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Abstract——During the past 5 decades, it has been
widely promulgated that the chemicals in plants that
are good for health act as direct scavengers of free
radicals. Here we review evidence that favors a differ-
ent hypothesis for the health benefits of plant con-
sumption, namely, that some phytochemicals exert
disease-preventive and therapeutic actions by engaging
one or more adaptive cellular response pathways in
cells. The evolutionary basis for the latter mechanism
is grounded in the fact that plants produce natural
antifeedant/noxious chemicals that discourage insects
and other organisms from eating them. However, in
the amounts typically consumed by humans, the phyto-
chemicals activate one or more conserved adaptive
cellular stress response pathways and thereby enhance
the ability of cells to resist injury and disease. Examples

of such pathways include those involving the tran-
scription factors nuclear factor erythroid 2-related
factor 2, nuclear factor-kB, hypoxia-inducible factor
1a, peroxisome proliferator-activated receptor g, and
forkhead box subgroup O, as well as the production
and action of trophic factors and hormones. Trans-
lational research to develop interventions that target
these pathways may lead to new classes of therapeutic
agents that act by stimulating adaptive stress response
pathways to bolster endogenous defenses against tissue
injury and disease. Because neurons are particularly
sensitive to potentially noxious phytochemicals, we
focus on the nervous system but also include findings
from other cell types in which actions of phytochemicals
on specific signal transduction pathways have been
more thoroughly studied.

I. Introduction

Epidemiologic studies have demonstrated significant
associations of regular consumption of vegetables,
fruits, tea leaves, and coffee with improved health
outcomes, including reduced risk for cardiovascular
disease, stroke, diabetes, some cancers, asthma, rheu-
matoid arthritis, and neurodegenerative disorders. The
literature in this area is extensive and was recently
reviewed (Schneider and Segre, 2009; Butt and Sultan,
2011; Boeing et al., 2012; Wedick et al., 2012; Martin
et al., 2013). Thousands of studies have reported be-
neficial effects of administration of specific fruits and
vegetables, their extracts, or chemicals isolated from the
plants, in animal models of these and other diseases
(Wang et al., 2005b; González-Gallego et al., 2010; Graf
et al., 2010; Wahle et al., 2010; Yang et al., 2011a;
Williams and Spencer, 2012). However, as is usually
the case, the translation of the epidemiologic and pre-
clinical data into clear results in clinical trials has been
mostly unremarkable. Reasons for no or modest effects
of such interventions in subjects who already have a
disease are not established, but likely explanations
include the following: 1) once the disease is fully
manifest, the relatively modest hormetic actions of
phytochemicals may not be capable of reversing the
disease process; 2) the dosing approach for clinical
trials typically involves sustained high-dose treatment,
whereas experimental data suggest that intermittent
lower doses may be more effective; 3) the duration of

the human studies are typically very short (6–12
months) compared with the course of the development
and progression of the disease; and 4) the magnitude of
the disease-modifying actions of phytochemicals are
often not dramatic, even in tightly controlled studies of
isogenic strains of rodents. Therefore, small beneficial
effects may not be evident in short-term studies and/or
may be masked by the high interindividual variability
among human subjects.

Because fruits and vegetables do contain antioxidant
chemicals with free radical–scavenging activities, most
of the research on phytochemicals and health during
the past 50 years has focused on the idea that it is
these “dietary antioxidants” that directly neutralize
free radicals in cells throughout our body, thereby pro-
tecting against diseases. Indeed, the notion that phy-
tochemicals can protect against disease by directly
squelching oxygen free radicals remains a prominent
theory in the fields of nutrition and chronic diseases
(Seifried et al., 2007; Balsano and Alisi, 2009; Slavin and
Lloyd, 2012). It is certainly the case that some phyto-
chemicals, particularly phenolic compounds, can directly
scavenge oxygen free radicals. However, micromolar
concentrations of these phytochemicals are required to
effectively scavenge free radicals, and such high concen-
trations have not been shown to be achieved by the con-
sumption of fruits, vegetables, teas, or other dietary
plants. Therefore, there is a clear problem with the
antioxidant hypothesis for the health benefits of

