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Abstract

Background—Use of the electronic health record (EHR) is expected to increase rapidly in the

near future, yet little research exists on whether analyzing internal EHR data using flexible,

adaptive statistical methods could improve clinical risk prediction. Extensive implementation of

EHR in the Veterans Health Administration (VHA) provides an opportunity for exploration.

Objectives—To compare the performance of various approaches for predicting risk of cerebro-

and cardiovascular (CCV) death, using traditional risk predictors versus more comprehensive

EHR data.

Research Design—Retrospective cohort study. We identified all VHA patients without recent

CCV events treated at twelve facilities from 2003 to 2007, and predicted risk using the

Framingham risk score (FRS), logistic regression, generalized additive modeling, and gradient tree

boosting.

Measures—The outcome was CCV-related death within five years. We assessed each method's

predictive performance with the area under the ROC curve (AUC), the Hosmer-Lemeshow
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goodness-of-fit test, plots of estimated risk, and reclassification tables, using cross-validation to

penalize over-fitting.

Results—Regression methods outperformed the FRS, even with the same predictors (AUC

increased from 71% to 73% and calibration also improved). Even better performance was attained

in models using additional EHR-derived predictor variables (AUC increased to 78% and net

reclassification improvement was as large as 0.29). Nonparametric regression further improved

calibration and discrimination compared to logistic regression.

Conclusions—Despite the EHR lacking some risk factors and its imperfect data quality,

healthcare systems may be able to substantially improve risk prediction for their patients by using

internally-developed EHR-derived models and flexible statistical methodology.

INTRODUCTION

Heart attack and stroke are the first and fourth leading causes of death in the United States

and together cost nearly $300 billion annually.1 Further, cardiac risk is a major predictor of

treatment benefit2 and plays a central role in treatment guidelines for cardiovascular

medication use3,4 and diagnostic testing.5 Thus, accurate prediction of cerebro- and

cardiovascular (CCV) risk in individual patients is a major clinical and research focus,

bringing with it critical implications for physician decision-making and for research on

comparative and cost effectiveness.6 Risk prediction is no simple task, however, particularly

since it is dependent on both the quality and amount of available data as well as on statistical

methods used for estimation. Although there is a great deal of research in the development

of new tests to help assess cardiovascular risk,7–9 less attention has been directed to whether

the increased availability of large amounts of clinical data in the EHR can allow for more

accurate risk assessment tools. The effectiveness of current tools is limited by the

populations, datasets, and statistical tools that enabled their development.

Current risk prediction tools in America are based on cohort studies that use chart review

and patient interviews to obtain high-quality data. They require personnel time to calculate,

are based on particular patient populations with relatively limited sample sizes, and are

difficult and expensive to update.10 When used in external populations years after their

initial development, the validity of these tools can be inconsistent.10 However, an

increasingly available electronic health record (EHR) may provide an opportunity to make

internally developed risk tools that are more accurate and timely.11,12 Further, the use of

EHRs is expected to increase rapidly with a recent multi-billion-dollar investment by the

federal government.13

Thus far, integrated and comprehensive EHR systems have seen limited use in clinical

practice.14 However, the Veterans Health Administration (VHA) is an exception,15 and

provide a unique opportunity for exploring the benefits and opportunities of EHR.

Clinical risk prediction also could benefit from concurrent progress in the development of

flexible and adaptive (or “nonparametric”) regression and machine learning methods, many

of which are particularly well suited for large datasets with many variables.16 For example,

"ensemble methods" (which are also known as "meta-classifiers", and include random
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forests and boosting) work by incorporating predictions from a large number of small,

simple models, and would have been computationally infeasible until relatively recently.

These and related methods provide "automatic" prediction since they do not require the user

to specify whether or how to include predictor variables, are robust to outliers, and limit

overfitting by design.16

In this study, we used EHR data across multiple VHA hospitals with flexible statistical

methods to explore the extent to which risk prediction of fatal CCV events can be improved

relative to traditional approaches. Specifically, we compared predictive performance using:

(1) the Framingham Risk Score (FRS) versus internally-developed EHR-derived models; (2)

parametric versus nonparametric regression methodology; and (3) traditional risk predictors

versus additional risk predictors obtainable from the VHA EHR (such as hypertensive

medications and comorbid conditions).

