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INTRODUCTION
Gastric cancer is the fourth most common cancer and the 
second most deadly cancer worldwide[1,2]; it is particularly 
prevalent in Asian countries[3,4]. According to the Ameri-
can Cancer Society, approximately 738000 people died 
worldwide from stomach cancer in 2008[5]. At present, no 
effective treatment is available for this disease, and identi-
fication of  early stage gastric cancer is difficult because it 
is often asymptotic or misdiagnosed. Moreover, the prog-
nosis of  patients with advanced gastric cancer remains 
poor due to its high metastatic recurrence[6,7], and the 
complex molecular mechanisms underlying metastasis are 
not well characterized[8,9].

Presently, early diagnosis of  human gastric cancer or 
tumor recurrence is primarily based on endoscopy, biopsy 
and pathological examination. Endoscopy is a widely used 
method for detecting early stages of  gastric cancer[10-12] 
despite its inconsistent diagnostic efficiency, which stems 
from variations in the skill and experience of  the endos-
copist and pathologist. In recent years, several serum 
biomarkers have been identified as new tools for early 
screening of  gastric cancer in developed countries[11-16]. 
However, these serum biomarkers are not effective as 
other screening devices given their low specificity and sen-
sitivity[13]. Recently, epidemiological data have revealed that 
Helicobacter pylori (H. pylori) infection and dietary factors are 
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Abstract
Metabolomics is a field of study in systems biology 
that involves the identification and quantification of 
metabolites present in a biological system. Analyz-
ing metabolic differences between unperturbed and 
perturbed networks, such as cancerous and non-
cancerous samples, can provide insight into underlying 
disease pathology, disease prognosis and diagnosis. 
Despite the large number of review articles concerning 
metabolomics and its application in cancer research, 
biomarker and drug discovery, these reviews do not 
focus on a specific type of cancer. Metabolomics may 
provide biomarkers useful for identification of early 
stage gastric cancer, potentially addressing an impor-
tant clinical need. Here, we present a short review on 
metabolomics as a tool for biomarker discovery in hu-
man gastric cancer, with a primary focus on its use as 
a predictor of anticancer drug chemosensitivity, diag-
nosis, prognosis, and metastasis.
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the main risk factors associated with gastric cancer[1,2].
An overview of  traditional methods involved in gastric 

cancer detection, diagnosis and prognosis in comparison 
with metabolomic methods is presented in Table 1. The 
field of  metabolomics may offer practical solutions to the 
challenges mentioned above. Metabolomics, the study of  
the unique metabolite signature in a biological system (cell, 
tissue, or organism) under a given set of  conditions[17], 
has emerged as a promising technology in the study 
of  human cancers. Metabolites are not merely the end 
product of  gene expression; rather, they are the result of  
the interaction of  the system’s genome with its environ-
ment. They are an integral part of  any cellular regulatory 
system[18]. Metabolomics is regarded as one of  the new 
high-throughput, “-omics” technologies. Along with ge-
nomics, transcriptomics, and proteomics, metabolomics 
is a scientific field of  study that seeks to achieve the aims 
of  systems biology[18,19]. The biological organization of  
different “-omes” and the flow of  information from the 
genome to the transcriptome, the proteome and finally 

the metabolome is presented in Figure 1[20]. Metabolomic 
studies offer a unique approach for identifying metabo-
lomic pathways that are perturbed under specific condi-
tions[21,22], thereby providing information different from 
other “-omic” technologies[19]. In recent years, metabolo-
mic studies have been successfully conducted in various 
cancer systems, including stomach[21], lung[23,24], renal[25,26], 
breast[27], brain[28] and colorectal[29-32]. Metabolomic studies 
have also been conducted in human xenograft models[33-38] 
(transplantation of  living cells, tissues or organs from one 
species to another). These studies can provide valuable 
information in terms of  novel biomarkers that identify 
cancerous cells. A biomarker[39] often represents a compo-
nent found in plasma, whose concentration indicates the 
presence or the severity of  disease states. Biomarkers can 
therefore serve as an indicator of  tumor progression and 
treatment efficacy. Biomarkers can be chemical, physical 
or biological in nature. Metabolomic studies typically be-
gin with tissue sampling, followed by sample analysis. Nu-
clear magnetic resonance spectroscopy (NMR) is the most 
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Table 1  Overview of gastric cancer detection and treatment via  traditional methods compared with metabolomics

Figure 1  Biological organization of different omic technologies[20]. The position of metabolomics is shown with respect to the other “omic” methods. In addition, a 
scheme for the discovery of cancer biomarkers using “omics” -based approaches is shown. qRT-PCR: Quantitative reverse transcriptase-polymerase chain reaction; 
LC-MS: Liquid chromatography-mass spectrometry; GC-MS: Gas chromatography-mass spectrometry; NMR: Nuclear magnetic resonance; FT-IR: Fourier-transform 
infrared.
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Clinical test trials

Approved cancer biomarkers
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Cancer detection state/stage Traditional methods Metabolomics (biomarkers) Ref.

