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Abstract

b-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) initiates the production of b-amyloid (Ab), the major
constituent of amyloid plaques in Alzheimer’s disease (AD). BACE1 is elevated ,2–3 fold in AD brain and is concentrated in
dystrophic neurites near plaques, suggesting BACE1 elevation is Ab2dependent. Previously, we showed that
phosphorylation of the translation initiation factor eIF2a de-represses translation of BACE1 mRNA following stress such
as energy deprivation. We hypothesized that stress induced by Ab might increase BACE1 levels by the same translational
mechanism involving eIF2a phosphorylation. To test this hypothesis, we used three different genetic strategies to
determine the effects of reducing eIF2a phosphorylation on Ab-dependent BACE1 elevation in vitro and in vivo: 1) a two-
vector adeno-associated virus (AAV) system to express constitutively active GADD34, the regulatory subunit of PP1c eIF2a
phosphatase; 2) a non-phosphorylatable eIF2a S51A knockin mutation; 3) a BACE1-YFP transgene lacking the BACE1 mRNA
59 untranslated region (UTR) required for eIF2a translational regulation. The first two strategies were used in primary
neurons and 5XFAD transgenic mice, while the third strategy was employed only in 5XFAD mice. Despite very effective
reduction of eIF2a phosphorylation in both primary neurons and 5XFAD brains, or elimination of eIF2a-mediated regulation
of BACE1-YFP mRNA translation in 5XFAD brains, Ab-dependent BACE1 elevation was not decreased. Additionally, robust
inhibition of eIF2a phosphorylation did not block Ab-dependent APP elevation in primary neurons, nor did it reduce
amyloid pathology in 5XFAD mice. We conclude that amyloid-associated BACE1 elevation is not caused by translational de-
repression via eIF2a phosphorylation, but instead appears to involve a post-translational mechanism. These definitive
genetic results exclude a role for eIF2a phosphorylation in Ab-dependent BACE1 and APP elevation. We suggest a vicious
pathogenic cycle wherein Ab42 toxicity induces peri-plaque BACE1 and APP accumulation in dystrophic neurites leading to
exacerbated Ab production and plaque progression.
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Introduction

The amyloid plaque, a hallmark of Alzheimer’s disease (AD)

pathology, is composed of a core of fibrillar 38–43 amino acid b-
amyloid Ab peptides [1,2]). Soluble oligomeric forms of Ab are

also thought to be present at high levels in the AD brain [3]. A vast

amount of evidence suggests that 42-amino acid Ab (Ab42) has a
crucial early role in the pathogenesis of AD [1,2]. Oligomeric

Ab42 has many toxic effects such as inhibition of long-term

potentiation in the hippocampus [4,5], alteration of synaptic

structure and synaptic transmission [6–11], and cytoskeletal

damage [12], among other effects in vitro and in vivo. Ab

peptides are generated by the sequential proteolytic processing

of the transmembrane protein, Amyloid Precursor Protein (APP)

by the b-secretase enzyme b-site APP Cleaving Enzyme 1

(BACE1), which cuts APP first, and the c-secretase complex,

which contains the intramembrane aspartic protease presenilin

(PS1, PS2) [13].

There is considerable genetic evidence suggesting that Ab42 is

the causative agent in Alzheimer’s disease. Mutations in APP, PS1

and its homolog, PS2, cause an early onset autosomal dominant

form of Familial Alzheimer’s Disease (FAD) [2]. Over 200

mutations in the genes for APP, PS1, and PS2 have been

identified that increase production of total Ab or Ab42, or increase
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Ab aggregation, and cause FAD. FAD can also be caused by

specific duplication of the APP gene locus [14,15], or by Trisomy

21/Downs syndrome [2]. The FAD mutations increase the rate of

secretase cleavage of APP resulting in greater Ab production [16].

For example, the Swedish mutation (K670N, M671L) at the

BACE1 cleavage site in APP makes APP a better BACE1

substrate, and thus increases BACE1 cleavage and raises total Ab
generation to cause FAD [17]. This implies that increased BACE1

activity might result in AD. Moreover, except for age of onset, the

phenotypes of FAD and sporadic AD are highly similar, strongly

suggesting that Ab has a critical early role in the more common

sporadic form of AD. Recently, a mutation in APP near the

BACE1 cleavage site (A673T) was identified that protects against

AD by reducing BACE1 cleavage of APP and Ab production [18].

These results taken together suggest that therapeutic reduction of

the activities of the secretases, especially BACE1, should lower Ab
levels, which might be beneficial for AD.

It is consistently observed that levels of BACE1 protein and

activity are elevated in the brains of AD patients [19–23] and APP

transgenic (Tg) mice [22,24–26], suggesting that increased BACE1

could have a role in the development and/or progression of AD by

exacerbating Ab generation. While the mechanism of BACE1

elevation in AD and APP Tg brains is not fully understood, recent

data indicate that BACE1 levels are upregulated during stresses

associated with AD risk such as energy deprivation [22,27],

hypoxia and stroke [28–30], oxidative stress [31] and traumatic

brain injury [32,33]. Several molecular pathways have been

proposed to mediate the BACE1 elevation, such as caspase-3-

induced cleavage of the trafficking adaptor protein GGA3 leading

to impaired lysosomal degradation of BACE1 [34,35], Cdk5

phosphorylation of transcription factor Stat3 [36], altered levels of

microRNAs [37–41], increased transcription factor HIF1a activity

[29], and elevated BACE1 mRNA translation via phosphorylation

of the translation initiation factor eIF2a [22].

In the brains of APP Tg mice and AD patients, high

concentrations of BACE1 protein accumulate in swollen dystro-

phic neurites in very close proximity to amyloid plaques

[22,24,26], suggesting that Ab itself is responsible for raising

BACE1 levels [42]. However, the complexity of the regulation of

BACE1 levels in neurons has made it difficult to discern the

molecular and cellular mechanism(s) involved in Ab-dependent
BACE1 elevation. Our previous work using primary neuron

cultures indicates that Ab42 oligomers directly elevate BACE1

levels through a post-transcriptional mechanism independent of

caspase-3 and Cdk5 activity [25]. Since these molecules did not

seem to play a key role in Ab42-induced BACE1 elevation, we

focused on the eIF2a phosphorylation pathway, which we have

previously shown increases BACE1 levels via enhanced translation

of BACE1 mRNA following energy inhibition [22]. In primary

neurons, compounds that increase eIF2a phosphorylation, such as

the PP1c phosphatase inhibitor salubrinal, also increase BACE1

levels and Ab generation. In BACE1 overexpressing HEK cells,

genetic reduction of eIF2a phosphorylation prevents the BACE1

increase associated with energy inhibition, further verifying this

mechanism. The positive correlation of levels of BACE1,

phosphorylated eIF2a, and amyloid load in human brain along

with the significant increase of BACE1 and phospho-eIF2a levels

in AD brains compared to non-demented controls [22] suggests

the eIF2a phosphorylation pathway might be relevant to AD

pathogenesis. Lastly, the increase of both BACE1 and phospho-

eIF2a levels in the 5XFAD transgenic mouse model of aggressive

amyloid pathology [22] indicates that this animal model could be

useful for studying the role of eIF2a phosphorylation in BACE1

elevation and amyloidogenesis in AD.

eIF2a is phosphorylated in response to certain cell stressors such

as viral infection, hypoxia, low nutrients and accumulation of

unfolded proteins in the ER. Phosphorylation of eIF2a reduces

global translation of transcripts, but increases translation of specific

stress-response mRNAs that encode proteins that limit damage

and assist the cell during stress recovery. The eIF2 complex

functions by binding GTP and initiator tRNA, then scanning the

mRNA until it reaches a start codon where it hydrolyzes GTP and

dissociates while the ribosome continues translation. Normally,

eIF2B is the guanine nucleotide exchange factor for eIF2, but

when the a subunit of eIF2 is phosphorylated at serine 51 (S51),

eIF2 binds tightly to eIF2B thus inhibiting its guanine nucleotide

exchange activity and eIF2 is unable to load GTP and initiate

translation. As a result of eIF2a phosphorylation, certain mRNA

transcripts with long 59 untranslated regions (UTRs) that contain

short upstream open reading frames (uORFs) are translated with

increased efficiency because ribosomes have an increased proba-

bility of scanning through the uORFs to re-initiate translation at

the true start codon [43,44]. Similarly, the BACE1 transcript has a

long, GC-rich 59 UTR that contains three uORFs that represses

translational efficiency under basal conditions [45–48]. eIF2a
phosphorylation that is induced by energy deprivation causes de-

repression of BACE1 mRNA translation, thus resulting in

increased BACE1 protein levels [22].

