficiency in carbon
utilization and flexibility to the existing network alternatives. Moreover, the model is utilized to quantify the energy demand
of amino acid and enzyme de novo synthesis in photoautotrophic growth conditions. Illustrated by the case of the most
abundant protein in the world, Rubisco, we determine its synthesis cost in terms of ATP requirements. This, in turn, allows
us to explore the tradeoff between protein synthesis and growth in Arabidopsis. Altogether, the model provides a solid basis for
completely species-specific integration of high-throughput data, such as gene expression levels, and for condition-specific
investigations of in silico metabolic engineering strategies.

Understanding plant responses to changing envi-
ronmental conditions provides the opportunity of
identifying and modifying the components involved
in the underlying cellular mechanisms acting on gene
regulation, signaling, and metabolism (Hannah et al.,
2010; Caldana et al., 2011). Constraint-based modeling
offers the means for predicting the behavior of plants
and, thus, their responses in different environments
based on the stoichiometry of the considered bio-
chemical reactions (Lewis et al., 2012). Therefore,
recent research efforts have been aimed at assembling
large-scale models of plant metabolism at differ-
ent levels of cell type and compartment resolution
(de Oliveira Dal’Molin et al., 2010; Mintz-Oron
et al., 2012). Nevertheless, applications of these
models lag behind their equivalents in the microbial
kingdom, which have been successfully employed in
simulating and predicting the behavior of unicellular
organisms under various internal (e.g. genetic modifi-
cations) and external (e.g. environmental stimuli) per-
turbations (Sweetlove and Ratcliffe, 2011; McCloskey
et al., 2013).

The existing models have been assembled by fol-
lowing a top-down approach, whereby the list of partial
plant-specific, but often not species-specific, anno-
tations is augmented via gap-filling algorithms to
achieve a functional network of biochemical reactions
(Satish Kumar et al., 2007). For simulating plant re-
sponses, an additional assumption is made regarding
the optimization of a biomass reaction, reflecting the
plant composition arising under a particular condi-
tion (de Oliveira Dal’Molin et al., 2010; Williams et al.,
2010). Therefore, any predicted solutions, often result-
ing from the subsequent optimization of secondary
objectives, such as photon usage efficiency (de Oliveira
Dal’Molin et al., 2010) and total flux minimization
(Holzhütter, 2004), pertain to the sole scenario captured
in the biomass reaction. Here, we take a bottom-up
approach to reconstruct a large-scale metabolic net-
work of Arabidopsis (Arabidopsis thaliana) that relies
solely on Arabidopsis-specific annotations and results
in the inclusion of only manually curated reactions (and
thus avoiding the need of using gap-filling algorithms).
In addition, by employing high-throughput data, we
have assembled and validated biomass reactions rep-
resenting carbon-limiting, nitrogen-limiting, and optimal
growth conditions for Arabidopsis.

Enzymes are the driving force of biochemical reac-
tions by enhancing the reaction rates and, accordingly,
forming the link between proteome and metabolome.
Understanding the costs of enzyme production, in terms
of energy demand, provides the opportunity to estimate
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the expenditures for metabolism. In analogy to Craig
and Weber (1998), we define metabolic costs as the
amount of ATP sacrificed by diverting it to enzyme
synthesis instead of utilizing it for ATP production/
formation from ADP and inorganic phosphate (Pi).
Besides the metabolite interconversion, enzyme syn-
thesis constitutes a large part of the metabolic energy
demand. To this end, we investigated and proposed
a solution for the problem of quantifying the cost of
enzymes partitioned into the costs of amino acid bio-
synthesis and protein assembly. While the energy
demand of protein assembly can be well approxi-
mated, as shown in the analysis, the cost of amino
acid biosynthesis requires the consideration of the
underlying metabolic pathways. A careful curated
metabolic model provides the opportunity to deter-
mine biochemically meaningful costs by incorporat-
ing the complexity of the synthesis pathways (Barton
et al., 2010; Sajitz-Hermstein and Nikoloski, 2010;
Kaleta et al., 2013; see “Costs of Amino Acids” be-
low). To this end, we make the distinction between
physical (e.g. light) energy and metabolic equiva-
lents, including ATP and NAD(P)H. Moreover, as
NAD(P)H can be converted into ATP via cellular
respiration, metabolic costs can be solely expressed
in terms of ATP requirements. Finally, and most
importantly, the costs will be biochemically mean-
ingful for photoautotrophic growth conditions if the
enzyme synthesis is only based on low-energy in-
organic precursors (i.e. water, CO2, Pi, NO3

2/NH4
+,

and SO4
22/H2S). Once quantified, the enzyme costs

are used to explore the tradeoff between protein
synthesis and growth, which is the ultimate appli-
cation of the assembled model, as illustrated by the
case of Rubisco.
Large-scale modeling enables the investigation of

specific pathways (e.g. amino acid synthesis) or com-
binations thereof (e.g. carbon metabolism) within their
metabolic context. As metabolic pathways are tightly
interconnected, their functionalities, regarded as ob-
jectives, usually depend on the remaining network.
In the case of Arabidopsis, there already exist a hand-
ful of large-scale metabolic models (Poolman et al.,
2009; de Oliveira Dal’Molin et al., 2010; Mintz-Oron
et al., 2012; Cheung et al., 2013) that assemble a wide
range of Arabidopsis genome-metabolome associations
(Poolman et al., 2009), incorporate compartmentaliza-
tion (de Oliveira Dal’Molin et al., 2010; Mintz-Oron
et al., 2012; Cheung et al., 2013), and, in the case of
one of the most recent, accounts for pathways of the
secondary metabolism (Mintz-Oron et al., 2012). How-
ever, these models are unsuitable or incomplete for the
purpose of determining condition-specific cellular be-
havior as well as the metabolic costs of enzyme pro-
duction. The model of Poolman et al. (2009) reflects
heterotrophic environmental conditions, neglects sub-
cellular compartmentalization (and, thus, also trans-
port reactions), and is not mass balanced regarding
oxygen and protons. While the updated and improved
version of this model, proposed by Cheung et al.

