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Summary

Exploration permits acquisition of the most relevant information during learning. However, the

specific information needed, the influences of this information on decision-making, and the

relevant neural mechanisms remain poorly understood. We modeled distinct information types

available during contextual association learning and used model-based fMRI in conjunction with

manipulation of exploratory decision-making to identify neural activity associated with

information-based decisions. We identified hippocampal-prefrontal contributions to advantageous

decisions based on immediately available novel information, distinct from striatal contributions to

advantageous decisions based on the sum total available (accumulated) information. Furthermore,

network-level interactions among these regions during exploratory decision-making were related

to learning success. These findings link strategic exploration decisions during learning to

quantifiable information and advance understanding of adaptive behavior by identifying the

distinct and interactive nature of brain-network contributions to decisions based on distinct

information types.

Exploration behaviors during learning critically determine the information that is available

and can be used to strategically acquire specific information needed to fill gaps in our

memory/knowledge (Metcalfe and Jacobs, 2010). Exploration can thus determine what is

learned, and learned information can in turn determine what will be explored. However

crucial these mutual exploration-learning interactions are for memory success, little is

known regarding their dynamics or neural mechanisms in humans.

Nonhuman animals can explore adaptively to improve learning. For instance, rodents

sporadically exhibit iterative viewing of options at decision points during maze learning.

This exploration pattern predicts learning success and effective generalization when the

maze is subsequently altered (Tolman, 1948) and has been associated with hippocampal

function (Buckner, 2010; Johnson and Redish, 2007). We have identified hippocampal-
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centered brain networks in humans associated with exploration behaviors that enhance

learning, relative to receipt of the same stimuli but without active exploration (Voss et al.,

2011a; 2011b). Interestingly, a specific exploration pattern that enhanced learning and

hippocampal-prefrontal engagement was the revisitation of recently seen objects (Voss et

al., 2011b), similar to the strategic exploration pattern observed in rodent maze learning.

These findings implicate hippocampus and prefrontal cortex in online control of exploration

(Buckner, 2010; Eichenbaum and Fortin, 2009; Wang et al., in press), which could extend

current functional accounts of these structures in advantageous decisions based on long-term

memory (Buckner and Carroll, 2007; Schacter et al., 2012). In parallel research, dopamine-

modulated pathways centered on the basal ganglia have been associated with strategic

exploration during reinforcement learning and reward seeking (Hills, 2006; Pennartz et al.,

2009), which could interact with hippocampus to support joint memory-reward influences

on exploration (Shohamy and Adcock, 2010). However, further specification of the unique

and interactive roles of hippocampus, prefrontal cortex, and basal ganglia in exploration will

require measurement of the information that must be learned, such that the exploration

decisions made to acquire this information can be isolated.

Indeed, it is an exceptional challenge to quantify the information on which individuals base

exploration decisions during learning. Although it is possible to measure visual information

for many stimuli (Beard and Ahumada, 1998), including entropy information relevant to

novelty (Strange et al., 2005), this information does not necessarily drive exploration

decisions. For instance, episodic learning is critically dependent on conceptual, gist,

contextual, and other information types that are difficult to quantify. Moreover, current

decision-making models, such as those for reinforcement learning, capitalize on the strong

influence of reward on behavior to estimate internal decision variables (Frank and Claus,

2006), and in doing so conflate information available in the environment, information that is

actually learned, and putative decision-making processes. Because available information

cannot be isolated by these models (and likewise for many models of perceptual decisions),

they do not permit isolation of the exploration decisions used to selectively acquire this

information. Furthermore, existing decision-making models generally account for learning

of single parameters such as reward likelihood or perceptual identity (Ding and Gold, 2013).

In contrast, episodic learning can require the integration of multiple information types over

time (i.e., objects sampled within scenes, associations among sequentially presented items,

etc.), thereby increasing the uncertainty of directly modeling decision-related variables.

To overcome these challenges, we adopted a blended modeling and experimental approach,

whereby we modeled the information available during episodic learning and manipulated the

ability to control exploration in order to isolate decisions based on modeled information. A

contextual-association learning task required exploration of different contexts to identify

contextual rules for item-item associations (similar to Badre et al., 2009). This allowed us to

quantify contextual association information relevant for learning, based on extensions of

optimal foraging theory that consider information as a finite resource that requires sampling

(Hills, 2006; Pirolli and Card, 1999). Using a simple model with minimal assumptions, we

quantified two aspects of information conceptualized as having distinct influences on

learning and exploration (Frank et al., 2001; Johnson et al., 2012): (1) newly available

information (NAI), which is the increase in available information provided when an event
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provides new information regarding contextual associations, and (2) accumulated available

information (AAI), which is the total information previously encountered during exploration

measured at any moment. To isolate exploration decisions, we manipulated the ability to

actively explore using a condition in which subjects could control exploration (Active

Learning) versus a condition in which the same information was passively studied (Passive

Learning, as in Voss et al., 2011a; 2011b). This allowed us to isolate behavioral and neural

correlates of exploration decisions based on modeled NAI and AAI using model-based

fMRI in conjunction with comparisons between Active and Passive conditions.