METHODS

Data and sample

We used data from patients treated at twelve Veterans Health Administration (VHA)

facilities in the midwestern United States from 2003 to 2007. The outcome of interest was

CCV-related death within five years, and was determined using ICD-10 codes I00–I99 from

the National Death Index (NDI). Unlike non-fatal CCV events, this outcome is available

even for patients who discontinue care at VHA facilities.

Our eligibility criteria were based on those used by the Office of Quality & Performance

(OQP) for the VA External Peer Review Program (EPRP). We included in our sample all

patients over 18 years of age with at least two visits to a primary care, cardiology/

hypertension, endocrine/diabetes, chronic infectious disease care or mental health clinic

during the baseline year (2003). The visit criterion was used to exclude patients who attend

VHA facilities infrequently for prescription medication refills, while using outside facilities

for clinical care. In order to ensure that patients did not have a recent history of

cardiovascular disease, we excluded those with a known CCV diagnosis or event during the

baseline year, using information from the VHA Medical SAS Data Sets. This makes the

sample more comparable to that of the Framingham study. The table in Supplemental

Digital Content 1 shows the sample size for each inclusion criterion.

We obtained information on diagnoses from the VHA Medical SAS Data Sets, medication

and laboratory data from the VHA Decision Support System files (DSS), and vital signs

from the VHA Corporate Data Warehouse (CDW). For patients who had more than one

recorded lab value, we used the average of the last two during the baseline year, and we

considered biologically implausible values to be missing. We used ICD-9 codes to identify

baseline status for clinical diagnoses that are also candidate predictors of CCV risk

(diabetes: 250.xx, 362.0x, 357.2x, 366.41; chronic obstructive pulmonary disease (COPD):

490.x, 491.x, 496.x; inflammatory arthritides: 710.x, 714.x, 720.x, 711.1, 711.3, 713.1;

periodontal disease: 523.4, 523.9; sleep apnea: 327.23).17–20 Diabetes status was also

determined using pharmacy information (any insulin or oral hypoglycemic prescription

fills). All risk predictor data was recorded during the baseline year, and missing values were
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singly imputed via chained equations.21 More details about our data and about EHR data in

the VHA in general are available in Supplemental Digital Content 2, Appendix A.

Prediction methods

For our primary analyses, we compared four risk prediction methods: the Framingham risk

score (FRS, which used Weibull regression), parametric logistic regression, nonparametric

generalized additive modeling (GAM), and boosting (a nonparametric ensemble method)

across three sets of predictors. See Figure 1 for a schematic summarizing the different types

of prediction methods; we chose one representative method from each type. These four

methods are all well established but technically very different.

Since mortality was the outcome of interest, we implemented the FRS that predicts CCV

death.22 This FRS is derived from a Weibull survival model including sex, age, systolic

blood pressure, smoking status, total/HDL cholesterol ratio, diabetes, and ECG-left

ventricular hypertrophy (ECG-LVH). Smoking status and ECG-LVH were unavailable for

our sample. The model assumed by FRS for the probability of CCV-related death within five

years (denoted by Y) is:

where x = (x1, …, xp) is the observed vector of predictors, j indexes the p elements of x, and

β = (β0, β1, …, βp), θ, and θ1 are parameters with specified values estimated from the

Framingham cohort.

To tailor the FRS to our sample, we also estimated a “recalibrated” FRS that used the

transformed FRS as a predictor in a logistic regression model:

with α0 and α1 parameters estimated in our sample, and μ(x) as defined previously.

Logistic regression is by far the most popular method for general prediction of a binary

outcome; it generally relies on exact specification of a parametric model.16,23 Our assumed

logistic regression model was:

where the parameter vector γ = (γ0, γ1, …, γp) was estimated in our sample. We log-

transformed systolic blood pressure, medication counts, number of NEXIS visits during the

baseline year, and serum creatinine, and otherwise assumed a linear relationship between

predictors and log-odds of risk. We did not consider interaction terms, and no variable
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selection criteria were applied so all predictors were included. Logistic regression can be

viewed as yielding a model similar to the FRS Weibull model, but with all coefficients

tailored to our sample.