ABBREVIATIONS: 3NP, 3-nitropropionic acid; 6-OHDA, 6-hydroxydopamine; Ab, amyloid b-peptide; AD, Alzheimer disease; ALS,
amyotrophic lateral sclerosis; APP, b-amyloid precursor protein; BDNF, brain-derived neurotrophic factor; BPA, bisphenol A; CBP, CREB-
binding protein; COX-2, cyclooxygenase-2; CREB, cAMP response element-binding protein; Cul, Cullin; EDC, endocrine-disrupting chemical;
EGCG, epigallocatechin gallate; ER, estrogen receptor; ERK, extracellular signal-regulated kinase; FOXO, forkhead box subgroup O; GDNF, glial
cell line–derived neurotrophic factor; GSK, glycogen synthase kinase; HD, Huntington disease; HIF, hypoxia-inducible factor; HO, heme
oxygenase; HPA, hypothalamic-pituitary-adrenal; Hsp, heat shock protein; IGF, insulin-like growth factor; IPC, ischemic preconditioning; IRS,
insulin receptor substrate; JNK, c-Jun N-terminal kinase; Keap1, Kelch-like ECH-associated protein 1; LPS, lipopolysaccharide; MAPK, mitogen-
activated protein kinase; MEK, mitogen-activated protein kinase kinase; MHY 966, 2-bromo-4-(5-chloro-benzo[d]thiazol-2-yl) phenol; MMP,
matrix metalloproteinase; MPP, 1-methyl-4-phenylpyridine; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; mTOR, mammalian target of
rapamycin; NF-kB, nuclear factor-kB; NGF, nerve growth factor; NO, nitric oxide; Nrf2, nuclear factor erythroid 2-related factor 2; P450,
cytochrome P450; PD, Parkinson disease; PHD, prolyl hydroxylase; PI3K, phosphoinositol 3 kinase; PPAR, peroxisome proliferator–activated
receptor; PPRE, peroxisome proliferator response element; pVHL, von Hippel-Lindau tumor suppressor protein; NQO1, NAD(P)H quinone
oxidoreductase 1; ROS, reactive oxygen species; SH, sulfhydryl; SIRT, sirtuin; SOD, superoxide dismutase.
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phytochemicals. Moreover, the emerging evidence sug-
gests that very high doses of antioxidant vitamins may
not be beneficial for health and might even be harmful.
Indeed, clinical trials of vitamins E, C, and A have
failed in patients with a range of disorders (Hasnain
and Mooradian, 2004; Block et al., 2007; Canter et al.,
2007; Maserejian et al., 2007; Galasko et al., 2012).
Reports recently began appearing in the literature

suggesting that at least some of the chemicals in fruits,
vegetables, and other plants may prevent or mitigate
various chronic diseases by activating adaptive stress
response signaling pathways in cells (Trewavas and
Stewart, 2003; Mattson and Cheng, 2006). This
“hormesis hypothesis” posits that cells throughout
the body and brain recognize some phytochemicals as
potentially dangerous, and thus respond adaptively by
engaging one or more stress signaling pathways that
enhance the resistance of cells, organs, and the organism
to a range of stressors that can cause or promulgate
disease(s). A working definition of hormesis is “a process
in which exposure to a low dose of a chemical agent or
environmental factor that is damaging at higher doses
induces an adaptive beneficial effect on the cell or
organism” (p. 1; Mattson, 2008). When plotted on a graph,
hormesis manifests as a biphasic dose-response curve,
with low doses exerting a stimulatory or beneficial effect
and progressively higher doses resulting in toxicity and
even death.
Throughout this review, we use the term phytochem-