We reasoned that neural activity associated with Active decisions based on NAI (relative to

Passive exposure to NAI) would implicate regions in exploration decision-making based on

information that is immediately novel. Although prevailing accounts of hippocampal and

prefrontal contributions to adaptive behavior emphasize long-term memory (Buckner and

Carroll, 2007; Schacter et al., 2012), we found hippocampal and prefrontal involvement in

NAI-based decisions, reflecting their role in the immediate use of novel information to

support exploration decisions. In contrast, we identified regions of dorsal striatum associated

with Active decisions based on AAI. This implicates dorsal striatum in exploration decisions

based on accumulated information, substantiating theorized roles in strategic behavioral

planning (Alexander et al., 1986; Martin, 1996) beyond involvement in slow learning of

predictable stimulus-response associations (Packard and Knowlton, 2002). Finally, measures

of background connectivity (Norman-Haignere et al., 2012) were analyzed to test putative

network-level interactivity among these AAI-related and NAI-related regions in relation to

advantageous exploration decisions. We found that greater interactivity predicted superior

learning, indicating an important role for interplay of AAI- and NAI-related processing for

advantageous exploration decisions.

Results

Relationships among NAI and AAI, exploration strategies, and learning

On each trial, an object and two faces were presented in one of four screen quadrants (Figure

1). The object had two features (shape and texture), and the quadrant determined the feature

that was relevant for the object-face association. Subjects learned the correct object-face

pairings and thus the relevant feature for each quadrant based on feedback. We used the

pattern of quadrant visits and object-face pairings to calculate NAI and AAI (Figure 2,

Experimental Procedures). We first sought to identify effects of NAI and AAI on

exploration choices and on learning success in the Active condition, using the full sample

(N=42) such that we could identify exploration strategies used by high-performing subjects

(performing above chance; see Experimental Procedures) in contrast to the lack of effective

strategies in low-performing subjects (performing at or below chance).

Quadrant visits during the first half of learning (“early learning”) were characterized by

persistence (i.e., consecutive selections of the same quadrant). Notably, this strategy was

more robust for high-accuracy subjects (n = 26; see Experimental Procedures). The

probability of shifting quadrants was significantly lower for high-accuracy subjects than

low-accuracy subjects [t(40) = 2.21, p = 0.032] (Figure 3A). Indeed, there was a significant

interaction of accuracy (low versus high) with the shift probability in early versus later
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learning [F(1,78) = 6.027, p = 0.016], because high-accuracy subjects shifted less in early

than in later learning [t(25) = 6.29, p < 0.0001], whereas low-accuracy subjects did not

[t(15) = 0.09, p = 0.930]. Thus, only high-accuracy subjects made quadrant visits suggesting

sensitivity to modeled information; i.e., their persistence strategy maximized NAI and AAI

early in learning.

We categorized each trial according to NAI versus AAI (Figure 2B, see Experimental

Procedures), and hypothesized that both factors could contribute to stay/shift exploration

decisions. Trials were categorized into four types based on the presence/absence of NAI and

AAI: 1) no NAI and no AAI (“NAI−/AAI−”), 2) NAI but no AAI (“NAI+/AAI−”), 3) both

NAI and AAI (“NAI+/AAI+”), and 4) no NAI but AAI (“NAI−/AAI+”). These trial types

correspond to the presence or absence of information available, but not necessarily the

information that subjects learned or retrieved from memory. For high accuracy subjects,

performance varied based on information category. Accuracy increased from lowest to

highest across the NAI−/AAI−, NAI+/AAI−, NAI+/AAI+, and NAI−/AAI+ trial types

[mean = 62.6, 76.3, 83.2, 85.8, respectively; main effect of information type, F(3,96) = 5.75,

p = 0.001], indicating that they were acquiring most of the available information. In contrast,

performance of low-accuracy subjects did not indicate acquisition of information according

to the four categories [mean = 54.7, 56.5, 61.9, 65.7; F(3,56) = 0.911, p = 0.441].

Furthermore, the average relative prevalence of the four information categories changed

throughout learning, paralleling changes in the persistence behavior of high-accuracy

subjects (Figure 3B versus 3A). There were more NAI+ trials earlier in Learning when

persistence was also high, whereas there were more AAI+ trials later in Learning (Figure

3B). Exploration decisions in high-accuracy subjects thus paralleled changes in information,

whereas the decisions of low-accuracy subjects were less sensitive to the availability of

information.

To test for relationships between information and individual decisions to stay versus shift,

we examined the probability of shifting quadrants given trial information category. High-

accuracy subjects were increasingly more likely to shift across the NAI−/AAI−, NAI+/AAI

−, NAI+/AAI+, and NAI−/AAI+ categories [Figure 4; F(3,96) = 4.875, p < 0.005; calculated

relative to simulated chance likelihood, see Experimental Procedures]. High-accuracy

subjects were thus least likely to shift with no information (NIA−/AAI− trials) and

increasingly likely to shift given increments in information. In contrast, stay/shift decisions

in low-accuracy subjects did not vary significantly by information category [F(3,56) =

0.373, p = 0.773].

To test strategic value of information-based decisions, we analyzed shift tendency given

NAI and AAI in relationship to performance during the subsequent memory test. The

tendency to shift given no available information (NAI−/AAI−) was negatively associated

with memory performance [Figure 4; r(40) = −0.486, p < 0.005]. In contrast, the tendency to

shift after trials with any AAI was positively associated with memory performance [NAI

+/AAI+: r(40) = 0.565, p < 0.0001; NAI−/AAI+: r(40) = 0.499, p < 0.001]. The tendency to

shift following newly available information but without accumulated available information

(NAI+/AAI−) was unrelated to performance. Information-based exploration decisions were

thus strategic in correlating with superior learning. Collectively, information-based decisions
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(probability of shifting for all four trial types) accounted for a large proportion of the

variance in test accuracy [multiple linear regression, , F(4,37) = 9.795, p <

0.0001]; i.e., of the many factors that could have caused individual differences in memory

performance, stay/shift decisions based on modeled NAI and AAI explained approximately

50% of the variability.

Information-based decisions versus passive information exposure

NAI and AAI quantified information availability, not necessarily its successful acquisition.