The generalized additive model (GAM)24 is similar to standard logistic regression, except

nonparametric functions fj of the predictors are estimated (via splines) instead of coefficients

for linear terms.16,24 The assumed model is:

where f0 is an intercept term. We implemented GAM using the "gam" package in R, using

default settings. As with our implementation of logistic regression, no variable selection

criteria were applied and all predictors were included in each model.

Boosting25 is an "ensemble method" (or "meta-classifier") that combines many simple

models (e.g., trees with very few splits) fit to successively re-weighted or re-sampled data

using weights that increase the importance of previously misclassified data points.16,26,27

Unlike previously discussed methods, boosting automatically performs variable selection

and does not yield a simple regression formula that can be written out. We implemented

gradient tree boosting using the "gbm" package in R with 500 two-level trees, thereby

allowing all possible pairwise interactions.

More details and further explanation about GAM and boosting are available in Supplemental

Digital Content 3, Appendix B. We also used multivariate adaptive regression splines

(MARS)28 and random forests29 in secondary analyses. Results are available upon request.

Risk predictors

We explored predictive performance across three subsets of risk predictors: (1) only the

traditional risk predictors used to calculate the FRS, (2) the traditional risk predictors along

with medication information, and (3) traditional risk predictors with medication information,

lab values, vital signs, diagnoses, and other data (see Table 1 for a list of all candidate

predictors).

Evaluation

We assessed discrimination and calibration of the four risk prediction methods using the

area under the ROC curve (AUC) and the Hosmer-Lemeshow goodness-of-fit (HL-GOF)

test, respectively, with 10-fold cross-validation to penalize overfitting.16,30 We explored

changes in estimated risk with a reclassification table and the net reclassification

improvement (NRI)31 using (0–2%, 2–5%, 5–10%, 10–20%, 20–100%) risk groupings, and

also present plots of the distributions of estimated risk.

All statistical analyses were conducted using R32 and Stata.33
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RESULTS

Patient characteristics

The characteristics of the patients in the sample are given in Table 1. There were 113,973

patients total and 4,995 (4.4%) died within five years of CCV-related causes. Most patients

(95.6%) were male and the mean age was 63.4 years (SD = 13.6 years). The rate of

comorbidity was high, including high rates of diabetes (24.3%), COPD (24.1%),

hypertension treatment (68.9% prescribed at least one medication at baseline), and narcotic

or opiate prescriptions (25.6%). Patients who died of CCV-related causes were on average

10.1 years older at baseline, 45% more likely to have a diagnosis of diabetes, and more

likely to be prescribed medications (26% more likely for hypertension and 47% more likely

for diabetes).

Discrimination and calibration

Table 2 shows cross-validated discrimination and calibration results. All estimates were

calculated using conservative cross-validation methodology (with k=10 folds) to penalize

overfitting. Of note, the use of more predictor variables yielded larger increases in

discrimination than the use of more flexible analytic methods. Using only traditional risk

predictors, AUC increased from 71.3% for the FRS to 72.6% for logistic regression and to

73.1% for GAM and boosting. With more predictors the advantage of using nonparametric

as opposed to logistic regression was magnified. For example, when using all selected

predictors rather than just the traditional set, AUC increased by 3.7 points for logistic

regression, 4.4 points for GAM, and 4.7 points for boosting. Discrimination and calibration

results for MARS and random forests were similar to those for GAM and boosting

(available upon request).

The FRS predicted only 3,031 CCV-related deaths, compared to the 4,995 that were actually

observed (39.3% fewer). Calibration for the FRS (p<0.001 for HL-GOF test) was

particularly poor for low-risk patients; the FRS predicted 89.2% fewer deaths than observed

for patients in the lowest quintile of risk. However, there was no evidence of poor

calibration for the recalibrated FRS (HL-GOF p=0.236). Boosting also predicted fewer

deaths than observed for low-risk patients, but only when using all available data (p=0.017

for HL-GOF test). The figure in Supplemental Digital Content 4 shows plots of observed

versus expected numbers of events when using all predictors, as in traditional Hosmer-

Lemeshow tables. Using a 5% risk threshold with all available predictors, cross-validated

sensitivity was 42.4% for the FRS, 68.3% for logistic regression, 67.0% for GAM, and

63.6% for boosting; cross-validated specificity was 82.3% for the FRS, 71.1% for logistic

regression, 73.8% for GAM, and 77.3% for boosting.