Here, we employed three different genetic strategies to

determine the effects of reduced eIF2a phosphorylation on Ab-
dependent BACE1 elevation in vitro and in vivo: 1) a two-vector

adeno-associated virus (AAV) system to express constitutively

active GADD34, a regulatory subunit of the PP1c eIF2a
phosphatase; 2) a non-phosphorylatable eIF2a S51A knockin

mutation [49]; 3) a BACE1-YFP transgene lacking the BACE1

mRNA 59 UTR that is required for translational regulation by

phosphorylated eIF2a. The first two strategies were used in

primary neuron cultures and 5XFAD transgenic mouse brains,

while the third strategy was employed only in 5XFAD transgenic

mice. We report that despite very effective reduction of

phosphorylated eIF2a levels in both primary neuron cultures

and 5XFAD brains, or elimination of phosphorylated eIF2a
mediated regulation of BACE1-YFP mRNA translation in

5XFAD brains, Ab-dependent BACE1 elevation could not be

decreased. We conclude that the amyloid-associated increase in

BACE1 level is not caused by translational de-repression via eIF2a
phosphorylation, but instead appears to involve a post-transla-

tional mechanism.

Materials and Methods

AAV constructs
GADD34 constitutive active N-terminal truncation and

GADD34 control C-terminal truncation constructs were a

generous gift of Dr. David Ron. GADD34 CA and GADD34

control cDNAs were expressed from a recombinant adeno-

associated virus (AAV)-based two-vector system. Each cDNA

was cloned into an AAV ‘‘responder vector’’ consisting of a tTA-

regulated tet-operator-CMV (tetO-CMV) bidirectional promoter

driving coexpression of GADD34 CA and eGFP or GADD34

control and eGFP. Expression from the responder vector is

activated only in the presence to the tetracycline transactivator

protein (tTA), which is expressed from an ‘‘activator vector’’ under

the control of the forebrain pyramidal neuron-specific calmodulin

kinase II (CaMKII) promoter [50].
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Mice
5XFAD mice were generated as previously described [51]. The

5XFAD line was maintained by crossing transgene positive males

with B6/SJL F1 hybrid females from Jackson Laboratories. The

eIF2a S51A mice were generated as described [49], and

maintained by crossing S/A heterozygous mice to wild type mice.

BACE1-YFP were generated as described [52]. Briefly, eYFP was

fused to the coding region of human BACE1, and cloned into the

PMM400 tetO expression vector (gift of M. Mayford, The Scripps

Institute, La Jolla, CA). This construct was used to make tetO

promoter BACE1-YFP transgenic mouse lines, which were then

crossed to transgenic mice expressing the tet transactivator (tTA)

from the forebrain pyramidal neuron-specific CaMKII promoter

(gift of M. Mayford) generating CaMKII:BACE1-YFP bigenic

mice that express BACE1-YFP in forebrain neurons (referred to as

BACE1-YFP mice). These bigenic females were crossed to

5XFAD males to generate 5XFAD;BACE1-YFP and non-5XFAD

BACE1-YFP littermates. For all experiments, cohorts consisted of

approximately 50% male and 50% female mice for each genotype,

except for all BACE1-YFP and 5XFAD;BACE1-YFP mice were

female. In no experiment did we observe a difference in BACE1

level or phospho:total eIF2a ratios between the sexes, so analyses

of males and females were combined. All mice were genotyped by

PCR amplification of tail clip DNA. Mice were sacrificed by

carbon dioxide inhalation or by a lethal dose of ketamine/

xylazine, followed by perfusion with ice cold 1xPBS containing

protease and phosphatase inhibitors. One hemibrain was either

snap-frozen whole in liquid nitrogen, or dissected into hippocam-

pus and cortex which were snap-frozen separately. Snap frozen

hemibrains, cortices or hippocampi were homogenized in 1xPBS

with 1% Triton X-100 supplemented with protease inhbitors

(Calbiochem) and Halt Phosphatase Inhibitor Cocktail (Thermo

Scientific). Protein concentration was quantified using BCA Assay

(Pierce). The other hemibrain was drop fixed in 4% paraformal-

dehyde in PBS for 16–20 hrs, then transferred to 20% w/v sucrose

in 1xPBS for 24 hours, then stored in 30% w/v sucrose in 1xPBS

with azide. All animal work was done with the approval of the

Northwestern University IACUC, assurance number A3283-01.

AAV injection
Serotype 1 AAV was prepared by VectorBioLabs (Philadelphia,

PA). Genomic titer was determined by quantitative PCR. 5XFAD

transgene positive males were crossed to SJL/B6 hybrid females in

timed matings to generate transgene negative and positive

littermates. On P0, each pup in a litter was cryoanesthatized

and injected with 2 ml containing 6.661010 viral genomes of

GADD34 control-AAV or GADD34 CA-AAV and 6.961010 viral

genomes of CamKII-tTA activator vector into each hemisphere,

using a 10 ml Hamilton syringe, as described in [53]. Pups were

returned to the mother and aged to 1, 3, or 6 months.

Primary neurons, AAV and Ab42
Timed matings between C57/B6 pairs or eIF2a S/A hetero-

zygous pairs were set up for two nights. Cortical neurons were

isolated from day 15.5–16.5 mouse embryos via dissociation at

37uC in 0.25% trypsin. For immunoblotting, brains were plated at

the density of 750,000 cells per well in 12 well plates previously

coated with 1 mg/ml poly-L-lysine (Sigma) in borate buffer.

Neurons were plated in neurobasal media supplemented with 2%

B-27, 500 mM glutamine, 10% horse serum and 2.5 mM
glutamate. After 2–3 hours, this was replaced with growth media

(neurobasal media with 2% B-27 and 500 mM glutamine). All cell

culture reagents were from Invitrogen. For AAV infection, 16107

activator viral genomes and 16107 responder GADD34 control or

GADD34 CA viral genomes were added to each well when the

plating media was removed and replaced with growth media.

AAV for primary neuron experiments was prepared by poly-

ethylenimine transfections of HEK cells with activator or

responder GADD34 vectors, and helper plasmids containing the

genes required for viral packaging. The helper plasmids used

(pDP1, pDP2) [54] generated combined serotype of 1 and 2,

which efficiently transduces neurons, and can be purified on a

heparin column [55]. Briefly, HEK293T/17 cells (ATCC) were

plated in T225 flasks and transfected by linear polyethylenimine

(PEI) [56,57] with equal molar amount of either responder

GADD34 cont, GADD34 CA or activator, and pDP1 and pDP2.

The cells were collected 72 hours after transfection by scraping.

Cells were lysed with freeze/thaw cycles followed by Benzonase

and pelleted. The virus containing supernatant was filtered on

0.45 mM Acrodisc syringe filter and loaded onto a heparin column

(GE Healthcare). Virus was washed with 1 mM MgCl and

2.5 mM KCl in 1xPBS (PBS-MK) and eluted in PBS-MK with

0.5 M NaCl. The eluted virus was concentrated in Amicon Ultra

cut off column (Millipore), washed thoroughly with PBS-MK three

times then eluted in 200 ml PBS. Virus titer (genomic particles per

ml) was determined by quantitative real-time PCR using RT2

Real-Time SYBR Green/Fluorescein PCR master mix, according

to the manufacturer (SuperArray Bioscience).

After 6–8 days in vitro following AAV infection, neurons were

exposed to 10 mM oligomeric Ab42 for 24 or 30 hours or 1 mM
Ab42 for 5 days. Ab42 oligomers were prepared as described in

[58]. Briefly, lyophilized recombinant Ab42 peptide (rPeptide) was

HFIP treated, dried down, then resuspended to 5 mM in dry

DMSO and brought to 100 mM in cold, 4 mM HEPES pH 8,

incubated on ice at 4uC for 24 hours to generate oligomers [59].

For control cultures, DMSO alone was added to 4 mM HEPES

pH 8 and incubated as described. All treatment conditions were

done in triplicate. Neurons were lysed on ice in RIPA buffer

(150 mM NaCl, 1% IGEPAL CA-630, 0.5% sodium deoxycho-

late, 0.1% SDS, 50 mM Tris pH 8, 1 mM PMSF) with protease

inhibitors (Calbiochem) and Halt Phosphatase Inhibitor Cocktail

(Thermo Scientific), spun down 10 minutes at 10,000 RPM at

4uC, and protein in the supernatant quantified by BCA assay

(Pierce).