ical to refer to any chemical isolated from a plant.
Many of the most effective and widely used drugs are
either naturally occurring phytochemicals or analogs
thereof (Newman and Cragg, 2009, 2012). Prominent
examples include antibiotics based on penicillin and
tetracycline, statins based on 7-methyl monacolin A
from Monascus ruber, antitumor drugs based on pac-
litaxel from Taxus brevifolia or rapamycin from
Streptomyces hydroscopicus, and pain medications based
on morphine from Papaver somniferum. Some of these
major drugs act to induce stress in target cells at a level
that preferentially kills unwanted cells (e.g., bacteria in
infections and tumor cells in cancers). Other widely used
phytochemical-based drugs and dietary supplements
may act by stimulating adaptive stress responses in
somatic cells affected by disease. Indeed, emerging
evidence suggests that this may be true for drugs pre-
viously thought to act by a more specific mechanism. For
example, statins reduce cholesterol production but also
enhance nitric oxide (NO) signaling, antioxidant defen-
ses, and anti-inflammatory pathways, which may con-
tribute to suppression of atherosclerotic plaque formation
(Davignon, 2004). Another example is caffeine, which is
perhaps the most widely ingested neuroactive phyto-
chemical and clearly induces adaptive stress respon-
ses in neurons and other cells; this may be a general
mechanism to explain the increasingly recognized
health benefits of consumption of moderate amounts

of caffeine (Heckman et al., 2010). This article re-
views our current understanding of phytochemicals
that induce adaptive cellular stress responses, as
well as the signaling pathways and effector molecules
they regulate.

II. Evolutionary Considerations

To fully appreciate the responses of animal cells to
phytochemicals, it is valuable to understand the reasons
those phytochemicals are present in plants. Plants are
a major food source for a wide range of species of insects,
birds, and mammals. During the course of evolution,
complex relationships developed between plants and
animals. In some cases, plants benefit from animals. For
example, birds and mammals can facilitate seed disper-
sion and thereby expand the range of a plant. On the
other hand, plants have evolved a range of structural and
chemical defenses to protect themselves from destruction
by animals. In this section, we describe the evolution of
noxious phytochemicals, as well as the counterevolution
in animals of pathways for the metabolism and adaptive
cellular responses to phytochemicals.

Plants deploy several evolutionarily conserved mech-
anisms to protect themselves from being ravaged by
organisms ranging from insects to mammals. One
strategy is the development of structural barriers such
as bark and thorns. A second strategy is the production
of chemicals that are noxious to organisms in one or
more ways. These phytochemicals are variously termed
natural pesticides, biopesticides, or insect antifeedants
(Koul, 2005). In most cases, the noxious phytochemicals
are sensed by the nervous system of the organism via
taste, olfactory, or pain receptors, and the organism
responds by refraining from eating that part of the plant.
The noxious phytochemicals are often concentrated in
certain cell types and structures of the plants that are
most exposed to the environment and/or are critical
for reproduction, including buds, seeds, and the skin
of fruits. Such phytochemicals typically activate taste
receptors for bitter chemicals and are the reason
humans usually do not eat the “peels” of citrus fruits
and bananas. These natural pesticides are produced
as secondary metabolites within the plant cells or, in
some cases, by endophytic bacteria or fungi (Bascom-
Slack et al., 2012). Thousands of natural pesticides
have been isolated from plants, with most of them falling
into a major structural category such as alkaloids,
terpenoids, flavonoids, and isothiocyanates (Schmutterer,
1990; Klein Gebbinck et al., 2002).

It is important to recognize that from an evolution-
ary perspective, it is likely that many phytochemicals
that elicit neurobiological responses in animals and
humans evolved as feeding deterrents. These include
psychoactive phytochemicals (Fig. 1) such as cannabi-
noids, mescaline, psilocybin, and salvinorin A (Brawley
and Duffield, 1972); spices such as curcumin and capsaicin
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(Aggarwal et al., 2008); and stimulants such as caffeine
and ephedrine (Magkos and Kavouras, 2004). Although
the rapid and overt responses upon ingestion or in-
halation of these chemicals are manifest in neurons of
the peripheral and/or central nervous systems, cells in
other organs also respond in many cases. For example,
cannabinoids can act directly on pancreatic b cells to
alter their proliferation (Kim et al., 2011b) and curcu-
min acts on lymphocytes to modulate inflammation
(Gautam et al., 2007).
Organisms that consume plants have evolved nu-