To assess whether missing EHR data on smoking history could fully account for the under-

prediction of CCV events in the FRS, we performed a sensitivity analysis. Specifically, we

examined the most favorable scenario for FRS by assuming every patient with a CCV-

related death was a smoker and by randomly assigning a positive smoking status to 30% of

the rest of the population. In this scenario, the number of CCV events predicted by FRS only
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increased to 3659 (26.8% fewer than observed), and the HL-GOF test still rejected at the

0.05 level (p<0.001).

Reclassification and distribution of estimated risk

To further examine the predictiveness and calibration of the models, we conducted

reclassification analyses based on risk groups of 0–2%, 2–5%, 5–10%, 10–20%, and

20100% (Table 3). Internally-developed models always yielded significantly improved net

reclassification compared to the externally-developed FRS, and nonparametric methods

gave significant improvement over logistic regression.

The largest net reclassification improvement (NRI) was for boosting relative to the FRS

(NRI: 0.29, 95% CI: 0.27–0.32). Compared to the FRS, boosting reclassified 61.7% of those

with an event to a higher risk group and 8.3% of those without an event to a lower risk

group. The smallest NRI was for boosting relative to GAM (NRI: 0.07, 95% CI: 0.06–0.09);

boosting only reclassified 15.6% of those with events to a higher risk group and 10.5% of

those without events to a lower risk group, compared to GAM. NRI was not significant

comparing the FRS with the recalibrated FRS (NRI: 0.00, 95% CI: −0.02 to 0.02), indicating

that recalibration did not achieve significantly better arrangement into the specified risk

categories despite improved calibration.

Plots of estimated risk show the underestimation of the FRS for low-risk patients, along with

the relative similarity among internally-developed methods; these plots are shown in

Supplemental Digital Content 5.

These findings do have clinical implications. For example, consider what would happen if

aspirin were used for anyone with an estimated risk greater than 5%, and we could estimate

risk using either the FRS or boosting. Using boosting, 12,568 people would be treated who

would not have been treated under the FRS, and 5,767 people would not be treated who

would have been treated under the FRS. The boosting treatment regime would be more

accurate, since 1,366 of the 12,568 people (10.9%) who would have been treated only when

using boosting went on to die of CCV-related causes, compared to only 203 of the 5,767

(3.5%) who would have been treated only when using the FRS.

Relationships between predictors and risk

Figure 2 shows the relationship between traditional risk predictors (i.e., those used to

calculate the FRS) and estimated risk of 5-year CCV-related death for reference patients

whose other predictor values were set equal to their respective sample means (see Table 1

for specific values). We found that less flexible methods mischaracterized the association

between some predictors and the risk of CCV-related death. Most notably, the FRS assumes

strong increasing relationships for systolic blood pressure (SBP) and cholesterol ratio, but in

our sample these relationships were quite weak. Further, GAM and boosting showed

evidence of a slight U-shaped risk profile for SBP (i.e., patients with very low or very high

SBP were at highest risk), but this was missed by logistic regression since it assumed

linearity. Thus, not only would a different coefficient value for SBP in the FRS be

appropriate for our data, but the SBP variable itself would require additional transformation

to maximize model fit.
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DISCUSSION

Risk prediction is recommended in the management of every class of clinical cardiovascular

decision, including diagnostic testing, aspirin, cholesterol, and anti-hypertensive use, and

has a 50-year history in cardiology practice. In spite of this, the most commonly-used risk

scores are developed in selected populations, with limited sample sizes and risk predictors,

using rigid statistical tools. Using the VHA as an example, we have shown that some of

these limitations can be overcome with use of the EHR and nonparametric regression

techniques. Flexible risk models that are developed internally or "recalibrated" can greatly

improve predictive performance in terms of both discrimination and calibration. The best

way to achieve greater performance seems to be by including more risk predictors, even

when using imperfect EHR data. Using nonparametric methods with traditional risk

predictors gave modest improvements compared to parametric approaches, but larger

improvements occurred when additional predictors were added. Differences between the

nonparametric methods (GAM and boosting) were not definitive. Even greater

improvements could become more apparent with larger datasets (allowing for consideration