Because NAI and AAI were based solely on the sequence of quadrant visits and the stimuli

observed, they were equivalent for Active and Passive conditions (Experimental

Procedures). We thus compared these conditions to isolate effects of Active information-

based decisions, versus nonspecific effects of Passive exposure to the same information

(Figure 5A, Experimental Procedures). As in previous findings of improved learning for

self-directed exploration (Voss et al., 2011a; 2011b) memory performance was superior

following Active versus Passive Learning [Figure 5B; t(41) = 2.350, p = 0.024], despite the

same overall information availability. Thus, better learning occurred when subjects

controlled stay/shift decisions based on their own assessments of information.

To test the extent that performance depended on the “quality” of information provided in

Learning, we compared memory performance following Active Learning in one subject to

memory performance by the subject receiving the same information in the Passive condition.

We reasoned that if a particular sequence of quadrant visits and stimuli were advantageous,

then accuracy would be high for both the subject that generated it in the Active condition

and for the subject that received it during the Passive condition. In general, if performance

depended on only the available information, then accuracy should be positively related for

the two conditions. However, we found a non-significant correlation [r(40) = 0.159, p =

0.334], which does not support the notion that the information provided during Passive

learning significantly impacted learning success. For comparison, robust correlation between

accuracy for each subject’s Active compared to the same subject’s Passive Learning

conditions [r(40) = 0.565, p < 0.0001] indicated reliable individual differences in learning

capability relevant for both conditions. Findings thus collectively suggest that advantageous

information-based decisions were made in the Active condition, and therefore within-

subjects comparisons between the Active and Passive conditions could be used to identify

brain activity relevant for information-based decisions.

Neural activity associated with NAI-versus AAI-based decisions

Model-based fMRI was used in conjunction with Active/Passive comparisons to identify

neural activity associated with information-based decisions in the fMRI subsample. Similar

relationships between information-based exploration decisions and performance were

identified in the subsample as in the full sample (Figure S1). In order to isolate neural

correlates of NAI-versus AAI-based decisions, we assessed neural activity in relation to

trial-by-trial measures of NAI and AAI for the Active condition compared to the same

measures for the Passive condition. Because only high-accuracy subjects reliably made

NAI- and AAI-based decisions, analyses concerned only these subjects (n=15; Experimental

Procedures).
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Activity in distinct regions was uniquely associated with decisions based on NAI versus

AAI. The Active versus Passive comparison for NAI identified activity of anterior

hippocampus and anterior prefrontal cortex, including superior and inferior frontopolar

cortex (FPC) regions that extended into, respectively, dorsolateral and ventral orbitofrontal

cortex (BA 10, 46, and 47; Figure 6A–B, Table 1). These findings implicate hippocampus

and FPC in the immediate use of novel information to make exploration decisions. This

contribution was independent from general learning and/or long-term memory processing, as

nonspecific processing was similarly present for Active and Passive conditions. In contrast,

the Active versus Passive comparison for AAI identified activity of inferior parietal lobule

(IPL, primarily angular gyrus) and dorsal striatum, including caudate nucleus and putamen

(Figure 6A–B, Table 1, and Figure S2).

We tested putative interactions among the brain regions associated with NAI- and AAI-

based decisions using the “background connectivity” method (Norman-Haignere et al.,

2012). This procedure identifies connectivity due to sustained interactions among regions

that are independent from stimulus-evoked interregional similarities (i.e., correlation among

residuals after estimation and removal of stimulus-evoked activity). We hypothesized that

the correlated activity of hippocampus-FPC (NAI-based decisions) and caudate-putamen-

IPL (AAI-based decisions) would provide evidence for the interaction of NAI-related and

AAI-related processing supporting advantageous exploration decisions. We compared

background connectivity for the Active versus the Passive conditions for the regions

associated with NAI- and AAI-based decisions (Table 1) and related this connectivity to

performance achieved during later memory testing. This allowed us to identify connectivity

associated with advantageous exploration decisions. In the Active condition, connectivity

among several regions was significantly related to accuracy (ranging from Spearman’s ρ =

0.57 to 0.86; p < 0.05, FDR-corrected for multiple comparisons). This included connectivity

between caudate and putamen as well as connectivity of these regions with hippocampus

and both superior and inferior FPC (Figure 6C). Notably, hippocampus and FPC regions did

not demonstrate connectivity with one another predictive of performance (despite high

overall connectivity), but rather did so individually with caudate and putamen. Although

average connectivity in the Passive condition was not statistically different from that in the

Active condition at the group level (all FDR-corrected p-values > 0.51), individual

differences in connectivity were unrelated to accuracy (all FDR-corrected p-values > 0.68),

unlike in the Active condition. These findings suggest that connectivity within hippocampal-

striatal and cortico-striatal networks and coordination between these networks supported

exploration decisions in the Active condition associated with better learning.

Isolating behavioral and neural correlates of exploration decisions

In order to pinpoint specific relationships among information, behavior, and neural activity,

we sought to identify behavioral expressions of information processing associated with

exploration decisions and their neural correlates. We used eye-movement tracking to

identify behaviors during the face-selection period indicative of the forthcoming decision to

shift from or stay within the current quadrant made on the next trial. We reasoned that eye

movements could provide a covert measure of information processing related to this

decision, as eye movements can provide covert measures of processing in other learning and
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memory settings (Hannula et al., 2010). Indeed, preferential viewing of the target face

(relative to the foil) increased as subjects learned context-dependent associations during

Active and Passive Learning sessions (Figure S3), indicating that eye movements expressed

knowledge of contextual associations that could be used to make exploration decisions.