Diagnosis Endoscopy, biopsy Lactic acid, butanedioic acid, malic acid, citric acids, 
pyruvic acid, 3-hydroxypropionic acid, serine, proline

[91,93,100,101]

Prognosis Radiotherapy, chemotherapy surgery Valine, isoleucine, serine, 3-indoxyl sulfate, hippurate, 
citrate

[96,99,102]

Metastasis Computed tomography (CT) scanning, endo-
scopic ultrasonography (EUS), positron emission 
tomography (PET)

Sarcosine,  alanine, proline, serine, myo-inositol, glyc-
erol

[90,91,98,103]

Chemosensitivity of drugs MTT chemosensitivity assay 1-acyl-lysophosphatidylcholines and polyunsaturated 
fatty acids

[75,104]



common method of  analysis. The large amount of  data 
generated by this analysis is then statistically processed to 
identify the metabolites that are differentially expressed 
between the samples, possibly leading to biomarker selec-
tion (Figure 2[12,40-42]). The key to identifying potential bio-
markers is based on the level of  metabolite differences in 
biological samples taken from cancer patients and normal 
(control) subjects. Metabolomics also has potential utility 
in several fields of  cancer research, including prognosis[43], 
diagnosis[44,45] and drug evaluation and development[46-48]. 
It can also serve as an alternative strategy for personalized 
cancer therapy[49,50]. 

Several review articles[12,40,51,52] have been published 
on metabolomic applications in cancer research[20,53-55], 
biomarker discovery[39,56,57] and natural product drug 
discovery[18]. However, none of  them have focused on a 
specific type of  cancer, particularly gastric cancer. Hence, 
the aim of  this article is to provide a brief  overview of  
the benefits of  metabolomic studies to human gastric 
cancer research, with a special focus on biomarkers. The 
remainder of  the paper is organized as follows. In next 
section, we briefly discuss different analytical techniques 
used in metabolomic studies and methods for data analy-

sis. Then, we review several studies of  applying metabo-
lomics to gastric cancer research. Finally, future directions 
and concluding remarks are presented.

ANALYTICAL TECHNIQUES
A number of  analytical techniques are currently used for 
metabolomic studies depending on the particular metab-
olite of  interest. In general, NMR spectroscopy (in most 
cases 1H-NMR)[58,59], liquid chromatography (LC)[26,60]/gas 
chromatography (GC)-mass spectrometry (MS)[31,61,62], 
Fourier transform spectrometry[63,64] and capillary elec-
trophoresis (CE)-mass spectrometry[65-68] are the major 
spectroscopic techniques used in metabolomic analysis. 
Generally, a combination of  different methods provides 
more information than a single method when analyz-
ing the complete metabolome. NMR is one of  the most 
common analytical methods for urine and plasma analy-
sis[69] due to its non-destructive nature, quantitative ability, 
and safe metabolite identification that provides detailed 
information on molecular structure. However, NMR 
suffers from poor sensitivity. GC-/MS and LC-/MS are 
widely accepted techniques for metabolite separation and 
analysis. Metabolites must be volatile in nature in order 
to use the GC-/MS technique efficiently. Fatty acids, or-
ganic acids and sugars are the best-suited metabolites for 
GC-/MS. In contrast, LC-/MS can cover a broad range 
of  metabolites, including both volatile and non-volatile 
compounds. CE-/MS is best suited for studies involv-
ing energy metabolism given its ability to simultaneously 
quantify charged, low-molecular weight compounds. A 
short overview of  the advantages and limitations of  the 
different metabolomic methods is presented in Table 2. 
GC-MS, LC-MS and NMR are the most commonly used 
methods in cancer research, especially gastric cancer.