Immunoblotting
15 or 20 mg of brain homogenate, or 5–10 mg primary neuron

lysate were separated on Invitrogen’s 4–12% Bis-Tris NuPage

Mini Gels. Protein was transferred to 0.45 mm PVDF membrane,

and after transfer stained with 0.1% Ponceau in 5% w/v acetic

acid, and scanned. The membrane was rinsed and probed with

anti-BACE1 antibody (3D5; 1:1000) [26], anti-phospho-eIF2a
(Epitomics, clone E90, 1:2000 or Cell signaling #3597, 1:2000),

anti-eIF2a (Cell Signaling #9722, 1:2000), anti-APP/Ab (clone

6E10, Covance, 1:5000, for human APP/Ab, or clone 22C11,

Millipore, 1:2000, for mouse APP), anti-GFP (Clontech, Living

Colors #632375), anti-bIII-tubulin (TuJ1, gift of Dr. Lester

Binder, 1:10,000) anti-b-actin (Sigma clone AC-15, #A5441-

1:30,000), anti-caspase 3 (Cell Signaling #9662-1:1000), followed

by washing and 1 hour incubation with secondary HRP-

conjugated anti-mouse or anti-rabbit secondary antibody (Jackson

Immunologicals, Vector Laboratories 1:10,000). Blots were

visualized using Amersham’s ECL+ chemiluminescent substrate,

or Luminata Crescendo (Millipore), and signals were quantified

using a Kodak Image Station 4000 R. Signals were normalized to

tubulin or actin signal, or ponceau staining intensity as indicated in

figure legends. For analysis of the mouse brain homogenates, gels

were cut into horizontal strips and stacked so all samples for a
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given protein were transferred onto a single piece of PVDF

membrane. Putting all samples (up to 106) on one membrane

eliminated the need to account for variation in transfer, antibody

incubation and ECL application that can occur between blots. For

neurons, triplicates of each culture condition were averaged and

comparison to control was done using student’s two-tailed t-test

using InStat software (GraphPad Software, Inc., San Diego, CA).

Ab42 ELISA
Human Ab42 levels in the 5XFAD AAV-injected cortices were

measured using the WAKO Human bAmyloid (1–42) Kit as

follows. 7.5 mg/ml brain homogenates were extracted in 5 M

guanidine hydrochloride overnight on a rocker, then diluted 1:50

in PBS with protease inhibitors. All samples were then diluted

1:100 into Standard Diluent and ELISA was performed according

to manufacturer’s instructions.

Immunofluorescence and microscopy
Paraformaldehyde fixed brains stored in 30% sucrose in PBS

were cut into 30 mm coronal or saggital sections on a freezing

sliding microtome and collected in PBS. Sections were stained

with Thiazine Red (2 mg/ml diluted 1:60,000) or Thioflavin S

(1 mg/ml diluted 1:5000) for amyloid fibrils, BACE1 (D10E5, Cell

Signaling, 1:500 or Eptomics EPR3956 1:250), GADD34 (Protein

Tech Group, Chicago 1:1000). GFP and YFP fluorescence signals

were imaged directly. Donkey anti-rabbit or anti-mouse conjugat-

ed to Alexa 568 or 647 secondary antibody (Molecular Probes)

was used at the same concentrations as primary being detected.

DAPI (Molecular Probes) was used at 300 nM for imaging nuclei.

Coverslips were mounted using Prolong Gold (Molecular Probes),

Conventional images were collected using a Keyence BZ9000

microscope (Tokyo, Japan), using 10x or 20x objectives. The

‘‘merge’’ function was used to generate hemibrain and hippocam-

pus images. Confocal images were collected on Nikon A1

microscope using a 60x oil immersion objective lens and NIS

Elements software (Northwestern University’s Cell Imaging

Facility).

Results

Overexpression of constitutively active GADD34 blocks
eIF2a phosphorylation but does not prevent Ab42-
induced BACE1 elevation in cultured mouse cortical
primary neurons
We previously reported that energy deprivation induces

phosphorylation of the translation initiation factor eIF2a and that

this in turn increases protein synthesis of the b-secretase enzyme,

BACE1, in primary cultured neurons and in the brain [22].

Additionally, we found that levels of phosphorylated eIF2a (p-

eIF2a) positively correlate with BACE1 levels and amyloid loads in

human AD and APP transgenic mouse brains [22]. Furthermore,

we observed that BACE1 levels increase in dystrophic presynaptic

terminals that are in close proximity to amyloid plaques in AD and

APP transgenic brains [24,26] and that fibrillar and oligomeric

Ab42 cause BACE1 levels to increase ,1.5–3-fold in primary

neuron cultures [25]. Together, these results suggested the

possibility that Ab might induce eIF2a phosphorylation and cause

an increase in BACE1 level via a translational mechanism similar

to that of energy deprivation. To investigate this hypothesis, we

established an in vitro culture system of Ab42-induced BACE1

elevation in mouse primary cortical neurons (Fig. 1). Synthetic

Ab42 oligomers and fibrils [58] robustly elevate BACE1 levels in

primary neuron cultures within 24 hrs, although Ab42 oligomers

appear more potent [25]. Therefore, we treated E15.5 mouse

mixed cortical primary neuron cultures with 10 mM Ab42
oligomers or vehicle for 24 and 48 hrs and then performed

immunoblot analyses for levels of BACE1, p-eIF2a, and total

eIF2a (Fig. 1). As expected, Ab42 oligomers caused significant

increases in BACE1 levels in both 24- and 48-hr treated primary

neurons. Moreover, the p-eIF2a/total eIF2a ratio was also

significantly elevated by Ab42 oligomer compared to vehicle

treatment. APP levels are also robustly increased by Ab42,
suggesting the intriguing possibility that Ab42 induces elevation of

both BACE1 and APP to initiate a pathogenic feed-forward cycle

of accelerated Ab42 generation. These results validated our

primary neuron culture system for investigating the molecular

mechanism of Ab-induced BACE1 elevation and the potential

involvement of eIF2a phosphorylation in this process.

To determine whether eIF2a phosphorylation mediates the Ab-
induced increase of BACE1 level in primary neurons in vitro, we

undertook two genetic approaches to reduce p-eIF2a levels:

Growth Arrest and DNA Damage protein 34 (GADD34)-

mediated eIF2a de-phosphorylation [60] and the S51A targeted

eIF2a mutant allele that prevents eIF2a phosphorylation [49]. In

the first approach, we employed GADD34, a regulatory subunit of

protein phosphatase 1c (PP1c) responsible for de-phosphorylating

eIF2a at serine 51 following recovery from certain types of

physiological stress [61]. The carboxy-terminal region of

GADD34 activates PP1c, but normally this interaction is inhibited

by the amino-terminal domain of GADD34. However, a

GADD34 construct that lacks the inhibitory amino-terminal

domain constitutively de-phosphorylates eIF2a [60]. Overexpres-

sion of this constitutively active GADD34 construct (GADD34

CA) greatly reduces levels of p-eIF2a, while a GADD34 lacking

the carboxy-terminal activation domain (GADD34 control) has no

effect on eIF2a phosphorylation and is frequently used as a

negative control [60,61].

We generated adeno-associated virus (AAV) ‘‘responder’’

vectors that co-express GADD34 CA or GADD34 control

(GADD34 CA-AAV and GADD34 control-AAV, respectively)

along with green fluorescent protein (GFP) under the control of a

bi-directional tetO-CMV fusion promoter [50] (Fig. 2A). The

transcription of GADD34 CA and GADD34 control is activated

in the presence of a second ‘‘activator’’ AAV vector that expresses

the tetracycline transactivator (tTA) under the control on the

forebrain excitatory neuron-specific calmodulin kinase II promoter

(CaMKII tTA-AAV). Addition of the tetracycline analog, doxy-

cycline, inactivates GADD34 CA or GADD34 control transcrip-

tion. However, because we did not use doxycycline, GADD34 CA

or GADD34 control transcription was constitutive in these

experiments. GADD34 CA-AAV or GADD34 control-AAV was

added together with CaMKII tTA-AAV to E15.5 mouse mixed

cortical primary neurons. The media was changed after 48 hours

and the neurons were harvested at 7 days in vitro and subjected to

immunoblot analysis (Fig. 2B). Notably, eIF2a phosphorylation

was dramatically decreased in the primary neurons transduced

with GADD34 CA AAV compared to GADD34 control-AAV,

which caused a modest increase in p-eIF2a level (Fig. 2C).