(2013), incorporates subcellular compartmentalization,
the law of mass conservation is still violated. The
subsequent models, including those of de Oliveira
Dal’Molin et al. (2010) and Mintz-Oron et al. (2012),
also tackle this issue and claim that they are capable
additionally of simulating photoautotrophic scenarios.
However, the model of de Oliveira Dal’Molin et al.
(2010) cannot produce all 20 amino acids providing
SO4

22, specifically Arg and His. While the latest model
of Mintz-Oron et al. (2012) resolves this drawback,
other issues arise. On the one hand, the model violates
the law of energy conservation in such a way that
it can produce, for instance, biomass without any
supply of energy, neither in the form of light nor as
high-energy precursors. On the other hand, the gene-
protein reaction (GPR) associations for enzyme com-
plexes comprising isoforms are inaccurate: for all 19
unique complexes, the logical operators declaring
whether genes are encoding different subunits (AND)
or isoforms (OR) are given in such a form that the OR
operation is of higher precedence than the AND opera-
tion. Consequently, for a gene deletion of the large sub-
unit of Rubisco, the model would predict no effect, since
the small subunit of Rubisco (RbcS1A, RbcS2B, and
RbcS3B) is considered a complete isozyme. Beyond these
issues, the model of Mintz-Oron et al. (2012) additionally
covers the secondary metabolism, which can be dis-
regarded for our purposes (i.e. examining the central
carbon metabolism and estimating enzyme costs). For
these reasons, we have assembled a novel metabolic
network capable of producing all amino acids by pro-
viding only inorganic compounds while benefiting from
the inclusion of verified knowledge only.

RESULTS AND DISCUSSION

The starting point for the novel metabolic model
was the photoautotrophic conditions whereby only the
import of light, water, CO2, Pi, NO3

2 and/or NH4
+,

and SO4
22 and/or H2S is allowed. Consequently,

pathways enabling the synthesis of all amino acids
solely from these inorganic compounds were consid-
ered for inclusion. To this end, we first identified the
metabolic precursors of the amino acids and their
pathways: the Calvin-Benson cycle, glycolysis, and
the citric acid cycle (Fig. 1; Supplemental Data S1,
Table S11). We then extended the list of required path-
ways to all associated pathways of the plant central
carbon metabolism, such as light reactions and res-
piration. To assemble a metabolic model that can be
employed to simulate various scenarios, we addition-
ally included the synthesis pathways of the remaining
known major cell components, or at least their precur-
sors. As a result, the first draft of the model comprised
20 pathways and can produce sink and source sug-
ars (i.e. Fru, Glc, and Suc), a cell wall precursor (i.e.
UDP-Glc, a representative of cellulose), a fatty acid
precursor (i.e. malonyl-CoA), and a signaling precursor
(i.e. trehalose).
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The reconstruction process is almost the same as for
a genome-scale metabolic network; therefore, we fol-
lowed the protocol from Thiele and Palsson (2010) in
all steps except the initial step. In contrast to using
genome mapping as in previous top-down reconstruc-
tions, here we started with the essential pathways
of the central carbon metabolism and identified, first,
the underlying reactions, their corresponding Enzyme
Commission (EC) numbers, and, in the end, the an-
notated genes (Fig. 2; see “Materials and Methods”).
Therefore, we denote our approach as bottom up,
resulting in what we term the Arabidopsis core model
(Supplemental Data S2).

The Arabidopsis core model represents a photo-
autotrophically growing Arabidopsis leaf cell but is
also capable of simulating heterotrophic scenarios by
adapting the energy source and disabling the light re-
actions. Due to three experimentally determined biomass
functions (see “Materials and Methods”; Supplemental

Data S1, Text S1.4), defined as the fractional contribu-
tion of known cell components to the overall biomass,
the model can be utilized to simulate three realistic and
frequently examined environmental settings, namely,
carbon-limiting, nitrogen-limiting, and optimal growth
conditions. Altogether, it comprises 236 unique metab-
olites, 345 unique reactions related to 61 unique sub-
systems, which comprise 87 unique internal transport
reactions (Fig. 3; Supplemental Data S3). The subsystems
capture common biochemical pathways and functional
groups such as transport. Moreover, the Arabidopsis core
model is accurate with respect to mass and energy con-
servation, a prerequisite to ensure an optimal nutrient
utilization and biochemical soundness of the predictions.
By means of balancing the atoms of the left-hand and
right-hand sides of all internal reactions, the model uti-
lizes exactly the amount of each precursor to produce
1 unit of biomass as the sum of the molecular formula it
specifies (Supplemental Data S1, Table S6).

Figure 1. Schematic representation of the most basic biochemical pathways comprising the metabolic precursors for the carbon
skeletons of all amino acids. The list of pathways comprising the direct precursors is provided in Supplemental Data S1, Table S11.
Amino acids highlighted in italics have more than one precursor. RuBP, Ribulose-1,5-bisphosphate; 3PGA, 3-phosphoglycerate; DPGA,
1,3-diphosphoglycerate; GAP, glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone phosphate; FBP, fructose-1,6-bisphosphate; F6P,
fructose-6-phosphate; E4P, erythose-4-phosphate; X5P, xylulose-5-phosphate; SBP, seduheptulose-1,7-bisphosphate; S7P, sedoheptulose-
7-phosphate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate; A-CoA, acetyl-CoA; Cit,
citrate; iCit, isocitrate; AKG, a-ketoglutarate; SCA-CoA, succinyl-CoA; SCA, succinate; Fum, fumarate; Mal, malate; OAA, oxalacetate.