of more variables, interactions, and transformations) and with the automation of these

prediction tools. Such automation would obviate the need for data entry, and could facilitate

rapid implementation and result in dramatic benefits to patient care. Our results did not have

the benefit of large, expensive chart review or survey data but were comparable with those

of larger studies.34,35

Our findings should be interpreted in the context of a number of limitations. First, this is a

feasibility study and the models we developed require additional work before consideration

for use in clinical practice. Second, although the quality of EHR data in the VHA is

impressive relative to many other data sources, it is still imperfect. For example, some

variables frequently had missing values, while others were missing completely (such as

smoking status and ECG-LVH). The EHR design could make these data elements searchable

and text searching techniques are rapidly improving. The exclusion of smoking status and

ECG-LVH could negatively impact the FRS in particular, though data enhancements should

presumably improve the performance of all methods and sensitivity analyses suggested that

increased performance of the FRS would be modest. Third, although we excluded patients

with a recent CCV event, we did not have data to exclude all patients with any history of

cardiovascular disease, which would make our sample more like the one in which the FRS

was developed. Next, while our new data and methods improved prediction substantially,

AUC was never more than 80%; some patients' risk will inevitably still be misclassified.

Finally, although fatal CCV events are an important outcome, non-fatal cardiovascular

events are more commonly assessed in the risk prediction literature. We chose this outcome

partly because it is reliably available in VA data, unlike non-fatal CCV events.

This study also has a number of important strengths. First, we used a large dataset (over

100,000 patients) that is representative of a meaningful and sizable portion of the VHA

population. Second, we used a reliable outcome derived from the National Death Index

(NDI), which is not always the case for EHR research. Finally, we have meaningfully

extended the literature on risk prediction by assessing both state-of-the-art methods and

varying amounts of data.
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To our knowledge, investigation of the dual impact of data quality and statistical

methodology is rare. Those studies that have appropriately assessed the use of

nonparametric methods did not focus on advantages of EHR,36,37 and a recent review36

indicates that others typically made limited comparisons (e.g., only between logistic

regression and classification trees) or had methodological flaws (e.g., no cross-validation).

Although Wu et al.38 recently provided an excellent comparison of nonparametric methods

in a machine learning context while also discussing EHR issues, they did not explicitly

evaluate the benefit of using comprehensive EHR data versus only traditional risk

predictors. Also, of the two nonparametric approaches they explored, one (support vector

machines) gave poor performance and the other (AdaBoost) has an improved

implementation.16

Some of our findings were particularly surprising. For example, the U-shaped and weakened

associations between blood pressure and cholesterol and CCV-related death are in strong

distinction to most risk scores. Recognizing that our goal is prediction and not causal

inference, we believe these associations could be due to the reported phenomenon of

treatment lowering LDL and SBP more than CCV mortality.39,40

This study suggests a number of opportunities for future work, both with respect to

methodology and implementation in clinical practice. Extending this work to larger

databases, and adding changes over time and increased clinical data (such as diagnostic

study results) could allow for substantially greater predictive accuracy. An exploration of

non-fatal CCV events would be useful to determine whether the impact of flexible methods

and more data on quality of prediction would change. Further, simulation-based cost-

effectiveness studies could draw on our results to fully assess the practical benefit and

feasibility of better risk prediction. Our study shows that, once the data exists, developing

good risk scores is within the scope of most large health systems. In fact, the nonparametric

methods explored here are no more difficult to implement than logistic regression and are

accessible in freely available software. The greatest opportunity for future work, though, is

in clinical and policy implementation. The drive towards patient-centered, tailored care41

will make risk prediction and personalization more important than ever.

The recent political incentives towards Accountable Care Organizations42 and EHR43 will

lead to a radical increase in large clinical datasets that make within-population clinical risk

prediction viable for many healthcare systems. Our results suggest that these healthcare

systems could achieve better risk prediction by using internally-developed models with EHR

data and flexible statistical methodology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of prediction methods
Nonparametric methods do not require exact specification of a model for the outcome.