Transduction with either AAV vector resulted in only a small

increase in pro-apoptotic cleaved caspase 3 (17 kDa) fragment.

These results demonstrated that GADD34 CA AAV could

effectively transduce primary neurons with minimal toxicity and

cause a significant reduction in p-eIF2a level.

Next, we sought to determine whether GADD34 CA AAV-

mediated reduction of eIF2a phosphorylation could inhibit the

Ab42-induced BACE1 increase in primary neurons. Primary

neuron cultures were transduced with GADD34 CA-AAV or
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GADD34 control-AAV for 48 hrs as described above, then 7 days

later were treated with 10 mM Ab42 oligomers for 30 hrs. Ab42
oligomers were prepared from HFIP lyophilized recombinant

Ab42, as described previously [43,51]. Following Ab42 treatment,

primary neurons were lysed in RIPA buffer and subjected to

immunoblot analysis (Fig. 3). As expected, in the absence of either

AAV vector, Ab42 oligomer treatment caused a ,2-fold increase

of both BACE1 level and the ratio of phosphorylated to total (p:t)

eIF2a in primary neurons. Interestingly, transduction with

GADD34 control-AAV alone significantly elevated BACE1 level

and p:t eIF2a ratio. Likewise, GADD34 CA-AAV alone also

increased BACE1 level but completely abolished eIF2a phosphor-

ylation, indicating an eIF2a phosphorylation independent mech-

anism of Ab42-induced BACE1 elevation. Combined Ab42
treatment plus GADD34 control-AAV transduction caused ,3-

fold and ,2.5-fold increases in BACE1 level and p:t eIF2a ratio,

respectively, even higher than Ab42 oligomers alone, suggesting

an additive Ab42-AAV effect. Combined Ab42 treatment plus

GADD34 CA-AAV transduction of primary neurons resulted in a

,2.5 fold increase in BACE1 level but nearly completely

abrogated eIF2a phosphorylation. Interestingly, APP levels were

robustly increased by Ab42 and both AAV vectors, either in single

treatment or in combination with Ab42. It is notable that the

combination of Ab42 plus either AAV vector most potently

elevated BACE1 and APP levels. Taken together, these results

suggest that Ab42 is capable of elevating BACE1 and APP levels

via a mechanism that does not depend upon phosphorylation of

eIF2a, at least in primary neurons.

The eIF2a S51A knockin mutation blocks eIF2a
phosphorylation but does not prevent Ab42-induced
BACE1 elevation in cultured mouse cortical primary
neurons
To confirm our results that reducing the phosphorylation of

eIF2a using GADD34 CA-AAV does not prevent Ab42-induced
BACE1 elevation in primary neurons, we turned to a different

genetic model to block eIF2a phosphorylation: eIF2a S51A

knockin mouse primary neurons. S51A targeted replacement mice

have an alanine in place of the serine 51 that becomes

phosphorylated under certain conditions of physiological stress;

consequently, eIF2a cannot be phosphorylated in these animals

[49]. Homozygous (A/A) eIF2a S51A knockin mice die soon after

birth as a result of hypoglycemia, but heterozyotes (S/A) are viable

and fertile [49]. Thus, we were able to obtain primary mixed

cortical neuron cultures from E15.5 embryos of S/A6S/A mouse

crosses. Primary neurons were harvested from the cortex of each

embryo individually to obtain pure A/A and S/A cultures. After

7DIV, primary neurons were treated with 10 mM oligomeric

Ab42 for 30 hrs, then were harvested and subjected to immuno-

blot analysis (Fig. 4). As with wild-type primary neurons, Ab42
oligomer treatment caused BACE1 level and p:t eIF2a ratio to

increase significantly in S/A neuron cultures, compared to vehicle

Figure 1. BACE1, APP, and phosphorylated eIF2a increase in response to Ab42 oligomer treatment of primary neurons.Mixed cortical
primary neurons were isolated from e15.5 mouse embryos, and after 7 days in culture, exposed to 10 mM oligomeric Ab42 for 24 and 48 hrs. Cells
were lysed in RIPA buffer and 10 mg/lane of protein were subjected to immunoblot analysis for APP, BACE1, phosphorylated (p)-eIF2a, total eIF2a,
and b-actin as a loading control. (–) and (+) are negative and positive controls for eIF2a phosphorylation (control and UV treated HEK cell lysates, Cell
Signaling). APP and BACE1 immunosignal intensities were normalized to those of b-actin. Phosphorylated and total eIF2a immunosignal intensities
were measured and phosphorylated:total eIF2a ratio calculated. APP and BACE1 levels and phosphorylated:total eIF2a ratio (all measures displayed
as percentage of vehicle control) are all significantly elevated by Ab42 oligomer treatment at both time points. Bars represent SEM, n = 3 samples per
condition, asterisks (*) indicate significant changes compared to respective vehicle, p,0.05*, p,0.01**, p,0.001***.
doi:10.1371/journal.pone.0101643.g001
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treated S/A cultures. Importantly, A/A primary neurons showed a

similar Ab42-induced increase in BACE1 level as S/A neurons

even though eIF2a phosphorylation was completely abrogated in

Ab42 treated A/A neurons. Once again, APP levels were robustly

increased by Ab42 treatment in both S/A and A/A neuron

cultures. Therefore, as with GADD34 CA-AAV transduced

primary neurons treated with Ab42, our results with A/A neurons

indicate that a mechanism other than eIF2a phosphorylation is

responsible for Ab42-induced BACE1 and APP elevation in

primary neurons.

Overexpression of constitutively active GADD34 inhibits
eIF2a phosphorylation but does not reduce BACE1
elevation in 5XFAD transgenic mouse brain
Although our in vitro experiments definitively showed that

eIF2a phosphorylation is not required for Ab-induced BACE1

elevation, mature neurons in the brain are clearly different than

cultured primary neurons in many respects and therefore might

need phosphorylated eIF2a to increase BACE1 levels in response

to amyloid plaques. To test this possibility, we used the two genetic

approaches we employed before, GADD34 CA-AAV transduction

and eIF2a S51A knockin mice, to reduce p-eIF2a levels in

cerebral neurons of the 5XFAD transgenic (Tg) mouse model of

amyloidosis [51]. This mouse line expresses two linked transgenes,

both driven by the Thy1 promoter: 1) the 695 amino acid isoform

of human APP with three famililal Alzheimer’s disease (FAD)

linked mutations called Swedish (K670N, M671L) [62], Florida

(I716V) [63] and London (V717I) [64]; 2) human PS1 with the

two FAD mutations M146L and L286V [65]. These five

mutations result in massive overproduction of Ab42, intraneuronal
Ab42 accumulation, plaque deposition at 2 months, memory

impairment at 4–5 months, and neuron loss starting at 6 months

[51,66]. 5XFAD mice rapidly develop florid amyloid pathology.

Additionally, BACE1 levels are globally increased ,1.5-fold in

5XFAD brain, with the vast majority of this BACE1 elevation

being concentrated in dystrophic neurites that are in close

proximity to amyloid plaques (Fig. 5; [24,26]). Moreover, previous

work had indicated that both phosphorylated and total eIF2a
levels were elevated in 5XFAD brain at 6 months, leading to a

small but significant increase in the p:t eIF2a ratio [22]. Thus, we

reasoned that the 5XFAD mouse is an appropriate model for

investigating the potential role of eIF2a phosphorylation in

BACE1 elevation near amyloid plaques.

First, we transduced GADD34 CA-AAV into the brains of

5XFAD mice using the somatic brain transgenesis technique,

which results in expression of the AAV vector transgene

throughout the brain for the life of the mouse [53,67,68]. High-

titer AAVs were bilaterally injected into the lateral ventricles of

post-natal day 0 (P0) pups within hours of birth. In a pilot

experiment, immunoblot analysis of homogenates from control

AAV-injected hemibrains harvested at 1 and 3 months of age

showed that AAV transduction did not elevate BACE1 or p-eIF2a
levels in the brain (data not shown), in contrast to cultured primary

neurons, indicating that AAV on its own does not appear to

perturb the expression, regulation, or metabolism of these proteins

in vivo.