Timecourse analysis indicated that preferential target viewing occurred during face-selection

periods immediately prior to decisions to shift quadrants (versus stay) during Active

Learning, and only when information (either NAI or AAI) was available (Figure 7A). When

collapsed across all 20 time points, preferential target viewing increased before shift

decisions in the Active condition when information was present [t(11) = 2.554, p = 0.027].

Analysis of individual time points indicated that the 4 immediately before face selection

showed significant shift/stay pairwise differences (FDR-corrected p < 0.05), whereas 0

showed significant pairwise differences in the Active condition with no information.

Likewise, preferential target viewing was not observed in the Passive condition regardless of

information (no differences when collapsing across time points and 0 significant pairwise

differences). This is consonant with our finding that performance was not sensitive to

information in the Passive condition and our interpretation that performance is higher in the

Active condition because high-accuracy subjects used assessments of information to guide

exploration (as indicated here by eye-movement measures of memory associated with

information-based decisions).

A corresponding analysis of neural activity during the face-selection period prior to

exploration decisions (shift versus stay decisions for trials with the presence of either AAI or

NAI) identified activity of anterior hippocampus (Figure 7B). Paralleling the eye-movement

effects, this activity was selective to trials with available information (NAI or AAI) and for

the Active Learning condition only. Hippocampal activity therefore directly corresponded

with the eye-movement patterns, thus establishing tight linkage between hippocampal

activity and specific eyemovement behavioral correlates of information processing that

support exploration decisions.

Discussion

By quantifying information available to individuals concerning contextual object-face

associations and manipulating the opportunity for self-directed exploration, we identified

neural activity associated with exploration decisions during learning based on information.

Contextual association information was modeled as a finite and spatially localized resource

(Hills, 2006; Pirolli and Card, 1999), providing a simple metric relevant to task

performance. Further, we fractionated information into NAI and AAI in order to account for

differences in decisions utilizing immediately available new information (NAI) versus

persistently available accumulated information (AAI), as these distinct information types

have been theorized to distinctly influence learning and exploration (Frank et al., 2001;

Johnson et al., 2012). Information-based exploration decisions were strategic in that they

maximized the rate of newly available information and improved learning, as demonstrated

by better performance in subsequent memory tests. By comparing Active to Passive

Learning conditions that were matched in information availability, we identified networks of

brain regions involved in advantageous information-based decisions. Regions of caudate,
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putamen, and IPL were associated with AAI-based exploration, whereas superior and

inferior FPC and hippocampal regions were associated with NAI-based exploration.

Background connectivity among these regions predicted learning success, but only when

subjects made exploration decisions in the Active condition. By quantifying the use of

available information to guide exploration decisions that enhance learning and specifying

relevant brain networks and brain-behavior relationships, these findings advance

understanding of neural mechanisms for adaptive memory-based behavior.

Hippocampus and FPC were associated with exploration decisions based on NAI. A

substantial literature has implicated prefrontal cortex in contextual regulation and decision-

making (reviewed in Lee and Seo, 2007) with FPC regions involved in relatively high

contextual complexity (Badre et al., 2009). FPC has been especially linked to task switching

based on unexpected events (Koechlin et al., 2000). Strikingly, Boorman and colleagues

(2009) identified regions proximal to iFPC and IPL regions described here in relation to

switches to alternative choices. Our findings suggest that FPC sensitivity to novel

information could saliently drive changes in behavior, especially during exploratory

learning. Hippocampal memory and prediction functions are also relevant for detection of

novel information and decision-making (Buckner, 2010; Gupta et al., 2009). However, there

is little information regarding individual and joint contributions of prefrontal cortex and

hippocampus to information-based exploration during learning. Our NAI findings advance

an emerging literature on the role of prefrontal cortex and hippocampus in the immediate/

short-term use of memory to guide exploration decisions (Fujisawa and Buzsaki, 2011;

Guitart-Masip et al., 2013; Ross et al., 2011; Yee et al., 2013; reviewed in Wang et al., in

press), as distinct from hypothesized roles of hippocampus in the putative use of long-term

memory representations to make predictions and decisions (Buckner and Carroll, 2007;

Schacter et al., 2012). Unlike in previous studies, we isolated the involvement of

hippocampus and FPC in the use of immediately available novel information (NAI) to make

exploration decisions. This is because we distinguished NAI-based decisions in the Active

condition from simple learning and/or working memory maintenance of the same

information that occurred in the Active and Passive conditions and from decisions based on

AAI. Similarly, we identified anterior hippocampal activity specifically related to eye-

movement correlates of contextual information processing that predicted immediately

forthcoming stay/shift decisions. Our findings thus solidify and specify the role of

hippocampus and prefrontal cortex (specifically FPC, although activations extended into

dorsolateral prefrontal and ventral orbitofrontal cortex; Table 1) in the immediate use of

newly available information for exploration decision-making.

In contrast, caudate, putamen, and IPL were involved in decisions based on AAI. Strategic

exploration for rewards is associated with striatal networks, owing to the central role of

these networks in statistical and reinforcement learning (Hills, 2006; Kim and Hikosaka,

2013; Pennartz et al., 2009). Although specific association with AAI-based decisions in our

study is consistent with the role of these structures in learning by accumulation of

information over time, our findings are distinct in that they demonstrate decision-making

activity of dorsal striatum for exploration, and in the absence of overt reinforcement. Our

findings thus support theories, derived from computational modeling, that striatum

contributes to decision-making in addition to learning and irrespective of task demands or
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reward (Frank et al., 2001; Guthrie et al., 2013). Further, parallel corticostriatal loops are

theorized to be involved in decision-making in different contexts (Alexander et al., 1986),

and the notion that these basal ganglia regions could interact with IPL to support integrative

functions associated with AAI-based decisions is supported by tight anatomical and

functional connections between these regions (Martin, 1996).