Figure 2. Reconstruction workflow for the Arabidopsis core model. The arrow labels represent the databases used: A, AraCyc
11.5 (Mueller et al., 2003); T, The Arabidopsis Information Resource (Lamesch et al., 2012); K, Kyoto Encyclopedia of Genes
and Genomes (Kanehisa and Goto, 2000); U, UniProt (UniProt Consortium, 2013); M, MapMan (Thimm et al., 2004); P, Plant
Proteome Database (Sun et al., 2009); and L, literature. Black arrows refer to the workflow of the bottom-up approach, while
gray arrows denote the steps of the top-down approach.
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Model Comparison

The Arabidopsis core model differs in several issues
from the existing Arabidopsis models (Poolman et al.,
2009; de Oliveira Dal’Molin et al., 2010; Mintz-Oron
et al., 2012), not only due to the particular recon-
struction approach employed. The photoautotrophic
scenario permits only the uptake of inorganic com-
pounds, such that nitrogen, sulfur, and phosphorus
are taken up as ions, a process mostly associated with
proton uptake. In addition, to our knowledge, this is
the first model that includes the corresponding ad-
ditional ATP costs to account for the proton secre-
tion necessary to maintain the intercellular pH value
(Supplemental Data S1, Text S1.2). Furthermore, we
incorporated the electron transport chains, namely,
light reactions and oxidative phosphorylation, as se-
quences of reactions, with each reaction representing
one of the five respective complexes. In doing so, we

included the linkage of photosynthesis and nitrate as-
similation via the competition for the reduced ferre-
doxin and facilitated the consideration of the 14-fold
symmetry of the ATP synthase subunit C, the proton-
powered turbine (Seelert et al., 2000).

Another substantial difference is the consideration
of the GPR associations. As mentioned above, we
considered only organism-specific annotations such
that we accomplished a functional metabolic network
without the support of gap-filling algorithms, unlike
the existing Arabidopsis models (Poolman et al., 2009;
de Oliveira Dal’Molin et al., 2010; Mintz-Oron et al.,
2012). To this end, for only four biochemical reactions
of the Arabidopsis core model are no gene annotations
provided, so-called spontaneous reactions (4/[549 2
229] � 1.25%; Table I). In addition, only reactions in-
volved in maintenance, transport, import, and export
processes, and reactions related to biomass produc-
tion, are not annotated (229 inapplicable; Table I). In
contrast, for the models of de Oliveira Dal’Molin et al.
(2010) and Mintz-Oron et al. (2012), 21% and 37%
of these potentially annotated reactions, respectively,
have no support for an appearance in Arabidopsis.
Importantly, spontaneous reactions are not excluded,
as there is not enough information provided for
their precise identification. Nevertheless, for the Ara-
bidopsis core model, the four nonannotated reactions
are precisely such spontaneous reactions. Moreover,
we did not provide only the common GPR associa-
tions but also rendered the assignments compart-
ment specific where possible. Additionally, we collected
the complete enzyme complex structure with respect
to the stoichiometry (Supplemental Data S1, Text
S1.5, and Supplemental Data S3). Together with the
organism-specific annotations, this enables a reliable
incorporation of Arabidopsis high-throughput data,
such as gene expression levels, and, accordingly,
plausible gene knockout as well as gene expression
studies.

Figure 3. Schematic overview of the major subsystems of the Arabi-
dopsis core model. CBC, Calvin-Benson cycle; TCA, citric acid cycle,
PPP, pentose phosphate pathway; PPi, pyrophosphate; PRPP, phos-
phoribosyl pyrophosphate.

Table I. Model comparison regarding network properties pertaining to gene annotation, functionality, biomass production, and flexibility (i.e. flux
variability and flux coupling)

*, Reactions that are inapplicable for gene annotations cover reactions involved in maintenance, transport, import, or export processes not related
to biomass production. **, The flexibility analysis was performed for the photoautotrophic scenario (Supplemental Data S1, Table S9).

Property Arabidopsis Core Model de Oliveira Dal’Molin et al. (2010) Mintz-Oron et al. (2012)

Total no. of reactions 549 1,601 3,508
Annotated 316 1,177 1,696
Inapplicable* 229 111 811
Annotation deficient 4 313 1,001
Blocked 0 928 0
Redundant importer and exporter** 88 9 92
Additional blocked** 35 21 586
Functional** 426 643 2,830

Maximum biomass units per 1,000 units of CO2 60.2845 55.0119 55.0212
Flux variability frequency (greater than 1%) 0.1423 0.2581 0.9132
Flux coupling frequency 0.0919 0.0412 0.0015

Fully 0.0047 0.0197 0.0009
Partially 0.0145 0.0002 0.0000
Directionally 0.0727 0.0212 0.0006
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There are some aspects in which the Arabidopsis
core model performs differently in comparison with
the existing models. First, we tested the biomass
simulated by the models through maximizing the
production of biomass units under the same photo-
autotrophic conditions (Supplemental Data S1, Table
S9) and by using the biomass reaction of de Oliveira
Dal’Molin et al. (2010). Technically, this maximiza-
tion problem is solved by flux balance analysis (FBA;
Supplemental Data S1, Text S3.1). Based on 1,000
units of CO2, the Arabidopsis core model synthe-
sizes 60.2845 units of biomass, while the models of
de Oliveira Dal’Molin et al. (2010) and Mintz-Oron
et al. (2012) yield 55.0119 and 55.0212 biomass units,
respectively (Table I). This shows that the Arabi-
dopsis core model predicts a more efficient conversion
of CO2 into biomass. Nevertheless, for this purpose, it
assimilates more photons than the model of de Oliveira
Dal’Molin et al. (2010). We stress that it is not possible
to make such a statement for the model of Mintz-Oron
et al. (2012), as, unfortunately, the import of photons is
not necessary to produce biomass under photoauto-
trophic conditions in this model. Since no high-energy,
organic compounds are imported in this model, light is
the only external energy source. Therefore, the model
of Mintz-Oron et al. (2012) violates the law of energy
conservation, such that it produces energy out of nothing
within the system.

Furthermore, we tested the models for their flex-
ibility by examining flux variability, the reaction-
specific range of feasible flux values ensuring optimal
biomass production (Supplemental Data S1, Text S3.2),
and flux coupling, the pairwise dependencies of fea-
sible reaction fluxes (Supplemental Data S1, Text S3.3).
As expected, the Arabidopsis core model has the
lowest flux variability frequency and the highest flux
coupling frequency (Table I), indicating lower flexi-
bility in comparison with the other models considered.
Intuitively, this is caused by the difference in its re-
construction, bottom up instead of top down, and the
resulting smaller number of reactions.