merous enzymes to degrade potentially toxic phyto-
chemicals, a process that typically involves three
phases: 1) phase I enzymes add reactive and polar
groups to the phytochemical, with hydroxylation by
cytochrome P450 (P450)–dependent oxidases being the
most prevalent; 2) phase II enzymes catalyze the
conjugation of a carboxyl, hydroxyl, amino, or sulfhy-
dryl (SH) group on the phytochemical with a charged
molecule such as glucuronic acid or glutathione; and 3)
phase III enzymes catalyze the ATP-dependent trans-
port of the conjugated phytochemical outside of the
cell, where it is then further metabolized or excreted
(Iyanagi, 2007). Phase I and II enzymes are present in
high amounts in hepatocytes that process circulating
phytochemicals and drugs, but are also expressed in
cells of organ systems that are more directly exposed to
the chemicals including the gut, lungs, and skin (Zhang
et al., 2006; Baron et al., 2008; Thelen and Dressman,
2009). Because of the existence of these efficient mech-
anisms for detoxifying and eliminating potentially
harmful phytochemicals, cells are exposed only tran-
siently to the phytochemicals. This contrasts with some
human-made pesticides such as dichlorodiphenyltri-
chloroethane, for which metabolizing enzymes have
not evolved and thus the chemical accumulates in toxic
amounts. Nevertheless, the concentration of a particu-
lar noxious phytochemical in a plant can limit the
amount that plant consumed in a given time period.
Indeed, the diets of vertebrate herbivores are restricted
by mechanisms that regulate the intake, absorption,

and detoxification of chemicals in the plants they con-
sume (Lappin, 2002; Foley and Moore, 2005).

Much as we live with commensal microorganisms
(bacteria and fungi) on our skin and in our gut
(Kamada et al., 2013; Schommer and Gallo, 2013),
higher plants coexist with fungi and bacteria that live
among their cells (Reinhold-Hurek and Hurek, 2011;
Mousa and Raizada, 2013). Although many phyto-
chemicals are produced by plant cells, others are
produced by the fungi or bacteria that live within the
plant (Bascom-Slack et al., 2012). As with the mam-
malian “microbiome,” the plant microbiome plays crit-
ical roles in maintaining the health of the organism.
Importantly, the microorganisms living within a plant
(endophytes) produce chemicals that help protect that
plant against pathogenic microorganisms, insects, and
other organisms that would otherwise eat/destroy the
plant (Verma et al., 2009; Reinhold-Hurek and Hurek,
2011; Mousa and Raizada, 2013). In many instances,
fungi and bacteria living within a plant have evolved to
produce chemicals that increase the resistance of that
plant to a broad range of stressors, thereby enhancing
the fitness and survival of the plant (Fig. 2). These
phytoprotective chemicals include a range of structures
with prominent categories, including alkaloids, terpe-
noids, flavonoids, phenolic compounds, polyketides, and
phenylpropanoids (Strobel et al., 2004; Qin et al., 2011;
Gutierrez et al., 2012; Aly et al., 2013; Mousa and Raizada,
2013).

There are prominent examples of therapeutically
effective phytochemicals that are shown to be produced
by endophytes and not the cells of the plant they

Fig. 1. Structures of representative psychoactive phytochemicals.
THC, tetrahydrocannabinol.

Fig. 2. Endophyte-derived chemicals enhance stress resistance of plants.
Bacteria and fungi that live within plants in a symbiotic or commensal
relationship (endophytes) produce chemicals that protect the plants from
infectious agents, pests, and physical stressors such as drought and
extreme temperatures. By stimulating adaptive stress response signaling
pathways in cells, some of these endophyte-derived phytochemicals may
have beneficial effects on human health.
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inhabit. Paclitaxel (Taxol) was originally isolated from the
Pacific yew, and has since shown to be produced by
endophytic fungi (Taxomyces andreanae) that colonize the
yew (Stierle et al., 1993). Paclitaxel has proven to be an
effective drug in the armamentarium of chemotherapeu-
tic agents for cancer patients. Mevinolin (Lovastatin)
is a fungal metabolite isolated from Aspergillus terreus
that is a naturally occurring inhibitor of 3-hydroxy-3-
methylglutaryl CoA reductase, a key enzyme in choles-
terol biosynthesis (Alberts et al., 1980). This endophytic
phytochemical is now among the most widely prescribed
class of drugs (statins) for reducing the risk for cardio-
vascular disease in hypercholesterolemic patients. Endo-
phytic bacteria and fungi typically produce chemicals that
have antimicrobial activity, which is a mechanism for
preventing pathogenic bacteria and fungi from de-
stroying their host plant. Most of the commonly used
antibiotics are produced by bacteria or fungi that are
either endophytes or saprophytes; these include erythro-
mycin (from the bacteria Saccharopolyspora erythraea),
penicillin (from the Penicillium genus of ascoycetous
fungi), and tetracycline (from the Streptomyces genus of
actinobacteria).