Indeed, our findings of network-level interactivity of regions identified for NAI- and AAI-

based decisions suggest interactivity of the distinct decision-making processes supported by

these regions. Cortical-striatal recurrent networks encompass regions that we identified for

information-based decisions, including both superior and inferior FPC regions (BA 10

extending into 46 and BA 10 extending into 47, respectively), IPL (BA 40 extending into

39), caudate, and putamen. Background connectivity of these regions was specifically

related to learning success when subjects made exploration decisions in the Active

condition, thus implicating this network in advantageous exploration decision-making. A

similar relationship was identified for background connectivity of hippocampus with

caudate and putamen, yet no direct connectivity of hippocampus with FPC or IPL regions

was identified in relation to task performance. These results are consistent with the

anatomical organization of anatomically and functionally distinct recurrent striatal networks

involving cortex versus hippocampus (Alexander et al., 1986; Martin, 1996), thereby

demonstrating and characterizing the distinct contributions of these networks to information-

based decisions.

Although hippocampal interactivity is generally greater with ventral striatum than with

dorsal striatum regions identified here (Alexander et al., 1986; Kahn and Shohamy, 2013),

as emphasized in theories of memory-reward interactions for adaptive behavior (Adcock et

al., 2006; Shohamy et al., 2004), some findings have implicated hippocampal interactivity

with dorsal striatum in episodic encoding (Sadeh et al., 2011). The functional connectivity

patterns we identified do not imply or require direct anatomical connectivity (Honey et al.,

2009; O'Reilly et al., 2013), nor do we infer causality or unique functional connectivity

among regions. Given the limitations of fMRI, we emphasize the need for validation of

connectivity patterns by neurophysiological measures. Indeed, animal models might be

necessary to resolve what are likely rapid and iterative interactions among hippocampus,

prefrontal cortex, and striatum in support of information-based exploration (Wang et al., in

press), owing to their recurrent organization (Alexander et al., 1986; Martin, 1996). Our

exploration paradigm and information model could be readily adapted for animal studies of

contextual learning (Buschman et al., 2012; Navawongse and Eichenbaum, 2013).

Our findings of hippocampal, prefrontal, and dorsal striatal activity and connectivity

associated with information-based decisions enrich current theories of adaptive memory

behavior. By isolating information-based decisions from general aspects of learning and

memory that could be associated with reward-related processing (e.g., novelty, familiarity,

and other factors potentially related to dopaminergic signaling; Hansen and Manahan-

Vaughan, 2012), we show that involvement of these structures in adaptive behavior is not

merely a ramification of the secondary reward provided by familiar or novel information.

These results indicate that accumulated information regarding the current environment (i.e.,

total current knowledge) and novel information that serves to update accumulated
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knowledge provide distinct yet interactive information sources on which strategic

exploration decisions can be based to support adaptive behavior. Such interactivity would

allow organisms to judiciously explore for information that solidifies current knowledge

(AAI) as well as for information that updates current knowledge (NAI). We thus highlight

the role of hippocampal-prefrontal and striatal contributions to exploration decisions that

capitalize on existing knowledge (AAI) and respond to new information that could signal

changes in relevant stimulus-response relationships (NAI), thus building on previous

neuroanatomical accounts of such exploration processes (Frank et al., 2001; Johnson et al.,

2012).

These findings suggest that memory impairments caused by damage and/or dysfunction of

hippocampal brain networks should also involve deficits in exploration decisions that

normally support effective learning (see also Gupta et al., 2009; Voss et al., 2011a; 2011b;

Yee et al., 2013). These deficits could exacerbate learning difficulties experienced by brain-

damaged individuals. Furthermore, our findings suggest that individuals vary in terms of

their ability to seek information relevant for learning, and our identification of information-

based exploration decisions and their neural mechanisms is therefore relevant to

understanding successful versus poor learning in a variety of circumstances.

Experimental Procedures

Subjects

All subjects (N=42; 22 females; ages 18–35) had normal or corrected-to-normal vision and

did not report neurological or psychiatric disorders. All subjects gave written, informed

consent and were remunerated for their participation. The Northwestern University

Institutional Review Board approved the protocol.

Experiment Design

There were two Active Learning and two Passive Learning blocks. Each block comprised

two phases: Learning (32 trials) and Test (20 trials). Subjects learned object-face

associations presented in one of four contexts (quadrants) on the screen. Object-face

associations varied contextually based on object features, with context governing the object

feature (shape or texture) used to guide correct face selection.

For Active Learning blocks, subjects selected one quadrant in the Quadrant Selection period

(3 sec for behavioral subjects, 2 sec for MRI subjects; Figure S4), after which the selection

was confirmed by yellow highlighting for 2 sec (jittered 1–3 s for MRI subjects). If subjects

did not respond in time, a random quadrant was selected (mean = 1.3 trials per block). Next,

an object and two faces were presented and subjects selected one face with a button press

(Face Selection period). Target and foil faces were randomly assigned to the right or left

side for each trial, encouraging stimulus-based rather than action- or location-based learning.

Subjects were given 5 s for face selection, after which feedback (correct or incorrect) was

provided for 2 sec. After feedback, another trial began after a 4–10 s ISI. After each

Learning phase, a Test followed (after an approx. 1-min delay). During Test, quadrants were

predetermined, subjects had 5 s to select a face, and no feedback was given.
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In the Passive condition, stimuli presented during Learning were taken from the previous

subject’s choices in the Active condition. Subjects did not make quadrant or face selections,

but viewed sequences of quadrant and face selections recorded from the previous

participant’s Active blocks. Therefore, subject n’s Passive visual display was “yoked” to

subject n-1’s self-selected Active visual display. As in Active blocks, a Test followed each

Passive Learning session.