Figure 2. AAV vectors efficiently transduce primary neurons
and block eIF2a phosphorylation with minimal toxicity. (A) A
two-vector adeno-associated virus (AAV) system was used to decrease
eIF2a phosphorylation specifically in excitatory forebrain neurons. The
‘‘activator’’ vector (CaMKII tTA-AAV) expresses the tetracycline transac-
tivator (tTA) protein from a calmodulin kinase II (CaMKII) promoter,
while the ‘‘responder’’ vector (GADD34 CA-AAV or GADD 34 cont–AAV)
expresses GFP and either GADD34 constitutive active (CA) or GADD34
control (cont) from a bi-directional tetracycline operator-CMV promoter
(tetO-CMV). All expressed transgenes contain a woodchuck post-
trascriptional regulatory element (WRE) to enhance expression. ITR =
inverted terminal repeat sequences. (B) Mixed cortical primary neurons
were isolated from e15.5 mouse embryos and infected with 16107 viral
genomes of CaMKII tTA-AAV and 16107 viral genomes of GADD34 CA-
AAV or GADD 34 cont–AAV per well of a 12 well plate on the day of
isolation. No virus was added to other wells as a negative control. Media
was changed 48 hours later. After 8 days in culture, neurons were lysed
for immunoblot analysis for total eIF2a, phosphorylated (p)-eIF2a, GFP,
caspase 3 (full length and activated cleaved 17 kDa fragment), and b-
actin as a loading control. (+) are HEK293 cells treated 30 minutes with
1 mM thapsigargin as a positive control for eIF2a phosphorylation, while
(–) are untreated HEK293 cells as a negative control. Note that AAV
transduction does not cause toxicity as indicated by minimal cleaved
caspase 3 fragment. (C) Phosphorylated and total eIF2a immunosignal
intensities were measured from the blot in (B) and phosphorylated:total
eIF2a ratio (phospho/total eIF2a) was calculated and displayed as

percentage of no virus control. Primary neurons transduced with
GADD34 CA-AAV had dramatically less eIF2a phosphorylation than
neurons transduced with GADD34 cont-AAV or no virus, as demon-
strated by phospho/total eIF2a ratio. Note that GADD34 cont-AAV
transduction caused a significant elevation of phospho/total eIF2a ratio
compared to no virus control. Bars represent SEM, n = 3 samples per
condition, p,0.01**.
doi:10.1371/journal.pone.0101643.g002
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Next, we injected GADD34 CA-AAV or GADD34 control-

AAV, together with the activator CamKII-tTA AAV, into the

ventricles of P0 5XFAD and non-Tg pups, allowed mice to age to

6 months, and then harvested cortices and hippocampi for

biochemical and histological analyses of BACE1, p-eIF2a, and
Ab42. Importantly, GADD34 CA-AAV and GADD34 control-

AAV vectors were able to transduce and express at similar levels in

the brain as indicated by GFP fluorescence in brain sections

(Fig. 6A) and GFP immunoblot analysis of brain homogenates

(data not shown). Brain sections immunostained with an antibody

against GADD34 showed that GADD34 CA co-localized well

with GFP (Fig. 6B), suggesting that GFP fluorescence is a good

proxy for GADD34 transgene expression. Both AAVs displayed a

neuronal expression pattern, as expected for the CaMKII

promoter, with highest levels in the hippocampus followed by

the cortex. Immunoblot analysis of homogenates from 6 month

old hippocampi and cortices showed no difference in BACE1 or p-

eIF2a level in hippocampus or cortex between uninjected and

GADD34 control-AAV injected mice of either non-Tg or 5XFAD

genotypes (Fig. 6C, D). This results confirms our previous pilot

experiment showing that AAV on its own does not affect BACE1

or p-eIF2a levels in the brain, in contrast to AAV transduction of

primary neurons in culture (Figs. 2, 3). As expected, BACE1 levels

were significantly increased in 5XFAD compared to non-Tg

brains, irrespective of AAV injection (Fig. 6C, D). However, p:t

eIF2a ratio was not elevated by the presence of the 5XFAD

transgene, contrary to our previous observation [22]. The reason

for the absence of an increased p:t eIF2a ratio in 5XFAD brain is

unclear and is currently under investigation.

We next sought to determine the effects of GADD34 CA-AAV

on BACE1 and p-eIF2a levels in brains of 6 month old 5XFAD

mice (Fig. 7). Immunoblot analysis for p-eIF2a revealed that

GADD34 CA-AAV injection produced a very effective reduction

(,85–90%) of the p:t eIF2a ratio in the hippocampus and cortex

of both non-Tg and 5XFAD mice, compared to GADD34

control-AAV injection (Fig. 7A, B). Importantly, immunoblots

showed that no significant difference in BACE1 level was observed

between 5XFAD brains injected with GADD34 CA-AAV

compared to GADD34 control-AAV, despite robust reduction of

eIF2a phosphorylation for the former. Additionally, immunolabel-

ing of 5XFAD brain sections with an anti-BACE1 antibody

revealed no difference in the level of BACE1 immunostaining

between GADD34 CA-AAV and GADD34 control-AAV injec-

tion (Fig. 7D). Moreover, Ab42 level by ELISA (Fig. 7C) and

amyloid plaque signal by thiazine red staining (Fig. 7D) of 5XFAD

brain homogenates and sections, respectively, also showed no

significant changes in response to GADD34 CA-AAV compared

to GADD34 control-AAV injection. Taken together, these results

demonstrate that amyloid-associated BACE1 elevation in the

brain is not dependent upon the phosphorylation of eIF2a.

Figure 3. In primary neurons, GADD34 CA-AAV mediated reduction of eIF2a phosphorylation does not inhibit BACE1 and APP
elevation in response to Ab42 oligomer treatment.Mixed cortical primary neurons were isolated from e15.5 mouse embryos and infected with
16107 viral genomes CaMKII tTA-AAV and 16107 viral genomes of GADD34 CA-AAV or GADD 34 cont–AAV per well of a 12 well plate on the day of
isolation. No virus was added to other wells as a negative control. Media was changed 48 hours later. After 7 days in culture, neurons were treated
with vehicle or 10 mM Ab42 oligomers generated as described [58,59], lysed 30 hours later, and 10 mg/lane of protein were subjected to immunoblot
analysis for APP, BACE1, total eIF2a, phosphorylated (p)-eIF2a, and b-actin as a loading control. APP and BACE1 immunosignal intensities were
normalized to those of b-actin. Phosphorylated and total eIF2a immunosignal intensities were measured and phosphorylated:total eIF2a (phospho/
total eIF2a) ratio calculated. All measures are displayed as percentage of no virus vehicle control. Note that levels of APP, BACE1 and p-eIF2a were
significantly elevated by either Ab42 oligomer treatment or GADD34 cont-AAV transduction alone, compared to no virus vehicle control. Similarly,
GADD34 CA-AAV transduction alone also elevated APP and BACE1 levels but completely abrogated eIF2a phosphorylation. Interestingly, GADD34
cont-AAV transduction plus Ab42 treatment increased APP and BACE1 levels and phospho/total eIF2a ratio to even greater extents than either
treatment alone. GADD34 CA-AAV transduction plus Ab42 treatment also elevated APP and BACE1 levels significantly, despite reducing the phospho/
total eIF2a ratio to only ,7% of no virus vehicle control. Bars represent SEM, n = 3 samples per condition, asterisks (*) indicate significant changes
compared to ‘‘vehicle no virus’’, p,0.05*, p,0.01**, p,0.001***.
doi:10.1371/journal.pone.0101643.g003
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Furthermore, reduction of eIF2a phosphorylation decreases

neither Ab42 level nor amyloid plaque pathology in vivo.