DATA PROCESSING AND METABOLITE 
IDENTIFICATION
Data integration and analysis is an important compo-
nent of  metabolomic studies because a large amount of  
data is generated, similar to proteomic and transcrip-
tomic studies. Proper management, pre-processing and 
analysis of  these data pose a significant challenge and 
require sophisticated multivariate statistical software. A 
sufficient number of  statistical algorithms have been 
developed for the analysis of  metabolomic data, both 
in a supervised and unsupervised manner. The impor-
tant unsupervised methods that have been extensively 
used in metabolomic analysis include principal com-
ponent analysis (PCA), hierarchical clustering and self-
organizing maps. Supervised methods include ANOVA, 
partial least squares (PLS), hierarchical PLS, k-nearest 
neighbors (KNN) and discriminant function analysis. 
The principle details and applications of  these methods 
can be found elsewhere[44,70-72]. A short comparison of  
these methods including advantages and limitations is 
provided in review articles[41,52,55]. 
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Figure 2  Metabolic procedures for cancer research[12,40-42]. LC-MS: Liquid 
chromatography-mass spectrometry; GC-MS: Gas chromatography-mass spec-
trometry; NMR: Nuclear magnetic resonance; FT-IR: Fourier-transform infrared; 
PCA: Principal component analysis; OPLS-DA: Orthogonal partial least squares 
discriminant analysis; PLS-DA: Partial least squares discriminant analysis.
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algorithm[83] with 90% accuracy, and 18 chemosensitiv-
ity metabolites for gastric cancer were proposed in their 
study. Key metabolites included 1-acyl-lysophosphati-
dylcholine and polyunsaturated fatty acids, which are 
hydrolysis products of  phosphatidylcholine. The 1-acyl-
lysophosphatidylcholine biochemical pathway regulates 
the activity of  enzymes like phospholipases A2 and B1 
and lysophosphatidylcholine acetyltransferases[84-88]. Thus, 
these key metabolites could serve as crucial modulators 
of  gastric cancer chemosensitivity.

IDENTIFICATION OF POTENTIAL 
BIOMARKERS FOR GASTRIC CANCER 
METASTASIS
Metastasis[22] is the spread of  a disease from one organ or 
part to a non-adjacent organ or part. Most gastric cancer 
deaths occur as a result of  metastasis. It is important 
to explore the complex mechanisms of  gastric cancer 
metastasis in order to identify the key metabolic markers 
involved in the process. Several genes involved in gastric 
cancer metastasis have been reported in the literature[8,9,89]. 
However, no potential biomarkers were identified as 
predictors of  metastasis and prognosis due to large varia-
tions in expression levels. Chen et al[90] have conducted 
metabolomic studies on human xenograft models to 
elucidate the underlying mechanisms of  gastric cancer 
metastasis and discover possible biomarkers for diagno-
sis. Their mice were randomized into control, metastatic, 
and non-metastatic groups, and tissue samples from each 
group were collected and analyzed using GC-MS. Their 
study identified approximately 30 metabolites differen-
tially regulated among the groups. Proline was the most 

CHEMOSENSITIVITY PREDICTION AND 
DEVELOPMENT OF PREDICTIVE MODELS
Chemosensitivity prediction is a challenging task in the 
treatment of  advanced gastric cancer[73]. Chemotherapy 
with anticancer drugs plays a significant role in the 
personalized management of  gastric cancer[74]. Some 
patients with gastric cancer do not respond well to these 
drugs, and in some cases, chemotherapy may cause se-
vere toxicity and functional impairment[75-78]. Hence, it is 
crucial to select individual patients with high chemosen-
sitivity for the management of  cancer by chemotherapy 
treatment. The two major approaches for predicting the 
activity of  anticancer drugs in gastric cancer are resis-
tance enzyme testing and cell-culture testing (chemosen-
sitivity)[73]. In the past, chemosensitivity predictions have 
been based on clone formation, cell metabolic activity 
assays in vitro, proliferation, and tumor growth. Unfor-
tunately, these methods suffer from low specificity, sen-
sitivity and accuracy[75].

In order to overcome these limitations, high-through-
put “-omic” methods have been developed as powerful 
tools for use in different types of  cancer treatments[79-82]. 
Wang et al[75] described a metabolic approach for che-
mosensitivity prediction in a human xenograft model of  
gastric cancer treated with cisplatin and 5-fluorouracil. 
In this approach, mice were divided randomly into con-
trol and treatment groups (i.e., resistant, intermediate, 
and sensitive groups based on relative tumor growth). 
Blood plasma was collected, and metabolic profiles were 
obtained by using high performance liquid chromatog-
raphy coupled with a quadrupole time-of-flight mass 
spectrometer (HPLC/Q-TOF-MS). From the metabolic 
data, a predictive model was developed using a KNN 

Table 2  Comparison of different analytical techniques employed in metabolomics 

Method Sampling characteristics Sensitivity Advantages Disadvantages Ref.