Nevertheless, the comparative analyses are based
only on the functional fraction of the models to ensure
a consistent framework. To this end, we first removed
all blocked reactions and, subsequently, all import
and export reactions, which were rendered redundant
along with the resulting blocked reactions. In this
way, we achieved a considerably smaller but com-
pletely functional metabolic network specifically for
the photoautotrophic conditions. While for the Arabi-
dopsis core model and that of Mintz-Oron et al.
(2012), approximately 80% of the original reactions
are functional, only 40% of the reactions of the model
of de Oliveira Dal’Molin et al. (2010) are operational
(i.e. capable of carrying a nonzero flux). The resulting
functional network sizes are concordant with the re-
spective flexibility; that is, the large functional model
of Mintz-Oron et al. (2012) has a higher flux variability
frequency and a lower flux coupling frequency than
the others. This might result from the multitude of

transport reactions enabling the cell-wide transport
of, for instance, ADP, ATP, NAD(P) NAD(P)H, and
Pi in this model. Moreover, the flexibilities of the
two models capturing only the primary metabolism,
namely, the Arabidopsis core model and the model of
de Oliveira Dal’Molin et al. (2010), are similar. This
demonstrates that, in fact, a bottom-up reconstructed
model can achieve a similar functional network size
to a genome-scale metabolic network, assembled by a
top-down procedure.

Cell Performance with Respect to Different
Cellular Scenarios

The performance of a cell is usually described in
terms of the properties of a specific biochemical pro-
cess, regarded as an objective. For instance, energy
efficiency, expressed through ATP consumption, is
often assumed and used as an objective (Kayser et al.,
2005; Kaleta et al., 2013). To this end, one determines
the number of required ATPs to produce a metabolite
of interest or a set of metabolic precursors representing
a biochemical process, such as Suc or biomass. Ac-
cordingly, the optimal cell performance can be char-
acterized by the minimum amount of required energy.

The validity of the cell performance depends on a
clearly defined cellular state, such as developmental
stage, trophic status of the cell, and cell type. Juvenile
and mature leaf cells differ in their predominantly
active biochemical processes (e.g. photosynthesis to
enhance growth and to synthesize Suc, respectively).
Therefore, the appropriate choice of the biochemical
process of interest is very important. Furthermore,
while under heterotrophic conditions, high-energy
organic precursors are provided to the cell, these pre-
cursors first have to be synthesized from low-energy
inorganic substances under autotrophic conditions.
Consequently, the energy efficiency would at least
differ in the amount of ATP in excess, starting from
the high-energy precursors, and the amount of re-
quired ATP to synthesize them. For this study, we
focused on autotrophic, juvenile leaf cells and assumed
that growth enhancement, as well as energy efficiency,
are appropriate objectives. As a further objective, we
accounted for the optimal resource allocation by de-
termining the minimal precursor requirements for a
functional network.

Altogether, we investigated three different envi-
ronmental conditions (i.e. cellular scenarios), namely,
carbon-limiting, nitrogen-limiting, and ambient growth
conditions. These scenarios are represented by the three
experimentally determined biomass compositions, each
reflecting 1 g dry weight of Arabidopsis leaf material
(Supplemental Data S1, Text S1.4, and Supplemental
Data S4). The ambient, often called optimal, growth
conditions are, if at all, limited by the availability of
energy, which corresponds to light limitation under
autotrophic conditions. The experimental setup for
the nitrogen limitation is based on a protocol from
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Tschoep et al. (2009) that results in a mild but sustained
restriction of growth. In accordance with the authors,
we stress that this differs from earlier nitrogen defi-
ciency experiments, where strong nitrogen limitations
were obtained. In contrast, the carbon limitation is ex-
perimentally realized via short-day conditions (8-h-
light/16-h-dark cycle; Gibon et al., 2004, 2009; Stitt
et al., 2007; Sulpice et al., 2013), which affect the starch
accumulation during the day and result in a restriction
of carbon availability at night (Gibon et al., 2009; Sulpice
et al., 2013).
From the modeling perspective, the limiting envi-

ronmental settings can be implemented by restricting
the import of the respective nutrient source. Thus,
carbon limitation is realized via restricted CO2 import
and nitrogen limitation by constraining NO3

2 and/or
NH4

+ import. For the optimal growth scenario, we
acted on the assumption of light limitation, since un-
limited resource availability is not applicable. None-
theless, as the light absorption of a plant is limited by
its overall leaf surface, this assumption is biochemi-
cally justified. Energy efficiency and minimal precur-
sor requirements are determined by means of FBA
(Supplemental Data S1, Text S3.1). Here, the modeling
characteristic of the photoautotrophic scenario is the
lack of overlap in the supply of nitrogen, carbon, sul-
fur, and phosphorus (i.e. each imported metabolite
comprises only one of these chemical elements). This
substantially simplifies the analysis, as the required
amount of precursors can be readily determined.
As expected, cell performance varies across the cel-

lular scenarios. The carbon-limiting scenario requires
the least amount of each precursor as well as the least
amount of energy equivalents to produce 1 unit of bio-
mass, namely, 1 g dry weight (Table II, columns 2–7).
This indicates that the biomass contains less organic
material in that it comprises more inorganic compounds
or water. On the one hand, this is in accordance with
the calculated biomass coverage (Supplemental Data S1,
Table S7). On the other hand, it points out that the
nominal values of the required precursors are inap-
propriate to compare the different scenarios. Moreover,
regarding the ATP requirement of the system, we em-
phasize that the biomass compositions of the Arabi-
dopsis core model do not include maintenance costs
representing the energy demand necessary for cell
replication, such as macromolecular synthesis (growth-
associated maintenance), and cell maintenance, such as
turgor pressure (non-growth-associated maintenance;

see “Materials and Methods”). These costs are highly
condition specific (Cheung et al., 2013), which would
result in distinct, higher overall ATP demands and,
accordingly, affected photon requirements. As a con-
sequence, we considered the respective ratios of utilized
CO2 and NO3

2 (Table II, column 8), which are notably
smaller for the nitrogen-limiting conditions, implying
that the nitrogen incorporation and accumulation are
increased. Experimentally, it has been confirmed that
Arabidopsis growing under low-NO3

2 concentrations
contains similar levels of proteins and higher levels of
free amino acids (Tschoep et al., 2009). In contrast, the
cell NO3

2 content is reduced more than 10-fold, which,
nevertheless, results in a small decrease of the total
nitrogen concentration. As the biomass reaction does
not comprise NO3

2, only the increase in the organic
nitrogen can be examined. Moreover, it has been ex-
perimentally shown that the reduced overall nitrogen
availability can almost be compensated by an elevated
NO3

2 assimilation (Sulpice et al., 2013). In support of
this claim, the gene expression of the low-affinity NO3

2

transport system is shown to be induced under low
NO3

2 concentrations (Wang et al., 2000). This demon-
strates that the biomass function used in our modeling
also reflects cell storage.