eIF2a S51A knockin mutation inhibits eIF2a
phosphorylation but does not reduce BACE1 elevation in
5XFAD transgenic mouse brain
Our AAV results suggested that brain injection of viral vectors

in general did not appear to affect the outcome of our

experiments. However, to provide further confidence and

additional support for our conclusions, we sought to reduce eIF2a
phosphorylation by a different genetic method that did not involve

virus injection. To do so, we crossed 5XFAD mice with

heterozygous eIF2a S51A knockin mice to generate 5XFAD;

eIF2a S/A bigenic offspring that have ,50% reduction of eIF2a
phosphorylation (5XFAD; S/A mice). Only S/A heterozygotes

could be analyzed, since A/A homozygotes die shortly after birth,

as reported previously [49]. Immunoblot analysis showed the

expected increase in BACE1 level for 12 month old 5XFAD; S/S

(wild-type) compared to non-Tg; S/S mice (Fig. 8). Importantly,

we oberved that BACE1 level in 5XFAD; S/A brain was the same

as that in 5XFAD; S/S brain, despite the fact that p:t eIF2a ratio

was reduced by over 40%. Additionally, Ab42 levels by ELISA

were unchanged between 5XFAD; S/A and 5XFAD; S/S

genotypes (data not shown). Once again, we could discern no

Figure 4. In primary neurons, genetic reduction of eIF2a phosphorylation via eIF2a S51A knockin mutation does not inhibit BACE1
and APP elevation in response to Ab42 oligomer treatment. Mixed cortical primary neurons were isolated from e15.5 mouse embryos that
were either homozygous for the eIF2a S51A targeted replacement mutation (A/A) or heterozygous (S/A). After 7 days in culture, neurons were
treated with vehicle or 10 mM Ab42 oligomers, lysed 30 hours later, and 10 mg/lane of protein were subjected to immunoblot analysis for APP, BACE1,
total eIF2a, phosphorylated (p)-eIF2a, and b-actin as a loading control. APP and BACE1 immunosignal intensities were normalized to those of b-actin.
Phosphorylated and total eIF2a immunosignal intensities were measured and phosphorylated:total eIF2a (phospho/total eIF2a) ratio calculated. All
measures are displayed as percentage of S/A vehicle control. As expected, levels of APP, BACE1, and p-eIF2a were significantly elevated by Ab42
oligomer treatment in S/A neurons, compared to vehicle. Importantly, Ab42 oligomers caused robust increases of BACE1 and APP levels in A/A
neurons, despite complete abrogation of eIF2a phosphorylation. There was no significant difference in BACE1 or APP levels in A/A compared to S/A
neurons, eliminating the problem that AAV treatment of primary neurons increases levels of BACE1, APP, and p-eIF2a. The small phospho/total eIF2a
ratio in vehicle treated A/A neurons is due to immunoblot background. Bars represent SEM, n = 6 samples per condition, asterisks (*) indicate
significant changes compared to S/A vehicle, p,0.05*, p,0.01**.
doi:10.1371/journal.pone.0101643.g004
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significant effect of the 5XFAD transgene on the p:t p-eIF2a ratio

compared to non-Tg mice, contrary to our previous report [22].

These results are consistent with those of our AAV experiments,

and provide further support for the conclusion that eIF2a
phosphorylation does not mediate amyloid-associated BACE1

elevation in the brain.

BACE1-YFP expressed from a transgene lacking the
BACE1 mRNA 59 UTR is also elevated and accumulates
around amyloid plaques in 5XFAD brain
Phosphorylated eIF2a increases BACE1 translation by causing

ribosome scan-through of three upstream open reading frames

Figure 5. BACE1 is elevated in 5XFAD transgenic mouse brain, with highest concentrations surrounding amyloid plaques. (A)
Hemibrains from 6 month old 5XFAD (+) mice (n = 17), and non-transgenic (Tg) (–) age-matched controls (n = 13) were homogenized and 20 mg/lane
of protein were subjected to immunoblot analysis for transgenic human (h) APP, BACE1, Ab, and bIII-tubulin as a loading control. (B) hAPP and BACE1
immunosignal intensities were normalized to those of bIII-tubulin and displayed as percentage of non-Tg control. Note that 5XFAD mice have
significantly elevated levels of BACE1 and Ab compared to non-Tg controls, as detected by BACE1 antibody clone 3D5 and human APP/Ab antibody
clone 6E10, respectively. Bars represent SEM, asterisks (*) indicate significant changes compared to non-Tg control, p,0.001***, (C) Coronal brain
sections from 5XFAD mice were co-stained with anti-BACE1 antibody (red) and Thioflavin S (green) for fibrillar amyloid and imaged by fluorescence
microscopy. At low magnification, high levels of BACE1 (red) are readily observed in mossy fibers of the hippocampus, which is the normal
localization pattern of BACE1 in the brain (BACE1, first row). At high magnification, BACE1 (red) is shown to concentrate abnormally in an annulus that
immediately surrounds the fibrillar amyloid plaque core (green; cortex, second row; hippocampus, third row). Scale bars = 1 mm, first row; 100 mm,
second and third rows.
doi:10.1371/journal.pone.0101643.g005
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Figure 6. Two-vector AAV system effectively transduces mouse brain, and GADD34 control AAV transduction does not elevate
levels of BACE1 or phosphorylated eIF2a in the brain. 5XFAD or non-Tg pups were injected on postnatal day 0 into lateral ventricles with 2 ml
per hemisphere containing 6.661010 viral genomes of GADD34 CA-AAV or GADD 34 cont–AAV plus 6.961010 viral genomes of CaMKII tTA-AAV. Mice
were aged to 6 months and brains harvested for immunoblot, and immunofluorescence microscopy analysis. (A) GFP fluorescence in coronal brain
sections of 6 month-old 5XFAD mice injected with GADD 34 cont–AAV (left column) or GADD34 CA-AAV (right column) shows comparable
expression levels of GFP from both transduced AAV vectors. Upper row: entire hemibrain sections showing wide-spread GFP expression, especially in
the hippocampus. Lower row: lower exposure of hippocampus showing cellular GFP expression. The AAV serotype 1 with the CaMKII promoter
effectively drives expression in excitatory forebrain neurons, with particularly high expression in the hippocampus. Scale bar = 1 mm (top row),
250 mm (bottom row). (B) Low exposure high magnification image of a section of the hippocampus from a mouse transduced with GADD34 CA-AAV
stained with an antibody against GADD34 (red) shows high co-localization of GADD34 CA and GFP in neurons of the CA regions, indicating that GFP
fluorescence is an effective proxy marker for GADD34 expression Scale bar = 250 mm. (C) 20 mg/lane of cortex or hippocampus homogenate from 6
month-old 5XFAD (+) and non-Tg (–) mice either uninjected (uninj) or GADD 34 cont–AAV injected (cont inj) were subjected to immunoblot analysis
for BACE1, total eIF2a, phosphorylated (p)-eIF2a, and bIII-tubulin as a loading control. All samples were transferred onto a single piece of PVDF
membrane, as described in Methods, and representative blots are shown here. (D) BACE1 immunosignal intensities were normalized to those of bIII-
tubulin. Phosphorylated and total eIF2a immunosignal intensities were measured and phosphorylated:total eIF2a (phospho/total eIF2a) ratio
calculated. All measures are displayed as percentage of uninjected non-Tg control. Comparison of GADD34 cont–AAV injected mice with genotype-
matched uninjected mice shows that there is no effect on BACE1 or p-eIF2a levels from AAV brain injection itself. n = 9–15 mice per group. Bars
represent SEM. Asterisks (*) indicate significant difference from non-Tg uninj p,0.01**, p,0.001***.
doi:10.1371/journal.pone.0101643.g006
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(uORFs) present in the 59 UTR of BACE1 mRNA [46], thus

increasing the probabilty of ribosome translation re-initiation at

the true BACE1 ORF [22]. A BACE1 transgene with a truncated

59 UTR lacking the uORFs does not result in increased BACE1

translation in response to energy deprivation stress that induces

eIF2a phosphorylation [22]. If Ab is also a stress that causes eIF2a
phosphorylation and increased BACE1 mRNA translation, we