III. Hormesis and the Biphasic Dose Response
to Phytochemicals

A highly conserved feature of the responses of cells and
organisms to phytochemicals is that they are biphasic
(Fig. 3). Most commonly, exposure to low doses results in
stimulatory/beneficial effects, whereas exposure to high
doses has inhibitory/detrimental effects. Exposure of
cells and organisms to low doses of chemicals that are
toxic at higher doses often triggers adaptive stress re-
sponses that can protect against higher doses of the same
chemical and, importantly, a range of different stressors.
This general biologic phenomenon, which is termed
hormesis, is firmly engrained in the evolutionary history

of all organisms (Calabrese et al., 2007; Mattson, 2008;
Calabrese and Mattson, 2011). In some cases, organisms
have even incorporated once-toxic environmental agents
into their own macromolecules where they serve impor-
tant functions. Prominent examples of how hormetic
mechanisms have shaped evolution include the metals
iron, copper, and selenium. In their free ionic forms, iron
(Fe2+) and copper (Cu+) are toxic to cells because they
catalyze the generation of the highly reactive hydroxyl
free radical (Brewer, 2007). However, organisms have
evolved numerous iron- and copper-binding proteins that
sequester Fe2+ and Cu+ (Sargent et al., 2005; Rubino and
Franz, 2012). Moreover, Fe and Cu play important roles
in the function of some proteins, including hemoglobin,
iron-sulfur cluster proteins, and antioxidant enzymes
(Abreu and Cabelli, 2010; Kakar et al., 2010; Rouault,
2012). The history of selenium and health provides
another excellent example of evolutionary hormesis.
Selenium was originally found to be toxic to animals
when ingested at moderately high concentrations
(Frost and Lish, 1975). It was subsequently discovered
that small amounts of selenium are required for
optimal health and survival of many organisms, in-
cluding humans (Rayman, 2012). Selenium is incorpo-
rated into several different proteins (selenoproteins)
that serve antioxidant and other beneficial functions in
cells, thereby protecting the cells and organisms against
injury and disease (Fairweather-Tait et al., 2011).

Organisms have evolved numerous adaptive cellular
stress response pathways that are engaged by envi-
ronmental stressors ranging from heat and drought to
food deprivation and many phytochemicals (as de-
scribed below). Because of the criticality of obtaining
energy and nutrients, organisms have developed the
ability to consume plants that produce a myriad of
natural biopesticides (Koul, 2005). One mechanism by
which organisms manage such potentially toxic phyto-
chemicals is to rapidly metabolize them and eliminate

Fig. 3. Endogenous signaling molecules and phytochemicals often elicit biphasic dose responses on cells and organisms. (A) Glutamate is the major
excitatory neurotransmitter in the brain of all mammals. Neurons respond to moderate levels of glutamate by enhancing the plasticity of synapses,
a process that is critical for learning and memory. High levels of glutamate cause degeneration of synapses and the death of neurons. (B) Low levels of
resveratrol can enhance cancer cell proliferation, whereas higher levels inhibit cell proliferation and may even trigger cell death. Adapted from
Mattson and Calabrese (2010) and Calabrese et al. (2010).
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them in the urine. “Detoxifying enzymes” called P450s
in the liver and elsewhere are the major means of re-
moving phytochemicals (Guengerich and Cheng, 2011).
Another mechanism is the activation of one or more
adaptive cellular stress response signaling pathways by
the phytochemical, which is the topic of this review. For
example, exposure of neurons to sulforaphane (present
in high amounts in broccoli), curcumin (an Indian spice
from the turmeric root), or allicin (from garlic) can pro-
tect the neurons against a range of metabolic, chemical,
and oxidative insults (Bautista et al., 2005; Scapagnini
et al., 2006; Han et al., 2007). However, high concen-
trations of all of the latter phytochemicals can damage
and kill neurons, demonstrating a typical biphasic
hormesis-based dose-response curve. Fortunately, phy-
tochemicals that are safely consumed by animals, in-
cluding humans, typically activate adaptive stress
responses at low concentrations, exert noxious but non-
toxic effects at somewhat higher concentrations, and are
only toxic at very high concentrations. Thus, noxious
effects (e.g., nausea) usually occur well before a toxic
amount is consumed, thereby preventing an “overdose.”