Estimation of Enzyme Costs

Metabolic costs can be considered as the amount
of energy, in terms of ATP, sacrificed by diverting it
to the synthesis of a building block instead of utiliz-
ing it for ATP production/formation from ADP and
Pi (Craig and Weber, 1998). The metabolic costs of
an enzyme are mainly determined by its de novo
synthesis costs related to its turnover and recycling.
The half-life, and thus the turnover, of a protein can
be approximated by means of the N-terminal amino
acid residue, the so-called N-end rule (Varshavsky,
1992). For Escherichia coli, Saccharomyces cerevisiae, and
mammalian cells, there exist quite precise protein
turnover values for the different N-terminal residues
(Bachmair et al., 1986; Gonda et al., 1989). For plants,
in contrast, while the stability order of chloroplastic
and cytosolic proteins has been resolved (Apel et al.,
2010; Graciet et al., 2010), determining the turnover
times requires further investigations. Nevertheless, the
key aspect of a proper estimation of enzyme costs is
the adequate modeling of protein synthesis. This process

Table II. Minimum requirements of precursors and energy equivalents to produce 1 g of dry weight of biomass of the representative cellular scenarios

The italic entries denote the respective limiting precursor.

Cellular Scenario
Minimal Precursor Consumption Precursor Ratio

Photon CO2 NO3
2 Pi SO4

22 ATP Photon:CO2 Photon:NO3
2 CO2:NO3

2

mmol d21

Optimal growth 196.862 20.621 2.595 0.013 0.065 186.316 9.547 75.875 7.948
Carbon limitation 182.639 19.192 2.350 0.013 0.058 172.854 9.517 77.714 8.166
Nitrogen limitation 259.648 26.737 4.104 0.014 0.099 245.738 9.711 63.260 6.514
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actually comprises three parts: (1) the biosynthesis
of the single amino acids, (2) the composition of the
amino acid sequence, and (3) the protein maturation.
The costs of each part are separately determined and
are then summed.

The costs for producing amino acids were approxi-
mated based on the assembled model. For this pur-
pose, we relied on the assumption that the plant uses
the synthesis pathway requiring the least amount of
energy, in terms of ATP. The underlying optimization
is solved using FBA (Supplemental Data S1, Text S3.1).
Since light energy is provided in the photoautotro-
phic scenario, we were able to directly restrict the
consumption of energy instead of falling back on the
utilization of metabolic precursors such as Glc. Sub-
sequently, the minimal amount of required photons
was converted into, on the one hand, the amount of
ATP required to synthesize the amino acid of interest
and, on the other hand, the remaining number of ATPs
available for other processes (Supplemental Data S1,
Text S3.1). The result of these calculations is the min-
imal metabolic energy cost in terms of ATP (Fig. 4;
Supplemental Data S1, Table S11) and provides one
possible steady-state flux distribution (i.e. a possible
flux through the system that permits the synthesis of
the amino acid without any accumulation or depletion
of other metabolites).

To establish a cost measure for the protein synthesis
in terms of assembling the amino acid sequence, a
representative amino acid sequence for the respective
enzyme has to be determined. This is in almost all
cases not unique, as enzymes can be multimers, can
have isoforms, and/or different splicing forms can
exist. Unfortunately, the complex structure of enzymes
is only seldom available, predominantly from the
Braunschweig Enzyme Database (Schomburg et al.,
2013) and the AraCyc database (Mueller et al., 2003).

Moreover, the structure of some enzymes varies across
species and/or environmental conditions, such as for
ATP synthase (EC 3.6.3.14). Its proton-powered tur-
bine, encoded by subunit III, is predicted to consist of
12 subunits in E. coli, 10 subunits in S. cerevisiae, and 14
subunits for plants (Seelert et al., 2000). Furthermore,
there is evidence that the size of this proton-powered
turbine changes under stress conditions, indicating a
modification in the subunit stoichiometry (Löw et al.,
1996). As a consequence, we accounted only for plant
data and collected all verified compositions. We fol-
lowed a similar procedure for the identification of
subunit isoforms or whole isozymes as well as for
different splicing forms of the encoding genes. Finally,
we assembled all different combinations of enzyme
compositions and, thereby, yielded for Rubisco 3,003
potential amino acid sequences.

To assign protein assembly costs, the next task
consists of identifying the energy-demanding steps,
which are 4-fold: (1) the amino acid activation, with
an estimated cost of two molecules of ATP per amino
acid; and the three stages of the translation process:
(2) initiation, (3) elongation, and (4) termination
(Supplemental Data S1, Table S8). Thereby, the for-
mation of the initiation complex requires approxi-
mately three molecules of ATP per polypeptide, and
the elongation of the amino acid sequence consumes
two molecules of ATP per cycle and, thus, per amino
acid. The final release of the new polypeptide during
the termination stage costs another one molecule of
ATP per polypeptide.