reasoned that BACE1-YFP transgenic mice that express a

Figure 7. GADD34 CA-AAV effectively inhibits eIF2a phosphorylation in 5XFAD brain but does not block amyloid-associated
BACE1 elevation. 5XFAD or non-Tg pups were injected on postnatal day 0 into lateral ventricles with 2 ml per hemisphere of 6.661010 viral
genomes of GADD34 CA-AAV or GADD 34 cont–AAV plus 6.961010 viral genomes of CaMKII tTA-AAV. Mice were aged to 6 months and brains
harvested for immunoblot and immunofluorescence microscopy analysis. (A) 20 mg/lane of cortex or hippocampus homogenate from 6 month-old
5XFAD (+) and non-Tg (–) mice either GADD34 CA-AAV injected (CA) or GADD 34 cont–AAV injected (cont) were subjected to immunoblot analysis
for BACE1, total eIF2a, phosphorylated (p)-eIF2a, and bIII-tubulin as a loading control. All samples were transferred onto a single piece of PVDF
membrane, as described in Methods, and representative blots are shown here. (B) BACE1 immunosignal intensities were normalized to those of bIII-
tubulin. Phosphorylated and total eIF2a immunosignal intensities were measured and phosphorylated:total eIF2a (phospho/total eIF2a) ratio
calculated. All measures are displayed as percentage of GADD 34 cont–AAV injected non-Tg control. BACE1 levels were elevated in GADD 34 cont–
AAV transduced 5XFAD cortex and hippocampus compared to non-Tg, as expected. Importantly, GADD34 CA-AAV transduction reduced p-eIF2a
levels by ,85–90% compared to GADD34 cont-AAV transduction in both 5XFAD and non-Tg cortex and hippocampus. Despite this dramatic
inhibition of eIF2a phosphorylation, BACE1 levels were elevated in GADD34 CA-AAV transduced 5XFAD cortex and hippocampus to the same extent
as in GADD34 cont-AAV transduced 5XFAD cortex and hippocampus. n = 6–15 mice per group, bars represent SEM, asterisks (*) indicate significant
changes compared to non-Tg GADD34 cont-AAV control, NS = not significant, p,0.05*, p,0.01**, p,0.001***, (#) represents significant difference
between 5XFAD GADD34 cont-AAV and 5XFAD GADD34 CA-AAV p,0.001 ###. (C) Cortical homogenates from 5XFAD mice injected with either
GADD 34 cont–AAV or GADD34 CA-AAV were prepared for measurement of total (soluble plus insoluble) Ab42 levels (ng/mg total protein) by ELISA
(Methods). No significant difference in total Ab42 level between GADD34 CA-AAV and GADD34 cont-AAV brain transduction was observed. Bars
represent SEM (D) Coronal brain sections of representative GADD34 CA-AAV or GADD34 cont-AAV transduced 5XFAD mice co-stained with anti-
BACE1 antibody (green) and thiazine red (ThR) for fibrillar amyloid, then imaged by fluorescence microscopy. Both the intensities of BACE1
immunostaining and fibrillar plaque load signal appear unaffected by reduction of eIF2a phosphorylation via GADD34 CA-AAV transduction, thus
corroborating our immunoblot analysis that phosphorylated eIF2a does not mediate amyloid-associated BACE1 elevation. Each image is taken at 10x
objective magnification, at the same exposure, from the cortex just above hippocampal region CA3. Scale bar = 100 mm.
doi:10.1371/journal.pone.0101643.g007
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transcript with a truncated BACE1 mRNA 59 UTR under the

control of the CaMKII promoter [52] should not exhibit increased

BACE1-YFP levels associated with amyloid. Sequencing demon-

strated that only 11 nucleotides of the BACE1 mRNA 59 UTR

and no uORFs are present in the BACE1-YFP transgene 59 UTR

(Fig. 9A). To determine whether or not BACE1-YFP levels are

elevated in response to amyloid, we crossed BACE1-YFP

transgenics with 5XFAD mice to generate BACE1-YFP; 5XFAD

compound transgenic animals, aged them to 6–8 months, and

harvested cortices and hemibrains for biochemical and histological

analyses. Immunoblot analysis with an anti-BACE1 antibody

revealed that BACE1-YFP levels were significantly increased in

BACE1-YFP; 5XFAD brain homogenates, as compared to those

from age-matched mice that express BACE1-YFP alone (Fig. 9B).

Moreover, YFP fluorescence in brain sections from BACE1-YFP;

5XFAD mice demonstrated marked accumulation of BACE1-YFP

in swollen dystrophic neurites surrounding amyloid deposits in a

pattern identical to endogenous BACE1 immunostaining near

plaques in APP transgenic and AD brains (Fig. 5C; [24,26]). Thus,

BACE1-YFP underwent Ab-dependent elevation in 5XFAD

brain, even when expressed from a transgene lacking the 59

UTR uORFs that are directly responsible for the translational

control of BACE1 mRNA by phosphorylated eIF2a. Together
with our other genetic evidence, our BACE1-YFP transgenic

results strongly support the conclusion that amyloid-associated

BACE1 elevation occurs via a mechanism that is independent of

eIF2a phosphorylation.

Discussion

In this report we use three different genetic strategies (GADD34

CA-AAV transduction, eIF2a S51A knockin mutation, BACE1-

YFP transgene lacking 59UTR uORFs) to investigate the potential

role of eIF2a phosphorylation in Ab-dependent BACE1 elevation

in primary neuron culture and in the brain of the 5XFAD mouse

model of aggressive amyloid pathology. We unequivocally

demonstrate that partial or complete reduction of eIF2a
phosphorylation does not inhibit the Ab-associated increase of

BACE1 level either in vitro or in vivo. Furthermore, we show that

YFP-tagged BACE1, expressed from a transgene with a truncated

BACE1 mRNA 59 UTR lacking uORFs required for p-eIF2a
mediated translational control, is elevated and accumulates

around plaques in a pattern identical to endogenous BACE1 in

5XFAD brain. Additionally, p-eIF2a reduction did not block Ab-
dependent APP elevation in primary neurons, nor did it decrease

Ab levels or amyloid plaque pathology in 5XFAD brain. Thus, we

can conclude that eIF2a phosphorylation does not have a role in

Ab-associated BACE1 and APP elevation, or in amyloid

pathology, at least in primary neurons and 5XFAD mice.

Our three distinct genetic strategies produced results that were

very consistent with one another, making it highly unlikely that the

data were artifacts of the approaches. Taken together, they

strongly support the conclusion that amyloid-associated BACE1

elevation does not depend on eIF2a phosphorylation or on any

other translational or transcriptional mechanism. Instead, we

currently favor a hypothesis of Ab-dependent BACE1 elevation

that is driven at the post-translational level by dysregulation of

BACE1 localization and/or turnover. Future investigations will

shed light on the elusive mechanism of BACE1 elevation in AD.