Each block included 2 unique faces, 2 unique texture categories, and 2 unique shape

categories. Faces included professional-quality headshots of nonfamous individuals. Texture

and shape categories each included 3 exemplars (Figure S5). Contextual information thus

concerned texture and shape categories, not individual textures and shapes, in order to

discourage responding based on simple stimulus-level associations and to encourage rule-

based learning (Badre et al., 2009). The configuration of contextual rules across the four

quadrants varied across blocks so that subjects could not use prior learning to succeed.

Stimuli were counterbalanced across learning conditions and subjects, such that Active

objects for one subject were the Passive objects for the next subject (i.e., the same

information was given on average for the two conditions). The order of learning conditions

was counterbalanced, with Active and Passive blocks alternating in each subject (either A-P-

A-P or P-A-P-A). For the first subject, the Passive stimulus sequence was provided by an

additional individual who otherwise was excluded (a “seed”). Each subject completed a

practice session before the experiment.

Because texture-face associations conflicted with shape-face associations in half of the

trials, association knowledge without contextual knowledge would support an accurate

guessing rate of 75%. Therefore, we classified high-performing subjects as those with

slightly above-chance performance (>80%, to account for chance variability) during the Test

phases (only 3 of 42 subjects scored between 75 and 80% accuracy, and their assignment to

either the high- or low-performance groups did not significantly change group-level effects).

We first sought to detect relationships between modeled information and behavior in the full

sample, including lowaccuracy subjects for comparison with high accuracy subjects to

identify information-based exploration decisions that contributed to learning success (which

occurred in high-accuracy but not low-accuracy subjects). We then used fMRI to identify

neural activity related to advantageous information-based decisions in a subsample of high-

accuracy subjects, who reliably demonstrated these decisions (see below).

Information metric

In any quadrant, either the object shape or texture determined the correct object-face

association (i.e., only one feature was relevant). Subjects learned the relevant feature for

each quadrant solely based on feedback. This required integrating knowledge over multiple

trials within a quadrant (context), as any one trial was not diagnostic. Specifically, subjects

had to learn that correct faces covaried with one feature but not the other.

We modeled available context information by considering sequences of quadrant visits and

object-face pairings. Information was modeled as a finite resource existing within a quadrant

that could be made available on any trial in which there was unequal evidence in favor of

one feature over the other. This evidence was calculated by considering covariation between
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the face and both the shape and the texture, integrated over consecutive trials (Figure 2A),

which is equivalent to the mutual information of faces with object features. We defined an

information metric NAI (“newly available information”) that quantifies information

available in the current trial regarding contextual associations given the evidence derived

from a particular sequence of quadrants and objects/faces integrated over consecutive trials.

Specifically, we calculated the covariance of faces with both shapes and textures (measured

as the Χ2 measure of association for binary discrete variables), and assessed if one was

greater than the other. NAI at trial t is governed by the equation:

where Iq(t) is the amount of existing (finite) information in the current quadrant q and 

is the Pearson’s chi-squared statistic calculated given the sequence of textures/shapes and

faces observed within the current quadrant q integrated over the last three trials (i.e. trial t,

t-1, and t-2, where t is the current trial). Any trial on which NAI is nonzero is considered a

high-information trial (Figure 2A). The presence or absence of newly available information

in any given trial is denoted by “NAI+” or “NAI−”. Information available before the current

trial (i.e. the integral of NAI) is denoted as “accumulated available information,”

abbreviated as “AAI,” and its presence or absence in any given trial is denoted by “AAI+”

or “AAI−”. Because contextual rules within different quadrants are independent, evidence

must be accumulated for each quadrant separately. NAI and AAI therefore refer to

information newly and previously available relevant to only the current quadrant (i.e. AAI

can decrease when switching to a new quadrant depending on the history of quadrant visits,

but is always monotonically increasing within the same quadrant, even when switching

back). Both metrics are used as continuous amplitude parametric regressors for the fMRI

analyses (described below).

As in information-foraging models (Pirolli and Card, 1999), each quadrant was modeled as

having finite contextual information Iq that the subject could acquire. We set the learning

rate to 40%, so that subjects collect 40% of the information left in the trial, leaving the

amount of information available in quadrant q to be Iq (t+1) = 0.6 * Iq (t). Although the

learning rate value was motivated by general intuition of how many trials were required to

learn the contextual rules experimentally, the specific value had no significant effect on the

fMRI results for a sizeable range and no effect whatsoever on the behavioral results (Figure

S6).

Simulation of shift/stay baseline rates

Analyses of shift probability for NAI−/AAI−, NAI+/AAI−, NAI+/AAI+, and NAI−/AAI+

trials (Figure 4) used simulation of the baseline shift rate, given that NAI and AAI are

partially co-determined by shifting behavior (i.e. consecutive staying increases high-

information trials early in learning). We used Monte Carlo simulations to account for this

partial dependence given a fixed total probability of shifting. For each subject, we calculated

the total probability of shifting and performed 500 simulations using this value to generate
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random patterns of quadrant visits. We then categorized trials into the four information trial

types given these simulated patterns, and calculated probabilities of shifting for each

information trial type. Z-scores for subjects’ actual shift probability were calculated using

these null distributions. Z-scores were aggregated for the group analysis. Therefore, this

analysis also accounted for inter-subject differences in overall tendency to shift.