The third component of the enzyme costs is related
to the energy requirements for protein maturation.
This comprises costs for error correction and mainte-
nance of the biosynthesis apparatus, the synthesis of
signal sequences, and posttranslational processing
such as methylation and phosphorylation (Zerihun

Figure 4. Amino acid costs based on the Arabidopsis core model under optimal growth conditions. The white numbers on the
bars denote the average ranking over the amino acid cost estimation of Craig and Weber (1998), Akashi and Gojobori (2002),
Seligmann (2003), Wagner (2005), Barton et al. (2010), Sajitz-Hermstein and Nikoloski (2010), and the Arabidopsis core model
(Supplemental Data S1, Table S11). For comparison, the amino acid composition with respect to the size of the carbon skeleton
and the number of incorporated amine groups and sulfur is given in the bar plot at bottom.
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et al., 1998; Noguchi et al., 2001). Therefore, one can
approximate another one molecule of ATP per amino
acid for protein maturation (Supplemental Data S1,
Table S8). Altogether, the simplified costs of protein
synthesis and maturation can be estimated by five
molecules of ATP per amino acid residue.
Due to the multitude of previously determined

amino acid sequences, the resulting costs of an enzyme
may lie in a large range. As the enzyme costs are based
on the minimal amino acid costs, they are under-
estimated. The minimal cost value serves as a lower
boundary for the estimation.
The range of costs permits insights into the extent of

variation in actual enzyme costs. The comparison of
different enzyme costs may be of specific interest to
identify enzymes with highly variable costs. These
enzymes may serve as a target for improving the
systems efficiency, in terms of metabolic engineering.

Costs of Amino Acids

Amino acids are the basic components of all pro-
teins. In metabolic modeling, they are often even used
as protein representatives, as the protein synthesis
itself is too elaborate to be modeled accurately. The
various and intricate synthesis pathways of the dif-
ferent amino acids result in such a highly complex
network that even their minimal costs lie in a quite
wide range of 22.5 to 117.4 molecules of ATP (Fig. 4;
Supplemental Data S1, Table S11). The costs largely
comply with the size of the corresponding amino
acids. This compliance becomes higher by further
considering other chemical features, such as the num-
ber of amine groups or the incidence of sulfur. It
seems that the incorporation of additional amine
groups (e.g. Arg and Lys) as well as the incorporation
of sulfur (as for Cys and Met) are expensive. Appar-
ently, also the formation of cyclic, especially aromatic,
structures is very expensive. This is the case for Trp,
Tyr, and Phe, the aromatic amino acids, as well as for
His, which additionally contains three amine groups.
Altogether, the calculated minimal costs coincide rather
well with the complexity of the corresponding amino
acids.
The comparison with existing cost measures facili-

tates the evaluation of our cost estimation (Supplemental
Data S1, Table S11). The existing approaches are 3-fold:
(1) based on physiochemical properties of amino acids;
(2) relying on selected metabolic pathways; and (3) based
on genome-scale models. Seligmann (2003) employed the
former approach using the molecular weight of the
amino acids as an approximation of their synthesis costs.
This enables a valid estimation across all species, as the
molecular weight is constant (Supplemental Data S1,
Table S11). In contrast, the remaining two approaches
incorporate organism-specific information. For instance,
Craig and Weber (1998), Akashi and Gojobori (2002), as
well as Wagner (2005) followed the second approach,
relying on glycolysis, the citric acid cycle, and the

pentose phosphate pathway. Intermediates of these
pathways are provided as precursors for the amino
acid synthesis, and the ATP equivalents directly in-
vested into amino acid synthesis are counted. These
studies were conducted for E. coli and S. cerevisiae.
With the existing genome-scale metabolic models,
the determination of amino acid costs in the meta-
bolic context has been enabled for full genome-
sequenced organisms, such that, first, plant-specific
costs were calculated. Barton et al. (2010), Sajitz-
Hermstein and Nikoloski (2010), and Kaleta et al.
(2013) determined the costs for S. cerevisiae, Arabi-
dopsis, and E. coli, respectively, and compared their
results with calculations based on central metabolic
precursors. Sajitz-Hermstein and Nikoloski (2010)
provided an estimation specifically for day and night
scenarios, whereby the minimal number of required
ATP equivalents is determined with Glc provided to
the system.

While all these studies describe heterotrophic sce-
narios, our estimations are determined for autotrophic
conditions. Moreover, as only the approximation of
Sajitz-Hermstein and Nikoloski (2010) is plant specific,
we only consider the ranking of the amino acids for
comparison. By ordering the amino acids regarding
their average rank over all measures, they can be di-
vided into four groups coinciding with our cost ranking:
the five cheapest amino acids (Ala, Gly, Ser, Asp, and
Asn), two groups of six and four moderately costly ones,
respectively (Thr, Pro, Cys, Glu, Gln, and Val as well
as Met, Ile, Lys, and Leu), and the five most expensive
ones (Arg, His, Phe, Tyr, and Trp; Fig. 4; Supplemental
Data S1, Table S11). Particularly for the last group, the
ranking is fully consistent, as even the order within the
group is the same.

Costs of Rubisco

Rubisco is the most abundant protein in plant cells
and, moreover, the most abundant protein in the world
(Ellis, 1979). It is one of the key enzymes of photosyn-
thesis; more precisely, it is the initial enzyme of the
Calvin-Benson cycle. This attributed key position can
be explained, on the one hand, by its very low catalytic
rate of 3.4 to 3.7 fixed molecules of CO2 per second
(Tcherkez et al., 2006); on the other hand, it is justi-
fied by the substrate competition. Approximately each
fourth reaction proceeds with oxygen instead of CO2
(Peterhansel and Maurino, 2011), whereby the respec-
tive catalytic rate is even lower, 0.42 fixed molecules of
oxygen per second (Whitney et al., 2009).

A single Rubisco complex comprises 16 subunits,
eight large and eight small ones. The large subunits are
encoded by a single gene in Arabidopsis, namely,
ATCG00490. In contrast, the small subunits can be de-
rived from four different genes, AT1G67090, AT5G38430,
AT5G38420, and AT5G38410, which, furthermore, occur
in two, one, one, and three splicing forms, respectively.
In order to determine the costs for Rubisco, all possible
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3,003 amino acid compositions have to be analyzed.
The resulting range of costs accounts for 243,287.9 to
269,133.9 molecules of ATP per complex (Supplemental
Data S1, Table S12). For the same amount of ATP, be-
tween 2,508.1 and 2,774.6 molecules of Suc can be
synthesized. To obtain a better impression of this huge
amount of ATP, we converted the number of ATP
molecules in the standard unit of physical energy.
Using the Gibbs free energy of ATP synthase, one can
easily establish that 36 kJ mol21 ATP (Turina et al., 2003)
results in 1.454 to 1.609 3 10214 J per complex or 8.758
to 9.689 J nmol21 Rubisco. In comparison, 1 nmol of
Rubisco has a mass of 0.55 mg, and the human heart
and brain consume roughly 2 and 20 J s21 (Rigden,
1996; Drubach, 2000; Williams et al., 2001), respectively.