IV. Phytochemicals and Cellular
Stress Resistance

Exposure of cells to low doses of phytochemicals can,
in many cases, increase the resistance of the cells to
a range of stressors. Four general types of cellular
stress that are relevant to the pathogenesis of most
major chronic diseases are as follows: 1) oxidative
stress resulting from increased production or reduced
removal/detoxification of oxygen free radicals (Yorek,
2003); 2) metabolic stress resulting from impaired
cellular bioenergetics and mitochondrial function (Bratic
and Trifunovic, 2010); 3) proteotoxic stress in which dam-
aged and misfolded proteins aggregate and accumulate
in cells, such as the proteins t and a-synuclein that ac-
cumulate in neurons in Alzheimer disease (AD) and
Parkinson disease (PD), respectively (Mattson, 2004;
Kalia et al., 2013); and 4) inflammatory stress in-
volving innate and humoral immune cells that pro-
duce damaging reactive oxygen species (ROS) and
cytokines (Xu, 2013). This section reviews studies that
have demonstrated cytoprotective effects of phyto-
chemicals in experimental models involving the latter
four types of stressors.

A. Oxidative Stress

ROS are continuously produced in all cells, with the
major source being superoxide anion radicals gener-
ated by the mitochondrial electron transport chain
(particularly complexes I and III) during oxidative
phosphorylation. Superoxide is also generated by various
oxidases, including xanthine oxidase and NAD(P)H ox-
idases (Sakellariou et al., 2014). Superoxide is converted
to hydrogen peroxide by superoxide dismutases (SODs)

located in the mitochondria (Mn-SOD/SOD2) and cyto-
plasm (Cu/Zn-SOD/SOD1). Hydrogen peroxide can be
completely detoxified by catalase and glutathione per-
oxidases. However, in the presence of even very low
amounts of Fe2+ or Cu+, hydrogen peroxide is converted
via the Fenton reaction to hydroxyl radicals that can
attack double bonds in membrane lipids, resulting in an
autocatalytic process called lipid peroxidation (Mattson,
2009). Another prominent ROS is NO, which is gener-
ated by NO synthase in response to an elevation of
intracellular Ca2+ levels. NO can interact with super-
oxide to produce peroxynitrite that, similar to the
hydroxyl radical, induces membrane lipid peroxidation.
4-Hydroxynonenal, an aldehyde liberated during lipid
peroxidation, can impair cellular function and trigger ap-
optosis by covalently modifying various proteins (Mattson,
2009). Glutathione, a 3-amino acid peptide with a cyste-
ine residue, is an important endogenous “detoxifier” of
4-hydroxynonenal (Balogh and Atkins, 2011).

Excessive accumulation of oxidatively damaged
molecules is a common feature of the most prevalent
and fatal diseases, including cardiovascular disease,
diabetes, cancers, and neurodegenerative disorders
(e.g., AD and PD). Aging is a major risk factor for each
of these chronic diseases. Accordingly, the accumula-
tion of oxidatively damaged proteins, nucleic acids, and
membranes that occurs during normal aging is be-
lieved to be accelerated in these diseases. Genetic
predispositions and environmental factors, particu-
larly diet and lifestyle, determine whether any partic-
ular individual develops a chronic disease. Genetic and
environmental factors can exacerbate or attenuate
oxidative stress. For example, mutations in the low-
density lipoprotein receptor, a diet high in saturated fat,
and a sedentary lifestyle result in hypercholesterolemia
and elevated levels of oxidized cholesterol, which pro-
mote oxidative stress and associated inflammation in
vascular endothelial cells and atherosclerosis (Stancu
et al., 2012). In AD, mutations in the b-amyloid pre-
cursor protein (APP) or presenilin-1 result in increased
production of self-aggregating oligomeric forms of am-
yloid b-peptide (Ab) that induce membrane-associated
oxidative stress in neurons, thereby rendering them
vulnerable to dysfunction and degeneration (Mattson,
2004). In PD, mutations in a-synuclein, Parkin, or
leucine-rich repeat kinase 2, or exposure to high levels
of certain neurotoxins, result in mitochondrial dys-
function, oxidative stress, and the accumulation of
a-synuclein in dopaminergic neurons (Moore et al.,
2005). As described below, several phytochemicals have
been reported to protect cells against oxidative stress in
experimental models of neurodegenerative disorders.