MRI Data Acquisition and Analysis

MRI data were acquired using whole-brain imaging parameters reported in the Supplemental

Experimental Procedures. MRI data were collected for 21 (all right-handed) of the 42

subjects, with data collection from this subsample occurring intermixed with data collection

from behavior-only subjects. One subject was excluded from fMRI analyses for excessive

movement (>4 mm over a run). Another five were excluded for not achieving high accuracy

in the Active condition (80%, see above), resulting in 15 included subjects (8 females). We

restricted analyses to high-accuracy subjects to isolate neural correlates of information-

based exploratory learning, which were not observed in low accuracy subjects. Thus, low-

accuracy subjects would not generate neural correlates of information-based decision-

making. Critically, patterns of information-based exploration decisions were similar for the

fMRI subsample as for the full sample, with robust evidence for advantageous exploration

decisions based on NAI and AAI in the subsample (see Results and Figure S1).

Four of the high-accuracy fMRI subjects were yoked to low-accuracy subjects for the

Passive condition. These subjects’ passive performance was not statistically different from

those yoked to other high-performing subjects [t(13)=0.157, p=0.878, Means = 87.6, 86.3].

This finding is consistent with the lack of significant relationship between the specific

Passive sequence provided and test accuracy in the full sample (see Results) and indicates

that the fMRI analysis was not strongly influenced by this factor.

Functional and structural MRI data were analyzed using AFNI (Cox, 1996) and

preprocessed using standard procedures reported in Supplemental Experimental Procedures.

To estimate fMRI activity related to trial-by-trial information measures, event onsets were

simultaneously amplitude modulated by NAI and AAI values for each trial (i.e., parametric

analyses of both variables; detailed in Supplemental Experimental Procedures). This allowed

us to separately identify activity that linearly varied with the magnitude of each type of

information while removing variance accounted for by the other information type. NAI

onsets were at Feedback when novel information became available. AAI onsets were at Face

Selection when overall information was relevant (Figure S4). A separate, non-parametrically

modulated analysis was performed for stay/shift decisions given information (both AAI and

NAI together, versus lack of both information types) in the Active and Passive Learning

conditions.

Regions exhibiting significant activity at the group level were identified via random-effects

analysis with a combined voxel-wise and spatial extent threshold method incorporating

Monte Carlo simulation (Forman et al., 1995) and mixed-effects multilevel analysis

(MEMA) (Chen et al., 2012). The voxel-wise threshold was set to p<0.005, and the spatial-

extent threshold for whole-brain analyses was identified as 119 contiguous supra-threshold

voxels (402 mm3) to obtain a combined corrected threshold of p<0.05. A threshold of 25
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voxels (84 mm3) was used for planned assessments of activity within medial temporal lobe

structures (hippocampus, parahippocampal gyrus, perirhinal and entorhinal cortex, defined

as the overlap of MTL cortex and hippocampus in the averaged normalized brain of our

MRI subjects with these regions as defined by the N27 atlas (Holmes et al., 1998). Planned

assessments of prefrontal cortex and basal ganglia regions would not have yielded

significantly different results, as activation clusters identified in those regions were larger

than the extent threshold determined by simulation.

Connectivity analysis

Connectivity analyses using the “background connectivity” method (Norman-Haignere et

al., 2012) involved the 6 regions of interest (ROIs) identified by the NAI and AAI fMRI

contrasts (Tables 1 and 2). After extracting the residual timeseries for each ROI (see

Supplemental Experimental Procedures), we constructed a connectivity graph for each

subject by calculating the Spearman’s rank-correlation coefficient ρ of all pairs of time

series in each Learning condition separately. Spearman’s rank-correlation was used to avoid

assumptions of normality. Correlation coefficients were converted to Fisher’s z-scores for

group analyses. Relationships between connectivity and Test accuracy were conducted by

cross-correlating (using Spearman’s rank correlation) z-scores from the Active Learning

condition with Active Test performance and z-scores from the Passive Learning condition

with Passive Test performance. Because we removed stimulus-driven variance on functional

connectivity, findings are interpreted in terms of changes in connectivity related to task, as

in similar task-related functional connectivity analyses (e.g., Cole et al., 2013; Wang et al.,

2013). Even with the removal of stimulus-driven variance, higher order network effects due

to task can remain (Fair et al., 2007), a property that allowed us to identify interregional

functional connectivity specifically related to advantageous exploration decision-making in

the Active condition. Corrections for multiple comparisons were made using the Benjamini-

Hochberg procedure for controlling false-discovery rate (Hochberg and Benjamini, 1990).

Eye-tracking Experimental Procedures

Eye-tracking data were successfully obtained (using procedures reported in Supplemental

Experimental Procedures) during fMRI acquisition from 12 of the high-accuracy fMRI

subjects that contributed to fMRI data analyses (5 females), with calibration failure in the

other three subjects. Fixations during Learning trials in regions of interest (ROIs)

corresponding to object and face locations were analyzed with custom scripts in Matlab (The

Math Works, Inc.).

Timecourse analyses of normalized mean viewing values were performed using paired t-

tests. To account for multiple comparisons as well as auto-correlation of these timeseries, we

used the Benjamini-Hochberg procedure for controlling FDR, which is typically preferred

when measures are not statistically independent (Hochberg and Benjamini, 1990).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Exploration decisions during learning were strategically based on information

• Decisions and brain activity were sensitive to distinct modeled information

types

• Hippocampal-prefrontal and dorsal striatal areas distinctly contributed to

decisions

• Increased network connectivity during decision-making predicted learning

success
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Figure 1. Contextual object-face association task
(A) Contextual associations were based on either shape or texture features of objects that

served as cues. In shape quadrants, only shape (e.g. star-shaped versus pentagon-shaped)

determined the correct object-face associations. In texture quadrants, only texture (e.g. white

circles versus black dots) determined the correct object-face associations. (B) Example

configuration of quadrants, which varied for different blocks of the experiment, with two

shape and two texture quadrants in each block. Subjects were not instructed regarding the

salient feature in each quadrant, but were required to learn contextual associations via

feedback. (C) Each trial involved highlight of the selected quadrant followed by presentation

of the object cue and two faces, during which subjects attempted to select the target face.