Probably of greatest interest is the amortization of
the production costs of Rubisco. To this end, one can
consider the resource allocation tradeoff between
growth and protein synthesis as two contending tasks:
increasing the leaf area allows a higher light absorp-
tion, while enhancing protein synthesis stimulates and
accelerates the metabolism. By means of the biomass
composition representing optimal growth conditions,
we were able to determine the potential growth en-
hancement, in terms of produced biomass, if resources
are not utilized toward synthesizing Rubisco. Based on
the assumption that 1 unit of biomass represents 1 g
dry weight of an Arabidopsis rosette, instead of syn-
thesizing 1 nmol of Rubisco, the plant could gain
1.3058 to 1.4445 mg dry weight. The plants that were
used to assemble the optimal growth biomass com-
position had an average mass of 124.36 mg fresh
weight (Sulpice et al., 2013), approximately 10.94 mg
dry weight, which indicates an increase of 12% to 13%
dry weight. Certainly, this is only an approximation,
as, on the one hand, de novo synthesis of Rubisco is
considered and, on the other hand, cell maintenance
costs are not incorporated (see “Materials andMethods”).
However, these values seem to be in a physiologically
plausible range, considering a half-life of Rubisco of ap-
proximately 7 d in mature leaves (Piques et al., 2009) and
an absolute growth rate of 0.9 mg dry weight d21 (Meyer
et al., 2004). According to this, Arabidopsis gains ap-
proximately 6.3 mg dry weight while one complex of
Rubisco has to be resynthesized.

Perspectives of Estimating Enzyme Costs

The presented enzyme cost estimation takes into
account only the required energy for de novo synthe-
sizing a complex of Rubisco. However, in homeostasis,
synthesis costs are relevant only if the degrada-
tion process is also considered. Accordingly, only the
amount of degraded enzyme has to be synthesized,
whereby the breakdown process itself can involve
additional energy requirements. Overall, the actual
enzyme costs are highly affected by the protein deg-
radation (rate), which varies with the environmental
scenarios.

A possible approach to assess protein degradation is
the examination of the relative costs per reaction. One
complex of Rubisco can catalyze in parallel eight car-
boxylation or oxygenation reactions. Moreover, as
mentioned above, Rubisco has a half-life of approxi-
mately 7 d (Piques et al., 2009), which results in a total
number of approximately 1.6 to 1.74 million reactions
per complex. Relative to each ongoing reaction, the
costs for a complex of Rubisco are between 0.14 and
0.17 parts of a molecule of ATP per Rubisco reaction.
These additional costs represent an essential part of the
overall metabolic costs that should be incorporated for
the involved enzymes. Consequently, the cost estima-
tions for all soluble metabolites, amino acids as well as
enzymes, have to be updated. This will improve the
current estimations and lead to new insights regarding
the metabolic relevance of the enzymes, as the enzy-
matic influences can be taken into account.

CONCLUSION

In this study, we presented a bottom-up reconstruc-
tion of the extended central carbon metabolism of
a young Arabidopsis leaf cell and demonstrated that
the resulting metabolic network model can be used to
effectively simulate photoautotrophic conditions. Due
to the bottom-up reconstruction and careful manual
curation, we resolved the shortcomings of the existing
genome-scale models of Arabidopsis, such as (1) the
demand for using gap-filling algorithms and, accord-
ingly, a low gene annotation coverage of the reactions
(de Oliveira Dal’Molin et al., 2010; Mintz-Oron et al.,

Table III. Major biomass components of a photoautotrophic Arabidopsis leaf cell and their approximated
composition with respect to dry weight

The detailed composite is given in Supplemental Data S1, Text S1.4.

Component Composition References

mmol g21 dry wt

Cell wall 363.88a DeBolt et al. (2009)
Protein 2,911.09b Mooney et al. (2006); Sulpice et al. (2013)
Soluble metabolites 214.66b Sulpice et al. (2013)
Lipid 779.97b Dörmann et al. (1995)
Starch 294.86a,b Sulpice et al. (2013)
DNA and RNA 4.25b Sharrock and Clack (2002)

aValues for Glc dimer. bValues of optimal growth conditions.
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2012); (2) the occurrence of dead-end metabolites and
blocked reactions (Poolman et al., 2009; de Oliveira
Dal’Molin et al., 2010); (3) potential violations of mass
and energy conservation (Poolman et al., 2009; Mintz-
Oron et al., 2012); and/or (4) incorrect GPR associations
(Mintz-Oron et al., 2012). Combined with the extended
GPR associations presented here (i.e. the incorporation
of the complex stoichiometry), the Arabidopsis core
model can be readily employed for the integration of
high-throughput data (e.g. gene expression studies) and
for investigations of other in silico metabolic engineer-
ing scenarios (e.g. codon usage optimization).
In comparison with the existing compartmentalized

Arabidopsis models (de Oliveira Dal’Molin et al., 2010;
Mintz-Oron et al., 2012), the Arabidopsis core model
presented here shows slightly higher efficiency in
carbon utilization and flexibility similar to that of
de Oliveira Dal’Molin et al. (2010). In contrast to these
models, the Arabidopsis core model comprises three
biomass reactions that pertain to frequently examined
scenarios: carbon-limiting, nitrogen-limiting, and optimal
growth conditions. The underlying compositions are
determined experimentally and enable biologically
reliable condition-specific analyses of young leaf metab-
olism and the plant response.
Moreover, we demonstrated the application of the

Arabidopsis core model to estimate the energy de-
mand of amino acid and enzyme synthesis in photo-
autotrophic conditions. Using the example of Rubisco,
the predominant protein in the world, we specify the
costs of protein de novo synthesis, in terms of ATP
requirements, and provide an approximation of the
costs per catalyzed reaction. Finally, we used the
Arabidopsis core model to explore the tradeoff be-
tween protein synthesis and growth to quantify how
much energy resources, in terms of ATP, are sacrificed
on synthesizing proteins instead of dedicating them to
biomass production and vice versa.