It is notable that both BACE1 and APP levels became elevated

in primary neurons following exposure to Ab42 oligomers,

suggesting a feed-forward mechanism that establishes a vicious

pathogenic cycle of Ab generation. Here, we did not determine

whether APP increased in parallel with BACE1 in the brains of

5XFAD mice. However, we recently demonstrated the accumu-

lation of both BACE1 and APP in dystrophic axons surrounding

amyloid plaques in 5XFAD brains [24]. Previous studies suggest

that a halo of Ab oligomers is present around the amyloid plaque

[3], implying that neuritic dystrophy in close proximity to the

plaque might arise from Ab oligomer-induced toxicity. Putting

these observations together, we speculate that high concentration

Figure 8. Genetic reduction of eIF2a phosphorylation via eIF2a
S51A knockin mutation does not block amyloid-associated
BACE1 elevation in 5XFAD brain. 5XFAD mice were crossed with
mice harboring the eIF2a S51A targeted replacement mutation to
generate 5XFAD (+) or non-Tg (–) offspring that were either
heterozygous for the eIF2a S51A knockin mutation (S/A) or wild-type
(S/S). Mice were aged to 12 months, brains harvested, and homoge-
nates prepared. 20 mg/lane of brain homogenate were subjected to
immunoblot analysis for transgenic human (h) APP, BACE1, total eIF2a,
and phosphorylated (p)-eIF2a. All samples were transferred onto a
single piece of PVDF membrane and stained with ponceau S as a
protein loading control, as described in Methods. For quantification,
BACE1 immunosignal intensity was normalized to ponceau S staining
intensity for a given lane. Phosphorylated and total eIF2a immunosignal
intensities were measured and phosphorylated:total eIF2a (phospho/
total eIF2a) ratio calculated for a given lane. The means of each group
were calculated and means displayed as percentage of the mean non-
Tg S/S control. Both non-Tg and 5XFAD mice that were also
heterozygous for the eIF2a S51A knockin mutation had a ,40%
reduction in phospho/total eIF2a ratio compared to their S/S
counterparts; presumably, the phospho/total eIF2a ratios did not reach
the expected 50% reduction because of a high non-specific background
on the p-eIF2a immunoblot or partial compensatory increased
phosphorylation of the wild type allele. Importantly, BACE1 level in
5XFAD; S/A brain showed an amyloid-associated elevation that was
equivalent to that of 5XFAD; S/S brain, despite the 40% reduction in
phospho/total eIF2a ratio. n = 19–30 mice per group. Bars represent
SEM, asterisks (*) indicate significant changes compared to non-Tg S/S
control, p,0.05*, p,0.01**, p,0.001***, NS = not significant, (#)
indicates significant difference between 5XFAD S/S and 5XFAD S/A p,
0.001 ###.
doi:10.1371/journal.pone.0101643.g008
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Figure 9. BACE1-YFP expressed from a transgene with a truncated BACE1 mRNA 59 UTR is also elevated and accumulates around
amyloid plaques in 5XFAD brain. (A) 59 UTR of BACE1-YFP transgene. The BACE1-YFP coding region (green) was subcloned into the tetO
promoter vector PMM400 (black) via an NheI site (gray) [52], leaving a severely truncated BACE1 mRNA 59 UTR (orange) consisting of only eleven
nucleotides that lack the uORFs required for de-repression of translation by phosphorylated eIF2a. (B) 5XFAD mice were crossed with BACE1-YFP
transgenic mice to generate 5XFAD (+) and non-Tg (–) offspring that also expressed the BACE1-YFP transgene. 5XFAD and non-Tg offspring that
lacked the BACE1-YFP transgene were also generated. At 6–8 months of age, cortices of 5XFAD; BACE1-YFP, non-Tg; BACE1-YFP, 5XFAD, and non-Tg
littermates (n = 5 for each group) were harvested, homogenized, and 20 mg/lane of homogenates were subjected to immunoblot analysis for BACE1
using the 3D5 anti-BACE1 antibody. The immunoblot was stained with ponceau S as a protein loading control. Representative BACE1-YFP
immunoblot signals are shown. BACE1-YFP runs at ,90 kDa on SDS-PAGE, compared to ,65 kDa for endogenous (endog.) BACE1. For
quantification, BACE1 and BACE1-YFP immunosignal intensities were normalized to ponceau S staining intensity for a given lane. The means of each
group were calculated and means displayed as percentage of the mean BACE1 level in non-Tg control. The BACE1-YFP transgene is expressed at
levels that are ,4-fold higher than that of endogenous BACE1. As expected, endogenous BACE1 level is significantly elevated in 5XFAD brain
compared to non-Tg brain. Most importantly, BACE1-YFP levels also exhibit a significant amyloid-associated elevation with the 5XFAD genotype
compared to the non-Tg genotype, despite the complete absence of uORFs necessary for regulation by eIF2a phosphorylation. Bars represent SEM,
asterisks (*) indicate significant changes compared to respective non-Tg control, p,0.05*. (C) Sagittal section of representative 5XFAD; BACE1-YFP
cortex stained with anti-BACE1 antibody and imaged for BACE1 immunofluorescence (red) and YFP fluorescence (green) by confocal microscopy.
Upper row shows lower magnification of several amyloid plaques (stars) each surrounded by an annulus of punctate accumulations of BACE1 and
BACE1-YFP. Lower row shows higher magnification image of boxed inset in upper row. Our previous work has identified these BACE1 accumulations
as swollen dystrophic axons and presynaptic terminals [24]. Note the extensive co-localization of BACE1 and BACE1-YFP, although their relative levels
appear to vary somewhat in different dystrophies. These results demonstrate that BACE1-YFP accumulates around plaques in the same pattern as
endogenous BACE1. Blue in the center of the annulus represents the amyloid plaque core, marked with (*). Blue outside of the annulus indicates
DAPI-stained nuclei.
doi:10.1371/journal.pone.0101643.g009
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Ab42 oligomers emanating from plaques cause peri-plaque

neurites to become swollen and dystrophic, leading to the

accumulation of BACE1 and APP with subsequent elevated Ab
production.

Our results differ from others suggesting a role for eIF2a
phosphorylation in amyloid-associated elevation of BACE1 levels

and amyloid pathology. BACE1 and p-eIF2a levels have been

reported to increase together under certain genetic and pharma-

cologic conditions in APP transgenic mice [22,69–71]. However,

these observations are essentially correlative and the correspond-

ing studies did not test the effects of direct inhibition of eIF2a
phosphorylation on Ab-induced BACE1 levels, as did our present

investigation. For example, in one study 5XFAD mice were

generated that lacked the eIF2a kinase GCN4 [70]. 5XFAD;

GCN42/2 mice exhibited elevated p-eIF2a, BACE1, and Ab
levels compared to 5XFAD; GCN4+/+ littermates. A compensa-

tory increase in the activation of another eIF2a kinase, PERK, was

also observed in 5XFAD; GCN42/2 mice, providing an

explanation for the p-eIF2a elevation. However, this study did

not directly demonstrate that the BACE1 elevation was caused by

the increase in p-eIF2a. Indeed, levels of proteins important for

the regulation of gene expression such as ATF4 and phosphor-

ylated CREB were also changed in 5XFAD; GCN42/2 mice,

suggesting the possibility of alternative pathways of BACE1

elevation independent of p-eIF2a. The other reports also suffer

from over-interpretation of correlative results. In support of our

results, a recent study using a different APP transgenic mouse

reported that genetic ablation of PERK reduced p-eIF2a levels but

did not alter BACE1 levels [72]. By direct inhibition of eIF2a
phosphorylation, here we definitively tested cause and effect

relationships and conclusively show that reducing eIF2a phos-

phorylation does not decrease amyloid-associated BACE1 eleva-

tion in primary neuron cultures or 5XFAD mice.

We note that there are conflicting reports concerning the level

of p-eIF2a present in the brains of 5XFAD mice. We previously

reported that the p:t eIF2a ratio in 5XFAD mice at 6 months of

age was increased modestly (,20%) compared to non-Tg mice

[22]. However, we failed to confirm this finding in the present

study and instead showed no significant difference in p:t eIF2a
ratio between 6- or 12-month 5XFAD and non-Tg mice using a

much larger sample size (n = 9–15 here compared to n= 5 in [22]).

Another group has reported that p-eIF2a levels are increased ,3-

and ,9-fold at 6 and 15–18 months of age, respectively [69]. The

reason for these discrepancies in reported p-eIF2a levels in

5XFAD mice is unclear and will require further investigation to

resolve. However, it is worth noting that 2–12 month-old 5XFAD

mice display robust increases in BACE1 levels despite failing to

show consistently elevated p-eIF2a in our hands, again arguing

against a definitive role for eIF2a phosphorylation in amyloid-

associated BACE1 elevation.

On a technical note, this study demonstrates the effective use of

a two-vector AAV system with P0 intracerebroventricular

injection for transgene expression in the brain. Previous studies

using this injection method have used a single virus, which limits

the flexibility of the regulation of the transduced transgene. AAV

vectors can package only a limited sized cDNA insert (,5–6 kb)

between the inverted terminal repeats, so our demonstration of the

feasibility of AAV co-transduction expands the possibility for more

complex regulation and combinations of different transgenes. In

our study, AAV co-transduction permitted us to double the

amount of exogenous DNA (e.g., for co-expression of the gene of

interest with GFP) and perform cell specific expression in neurons

coupled with doxycycline regulation (which we did not use in this

study).

Our two-vector system requires that individual cells become

infected with a sufficient number of each AAV to achieve adequate

expression of both vectors. Since we were able to almost

completely eliminate eIF2a phosphorylation, it appears that

sufficient co-infection levels of GADD34 CA-AAV and CamKII

tTA-AAV vectors were attained at the non-toxic titers that we

used (see Methods). It is notable that eIF2a phosphorylation was

reduced by as much as 90%, suggesting that the majority of p-

eIF2a in the brain is found in excitatory forebrain neurons (in

which CaMKII tTA-AAV is specifically expressed) rather than in

other cell types.

Our recent work here and in another report [25] focused on

whether dysregulation of specific cellular mechanisms that control

BACE1 levels in neurons is responsible for Ab-dependent BACE1
elevation. Taken together, our data suggest that while pathways

involving eIF2a phosphorylation, Cdk5 activity and Caspase 3

activation, among others have a role in regulating BACE1 levels

under normal physiological conditions and stress responses, these

mechanisms are not responsible for raising BACE1 levels in an

Ab42 dependent fashion. Clearly, BACE1 translation can be

upregulated by different stresses that induce eIF2a phosphoryla-

tion, such as energy deprivation [22], and this mechanism is

undoubtedly important during certain stress responses. While our

work suggests it is highly unlikely that eIF2a phosphorylation is

responsible for increased BACE1 levels observed in Ab42 treated

primary neurons or 5XFAD brains, further investigation of this

pathway is still relevant as p-eIF2a levels are elevated in the brains

of AD patients [22] and could affect AD pathology through

mechanisms other than BACE1 elevation.
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