Nuclear magnetic reso-
nance (NMR) spectroscopy

Non-destructive; mini-
mum sample required

10-6 Fully automated with a 
high degree of reproducibil-
ity; relatively easy to identify 
metabolites from simple one-
dimensional spectra

Lower sensitivity than mass spec-
trometry; co-resonant metabolites 
can be difficult to quantify; drug 
metabolites can be co-resonant with 
metabolites of interest

[20,41,105]

Gas chromatography-mass 
spectrometry (GC-MS)

Requires extraction, 
sample dried and chemi-
cal derivation

10-12 A relatively cheap and repro-
ducible method with a high 
degree of sensitivity

Sample preparation can be time 
consuming; not all compounds are 
suitable for gas chromatography

[20,41,106,107]

Liquid chromatography-
mass spectrometry (LC-
MS)

Requires extraction and 
concentration (vacuum 
drying), liquid-liquid 
extraction

10-15 This method is increasingly 
being used in place of GC-MS 
as sample preparation is not as 
time consuming; has a sensitiv-
ity similar to GC-MS

More costly than GC-MS and 
depends on the reproducibility of 
liquid chromatography (more dif-
ficult to control than GC); can also 
suffer from ion suppression

[20,41,108,109]

Fourier-transform infrared 
(FT-IR) spectrometry

Uses vibrational frequen-
cies of metabolites to 
produce a fingerprint of 
metabolism

10-6 Cheap and good for high-
throughput first screening

Very difficult to identify which me-
tabolites are responsible for causing 
changes; very poor at distinguish-
ing metabolites within a class of 
compounds

[20,41,110,111]

Raman spectroscopy Non-destructive; mini-
mum sample required, 
occasionally hydration is 
needed

10-6 Has the advantage over FT-IR 
in that water has only a weak 
Raman spectrum; therefore, 
many functional groups can be 
observed

Very poor at distinguishing classes 
of compounds

[20,41,110,111]
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up-regulated tissue metabolite in the metastatic group, 
with a 2.45-fold increase in expression compared with the 
non-metastatic group. Glutamine was the most down-
regulated metabolite, with a 1.71-fold reduction in ex-
pression in the metastatic group compared with the non-
metastatic group. All of  these metabolites were involved 
in pathways associated with gastric cancer metastasis, and 
most of  them were found in proline and serine metabo-
lism. Hu et al[91] also conducted similar metabolomic stud-
ies, but their metabolic profiles were obtained from urine 
samples. A PCA model was developed to discriminate the 
gastric cancer model from control and to differentiate the 
metastatic and non-metastatic groups. The level of  lactic 
acid was increased in the cancer group compared with 
the normal group. The noted increase may be attributed 
to the ‘Warburg effect’, where glucose is converted to lac-
tic acid in cancer cells due to an increased rate of  aerobic 
glycolysis[92]. Chen et al[93] developed a urinary metabolic 
model based on human xenograft models to distinguish 
between metastatic and non-metastatic groups. GC-MS 
studies were also conducted on samples from cancer pa-
tients and healthy controls. The metabolites lactic acid, 
serine, proline, malic acid and fatty acids showed signifi-
cant metabolic differences between cancerous and non-
cancerous groups. From the above discussion, it is clear 
that proline and serine metabolism plays an important 
role in metastasis, and metabolic biomarkers derived from 
those pathways can be used for the treatment of  gastric 
cancer metastasis.

BIOMARKERS FOR GASTRIC CANCER 
DIAGNOSIS AND PROGNOSIS
Biomarkers play a vital role in early stage diagnosis, dis-
ease prognosis, drug target identification, and patient 
reaction to a particular treatment. Several biomarkers 
have been proposed for gastric cancer diagnosis and 
prognosis. For example, serum amyloid A was proposed 