Ensemble methods incorporate predictions from many small and simple models applied to,

for example, weighted or sampled versions of the data. Bolded methods are those used in

this paper. [Abbreviations: Generalized additive model (GAM), multivariate adaptive

regression splines (MARS), classification and regression tree (CART), support vector

machine (SVM).]
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Figure 2. Estimated relationships between traditional predictors and CCV risk
Predictions were generated using only the traditional risk predictors (age, systolic blood

pressure, cholesterol ratio, and diabetes status); risk was estimated across the middle 95% of

observed values of the predictors of interest at the sample mean of all other predictors.
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Table 1

Patient characteristicsa,b

CCV-related death?

All patients Yes No p-value

Number of patients 113,973 (100%) 4,995 (4.4%) 108,978 (95.6%) ---

Traditional predictors

Age 63.4 ± 13.6 73.0 ± 10.8 62.9 ± 13.5 < 0.001

Male 109,007 (95.6%) 4,927 (98.6%) 104,080 (95.5%) < 0.001

Systolic BP 135.5 ± 16.3 138.5 ± 19.0 135.4 ± 16.1 < 0.001

Total/HDL chol. ratio 4.4 ± 1.2 4.3 ± 1.2 4.4 ± 1.2 < 0.001

Diabetes diagnosis 27,684 (24.3%) 1,726 (34.6%) 25,958 (23.8%) < 0.001

Medication data c

Hypertension meds 78,578 (68.9%) 4,308 (86.2%) 74,270 (68.2%) < 0.001

Lipids 55,184 (48.4%) 2,649 (53.0%) 52,535 (48.2%) < 0.001

Diabetes meds 24,940 (21.9%) 1,573 (31.5%) 23,367 (21.4%) < 0.001

Narcotics or opiates 29,234 (25.6%) 1,315 (26.3%) 27,919 (25.6%) 0.270

Benzodiazepines 14,375 (12.6%) 678 (13.5%) 13,700 (12.6%) 0.052

Levothyroxines 7,989 (7.0%) 516 (10.3%) 7,473 (6.9%) < 0.001

Anticoagulants 5,058 (4.4%) 580 (11.6%) 4,478 (4.1%) < 0.001

Labs, vitals, diagnoses & other

Albumin 3.9 ± 0.3 4.0 ± 0.3 < 0.001

Blood urea nitrogen 17.4 ± 6.5 21.6 ± 9.1 17.2 ± 6.3 < 0.001

LDL cholesterol 112.1 ± 27.5 104.8 ± 26.3 112.5 ± 27.5 < 0.001

Serum creatinine 1.1 (0.9–1.2) 1.2 (1.0–1.4) 1.1 (0.9–1.2) < 0.001

Pulse 74.3 ± 12.3 74.1 ± 12.8 74.4 ± 12.3 0.180

Pulse pressure 60.5 ± 14.7 66.4 ± 16.8 60.3 ± 14.5 < 0.001

Baseline diagnoses:

  COPD 27,523 (24.1%) 1,455 (29.1%) 26,068 (23.9%) < 0.001

  Periodontitis 4,749 (4.2%) 93 (1.9%) 4,656 (4.3%) < 0.001

  Inflamm. arthritis 1,655 (1.5%) 76 (1.5%) 1,579 (1.4%) 0.720

  Sleep apnea 1,174 (1.0%) 18 (0.4%) 1,156 (1.1%) < 0.001

Body mass index 29.3 ± 5.6 28.2 ± 6.0 29.3 ± 5.6 < 0.001

Num. NEXIS visits 3 (2–5) 3 (2–5) 3 (2–5) 0.012

a
For categorical variables, n (%) is shown; for continuous variables, mean ± sd is shown except in case of a skewed distribution, for which median

(IQR) is shown.

b
Among predictors with any missing values, missingness ranged between 2.8% (Systolic BP) and 45.7% (LDL cholesterol). Most patients (63.6%)

had zero or one missing risk predictor value.

c
Lipids include: statins, fibrates, ezetimibe. Narcotics/opiates include: buprenorphine, codeine, fentanyl, hydrocodone, hydromorphone,

methadone, morphine, opium, oxycodone, pentazocine, propoxyphene, tramadol. Benzodiazepines include: alprazolam, chlordiazepoxide,
clonazepam, clorazepate, diazepam, flurazepam, lorazepam, oxazepam, temazepam, triazolam. Anticoagulants include: dalteparin, enzoxaparin,
fondaparinux, heparin, warfarin
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