MATERIALS AND METHODS
The reconstruction of the Arabidopsis (Arabidopsis thaliana) core model is in

accordance with the protocol from Thiele and Palsson (2010), except for the
initial step. We started from well-documented and essential biochemical path-
ways and identified the underlying reactions and their corresponding EC
numbers and, in the end, assigned the annotated genes (Fig. 2). This first, auto-
mated draft was assembled by means of the AraCyc 11.5 (Mueller et al., 2003),
The Arabidopsis Information Resource (Lamesch et al., 2012), Kyoto Encyclopedia
of Genes and Genomes (Kanehisa and Goto, 2000), UniProt (UniProt Consortium,
2013), and MapMan (Thimm et al., 2004) databases. Thereby, we only considered
organism-specific data, particularly for the gene identification.

In the nextmanual curation stage, every entry of thedraftwas examined critically
and the information was corrected, improved, or completed. This comprised the
assignment of the correctmetabolite formulas depending on the occurring pHvalue.
As the model should be adaptable for different cell scenarios and the pH value of
the cell varies with the environmental conditions, we enabled the assignment of
pH-dependent charged formulas. Thereby, given the pH value of a compartment,
the charge and, consequently, the metabolite formula were determined by
employing the International Chemical Identifier keys and the resulting pKa values.

Moreover, we assigned information about the subcellular localization of a
reaction extracted from The Arabidopsis Information Resource (Lamesch et al.,
2012), Plant Proteome Database (Sun et al., 2009), and UniProt (UniProt
Consortium, 2013) databases (Fig. 2). We took into account four subcellular
compartments: the chloroplast, the mitochondrion, the peroxisome, and the

cytosol, which represents all remaining cell compartments. If contradictory or no
information was available, we followed these three rules of thumb: (1) assign the
compartment of the reactions in the vicinity of the pathway; (2) allow spontaneous
reactions to be assigned in all compartments; and otherwise (3) restrict the reaction
to take place only in the cytosol.

The compartmentalization not only requires but permits the incorporation
of subcellular transport reactions, representing active and passive transport
processes across compartment boundaries (also termed transporters). To avoid
futile cycles and to achieve a biologically reliable network, we attempted to
minimize the number of internal transporters and included primarily verified
transport reactions. A thorough literature scan resulted in 87 different suitable
transport reactions, including diffusion processes of small, hydrophilic com-
ponents as well as reactions realized by uniporters, symporters, and anti-
porters. Transport reactions affecting the peroxisome were modeled as
diffusion, since the case is still not fully resolvedwhether active transporters are
needed. Notably, experimentally verified transporters exist only for a small
portion ofmetabolites. To render themodel functional, in terms of ensuring that
all reactions are functional (i.e. can carry flux), we had to consider incorporating
unconfirmed or even unreported transport reactions whose existence is
speculated by experimentalists (Pick et al., 2013).

Biologically, probably the most important step is the specification of a bio-
mass function, defined as the fractional contribution of known cell components
to the overall biomass. As the biomass varies with the cellular scenario, we have
to account for the developmental stage of the cell and the cell type as well as the
environmental conditions. While growing cells produce the required compo-
nents for cell division and expansion, mature leaf cells mainly synthesize the
transport sugar, Suc (Williams et al., 2000; Geiger, 2011). In contrast, mature
stem cells predominantly serve as a mechanical support and transport system
and, usually, convert the transport sugars into cell wall components. In ad-
dition, the overall biomass composition under ambient conditions greatly
differs from the composition under stress conditions (Obata and Fernie, 2012).
For these purposes, we assembled three different biomass functions for the
model, focusing on growing leaf cells and, therefore, comprising sugars,
amino acids, nucleotides, and precursors for cell wall, fatty acids, and sig-
naling pathways (Table III; Supplemental Data S1, Text S1.4; Supplemental
Data S4; Supplemental Data S5). The proposed biomass compositions used in
the presented model refer to rosette fresh weight measurements of autotro-
phically grown plants, which are converted into dry weight for modeling
consistency (Supplemental Data S1, Text S1.4). In contrast, the biomass com-
positions of the existing genome-scale Arabidopsis models were either ex-
perimentally determined heterotrophic cell culture compositions (Williams
et al., 2008, 2010; Poolman et al., 2009) or estimated leaf cell compositions (de
Oliveira Dal’Molin et al., 2010).

It is noteworthy that the biomass compositions of the Arabidopsis core
model do not cover the maintenance costs of a cell representing the energy
demand necessary for cell replication, such as macromolecular synthesis
(growth-associated maintenance), and cell maintenance, such as turgor
pressure (non-growth-associated maintenance). The reasons for this are 2-fold:
(1) the established underlying experimental determination (Cheung et al., 2013),
unfortunately, is not applicable for photoautotrophic scenarios; and (2) a
general approximation is biologically implausible, as the maintenance energy
demand is highly condition specific. Cheung et al. (2013) could approximate
the difference between the energy expenditure of the cell, measured in terms
of Glc uptake, and the requirement for synthesizing biomass in silico for
heterotrophic Arabidopsis cell cultures. An analogous measurement for the
photoautotrophic scenario would require the determination of the respective
energy source (e.g. photons). Furthermore, in the study of Cheung et al.
(2013), it was shown that the maintenance costs are highly condition specific,
between 13% and 79% of total ATP produced. Consequently, the approxi-
mation of a general cost value for the three different growth conditions in the
photoautotrophic scenario based on the heterotrophic cell culture data would
be biologically unacceptable.

After collecting and reviewing, the resulting reconstructionwas converted into
a mathematical model using the COBRA toolbox. Thereby, we emphasize that
this single model can account for all three cellular scenarios by adjusting the
model parameters. To facilitate easy access and wide usability, we provide these
models in Systems Biology MarkUp Language format (Supplemental Data S2).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Data S1. Supplemental text, including Tables S1 to S12.
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Supplemental Data S2. Arabidopsis core model in Systems Biology
MarkUp Language.

Supplemental Data S3. Reaction list.

Supplemental Data S4. Gas chromatography-mass spectrometry data.

Supplemental Data S5. Two-dimensional gel data.
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