as a sensitive diagnostic biomarker[94], and the inhibitor 
of  matrix metalloproteinase-1 was suggested as a poten-
tial prognostic biomarker[95]. Kim et al[96] conducted 1H-
NMR-based metabolomic studies on mouse models to 
identify possible urinary biomarkers for human gastric 
cancer. A comparison of  the NMR spectra for the can-
cer and control groups is shown in Figure 3[96], and the 
metabolite trimethylamine oxide (TMAO) is significantly 
reduced in cancer cells compared with the control, and 
it is clearly visible in the spectra. Pattern recognition 
methods attempting to discriminate the control from 
the tumor group indicated (Figure 4[96]) a clear separa-
tion between the cancer and control groups, thus imply-
ing the presence of  significant metabolic differences in 
certain metabolites between these two groups. TMAO, 
3-indoxyl sulfate, hippurate, 2-oxoglutarate, and citrate 
showed significant changes in concentration between 
cancer and control groups and were proposed as po-
tential urinary biomarkers for gastric cancer detection. 
Yu et al[97] established a metabolic model to character-
ize several different stages of  gastric cancer including 
chronic superficial gastritis (CSG), chronic atrophic gas-
tritis (CAG), intestinal metaplasia (IM), gastric dysplasia 
(DYS) and GC. CSG showed metabolic patterns distinct 
from the other groups (i.e., CAG, IM, DYS, and GC, 
whose plots were closely clustered). IM closely clustered 
with GC, suggesting that these two stages share similar 
metabolic patterns. Fifteen metabolites displayed dis-
tinct metabolic signatures, facilitating discrimination of  
CSG and GC and characterization of  different stages of  
GC. These biomarkers can be useful for indicating GC 
risk. Song et al[98] developed a similar metabolic model 
based on metabolomic studies of  serum samples from 
cancer and control groups. In this study, the supervised 
multivariate statistical method orthogonal partial least 
squares discriminant analysis was applied to discriminate 
between cancer and non-cancer groups, but this model 
failed to distinguish the different tumor node metas-
tasis stages of  cancer. In addition, approximately 50 

3-indoxyl sulfate

1-methylnicotinamide

Trigonelline Hippurate

Allantoin

Urea

Creatine

Creatinine

TMAO

Trimethylamine

Citrate

Taurine

Oxaloacetate

2-Oxoglutarate

Creatine/creatinine

Dimethylamine
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B

Figure 3  Nuclear magnetic resonance spectra of urine samples from control (A) and cancerous mice (B)[96]. A number of metabolites showed significant meta-
bolic changes in their levels. For example, trimethylamine oxide (TMAO) levels are reduced in cancerous mice compared with control.
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metabolites, many involved in amino acid and fatty acid 
metabolism, displayed significant metabolic differences 
between cancer and control groups and were proposed 
as potential markers for the detection of  cancer. In an 
additional metabolomic study on gastric cancer patients, 
Wu et al[99] identified tissue metabolic markers and con-
firmed that valine metabolism was involved in the meta-
bolic changes associated with gastric cancer. In another 
study[100], a metabolic diagnostic model was developed 
to characterize gastrointestinal cancer (esophageal, gas-
tric, and colorectal cancers) based on serum metabolo-
mics. 

Thus, biomarkers discovered from metabolomic stud-
ies may play a significant role in gastric cancer with regard 
to early stage detection, diagnosis, prognosis, drug devel-
opment and chemosensitivity predictions. The complete 
details of  metabolomics studies on human gastric cancer 
including study population, sample type and analytical 
method used are presented in Table 3.

CONCLUSION
The use of  metabolomics in human gastric cancer to 
discover novel biomarkers is an emerging field. The me-
tabolomics field is superior to other “-omic” methods, 
as it provides accurate quantities of  metabolites in a par-
ticular biological system. Hence, the biomarkers identi-
fied by metabolomics are likely to be reliable. NMR, GC-

MS and LC-MS metabolic techniques are widely used in 
gastric cancer research. Furthermore, a large number of  
multivariate data analysis methods have been developed 
to analyze metabolomic data; PCA and PLS are the most 
prominent examples. However, despite the number of  
statistical tools available in metabolomics, many of  these 
methods have limitations; thus, room for further devel-
opment exists.

Metabolomics has also demonstrated promise in 
the development of  diagnostic tools for gastric cancers. 
These studies are based on small cohorts; therefore, 
larger studies are needed for validation of  biomarker 
utility and thereafter translation to a clinical setting. The 
ability to obtain a high quality sample along with sample 
collection, storage and analysis are all factors that have 
large consequences on metabolic results. This fact under-
scores the need for standardized protocols. Metabolomic 
studies are beneficial for cancer identification, diagnosis 
and prognosis. Moreover, by combining metabolomics 
with other ‘‘-omic’’ methods, a more comprehensive un-
derstanding of  the processes involved in cancer develop-
ment is likely to be generated.
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