Trials concluded with feedback. (D) Example quadrant sequence, with the quadrant selected

for each trial highlighted in blue.
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Figure 2. Quantifying contextual association information
(A) Example quantification of contextual information for a texture quadrant. Eight trials are

shown, and faces are perfectly correlated with texture, but not well correlated with shape, as

depicted by contingency tables of counts for co-occurrences of each feature with each face

for consecutive 3-trial intervals. High-information trials are those with nonzero difference in

covariation for texture versus shape and produce NAI, which is large initially but diminishes

with subsequent high-information trials. AAI is the integration of NAI over time for the

current quadrant. (B) Example measurement of information for idealized (left) and random
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(right) sequences of quadrant visits. Colored lines corresponding to quadrant colors

represent quadrant-specific available information, while light green and dark green lines

represent NAI and AAI, respectively. Idealized (i.e., consecutive) quadrant visits produce

rapid increase of AAI for the current quadrant. In contrast, random quadrant visits produces

minimal NAI and AAI increases for each quadrant. Note that AAI can appear to decrease

when switching quadrants because it is a measure specific to the current quadrant (as rules in

all quadrants are independent and therefore must be determined separately). AAI for each

quadrant persists across exploration of other quadrants.
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Figure 3. Patterns of exploration decisions and concomitant contextual information
(A) Patterns of quadrant visits for all subjects, ordered by test accuracy. The dotted line

represents cutoff for high versus low accuracy (80%; see Experimental Procedures).

Quadrants 1, 2, 3, and 4 indicate the 1st, 2nd, 3rd, and 4th quadrants visited by each subject,

not an indication of the absolute quadrants visited. The bar graph (bottom) shows mean

probability of shifting quadrants for both accuracy groups (Low and High) in early and late

Learning. (B) Sequence of the four information trial types ordered as in A. The line graph

(bottom) shows the histogram of the four trial types over time, averaged over all runs. Error

bars represent standard error of the mean (s.e.m.). Line thickness represents point-by-point

s.e.m. * p < 0.05, ***p < 0.001.
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Figure 4. Information-based shift/stay decisions
(A) Probability of shifting quadrants during Active Learning (Z-score, calculated relative to

simulated random chance, see Experimental Procedures) for each information trial type, for

low-accuracy subjects and high-accuracy subjects (see also Figure S1). (B) Probability of

shifting quadrants plotted versus test accuracy for each information trial type. Background

shading on linear fits represents 95% confidence intervals. Error bars represent s.e.m. * p <

0.05, **p < 0.01, ***p < 0.001.
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Figure 5. Benefits of Active versus Passive Learning
(A) In the Active Learning condition, subjects selected quadrants on each trial. In the

Passive condition, the quadrant order was predetermined (yoked to previous participants’

patterns of quadrant selections made during the Active condition, see Experimental

Procedures). (B) Accuracy during memory testing was greater following Active versus

Passive Learning. (C) Accuracy achieved for a sequence of quadrant visits in the Active

Learning condition was not significantly correlated with the accuracy achieved when the

same sequence was viewed in the Passive Learning condition (p=0.333), exemplifying the

Wang and Voss Page 24

Neuron. Author manuscript; available in PMC 2015 June 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



importance of information-based exploration decisions made by subjects. Marker size

indicates average NAI calculated from the sequence of quadrant visits. The green solid line

indicates linear fit, with gray dashed line indicating diagonal. Error bars represent s.e.m. *p

< 0.05.
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Figure 6. Brain activity and connectivity supporting exploration decisions based on NAI and
AAI
(A) Brain activity associated with exploration decisions based on NAI (left) and AAI (right).

Mean NAI and AAI values are plotted across the learning session, averaged over all subjects

and sessions. (B) Beta values for fit to NAI and AAI parametric regressors shown separately

for Active and Passive conditions (see also Figure S2). (C) Background connectivity during

Active Learning among the regions shown in A (Table 1). Width of lines represents

connectivity and color indicates significance level for prediction of memory performance
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during subsequent test. No connectivity values in the Passive condition predicted memory

performance. Significance was determined at an FDR-corrected threshold of p < 0.05. MRI

coordinates are MNI. Shading of line plots and error bars indicate s.e.m. sFPC, superior

frontopolar cortex; iFPC, inferior frontopolar cortex; Hipp., hippocampus; Caud., caudate;

Put., putamen; IPL, inferior parietal lobule.
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Figure 7. Viewing patterns and hippocampal activity associated with stay/shift decisions given
information
(A) Plots show the target/foil viewing bias obtained via eye-tracking during the face-

selection period immediately preceding decisions to stay in the same quadrant versus

decisions to shift to a new quadrant. Target viewing bias was only observed in the Active

Learning condition and only for trials with any available information (NAI+ or AAI+).

Orange arrows indicate onset of the object/face display, blue arrows indicate the selection

response (Active condition), and red arrows indicate the end of the selection period (Passive

condition). (see Experimental Procedures and Figure S3). (B) Corresponding activity of

anterior hippocampus for face-selection periods with subsequent shift (versus stay) decision

in trials with any available information (NAI+ or AAI+). Coordinates are MNI.Shading of

line plots indicates s.e.m.

* Pairwise stay versus shift bias difference p < 0.05, FDR corrected.
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