It is commonly stated that fruits and vegetables are
good for health because they contain antioxidant che-
micals that directly squelch oxygen free radicals (Balsano
and Alisi, 2009). Although there are such antioxidant
chemicals in fruits and vegetables, humans do not
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consume the prohibitively high quantities of these
foods that would be required to achieve the concen-
trations (1–100 mmol) of such antioxidant chemicals in
our cells that could scavenge major amounts of free
radicals. Instead, by activating adaptive cellular stress
pathways such as those described in section V below,
many phytochemicals bolster intrinsic antioxidant
defenses in cells, including induction of expression of
antioxidant enzymes such as SOD1, SOD2, glutathione
peroxidase, heme oxygenase (HO), and others as well
as redox enzymes such as NAD(P)H quinone oxidore-
ductase 1 (NQO1) (Calabrese et al., 2010). In this view,
health-promoting dietary phytochemicals are mildly
noxious to cells, inducing oxidative stress and thus trig-
gering evolutionarily conserved adaptive stress respon-
ses that result in the upregulation of proteins and
peptides that detoxify ROS. In the remainder of this
section, we provide examples of studies in which specific
commonly consumed phytochemicals have been shown
to protect cells against oxidative stress (Fig. 4), with a
focus on neuroprotection.
Sulforaphane, which is present in broccoli, Brussels

sprouts, and other green vegetables, can protect cultured
dopaminergic neurons against oxidative insults relevant
to the pathogenesis of PD, including 6-hydroxydopamine
(6-OHDA) (Han et al., 2007). Sulforaphane treatment
also protected dopaminergic neurons and reduced motor
deficits in an in vivo mouse PD model (Morroni et al.,
2013). In models relevant to stroke, sulforaphane pro-
tected cultured mouse hippocampal neurons against
oxygen and glucose deprivation, and hemin; this neuro-
protection was associated with increased expression of
the antioxidant enzymes NQO1 and HO1 (Soane et al.,
2010). Membrane-associated oxidative stress occurs in

neurons in AD as a result of aggregation of Ab. When
mice were treated with sulforaphane, the adverse effects
of Ab on learning and memory were ameliorated (Kim
et al., 2013a), consistent with protection against the
oxidative stress caused by Ab.

Curcumin, the key chemical in curry spice (turmeric
root; Curcuma longa), can protect neurons against
dysfunction and degeneration in a range of experimen-
tal cell culture and animal models. Curcumin protected
cultured neurons against direct oxidative insults in-
cluding exposure to copper (Huang et al., 2011),
hydrogen peroxide (Ray et al., 2011), and tert-butyl
hydroperoxide (Zhu et al., 2004). In vivo studies in rats
and mice demonstrated that curcumin treatment ame-
liorates learning and memory deficits caused by ex-
posure to arsenic (Yadav et al., 2011), Ab (Ahmed et al.,
2010), and severe epileptic seizures (Choudhary et al.,
2013). In cell culture and mouse models of PD, cur-
cumin protected dopaminergic neurons against gluta-
thione depletion and protein oxidation (Jagatha et al.,
2008). In addition to protecting neurons against oxi-
dative stress, curcumin can stimulate the production of
new neurons from neural stem cells in the dentate
gyrus of the hippocampus (Kim et al., 2008), which may
contribute to the enhancement of spatial learning and
memory.

Flavonoids are plant secondary metabolites that
include a ketone moiety in their molecular backbone.
They are present in varying amounts in many different
commonly consumed fruits and vegetables. Examples
of some of the most widely studied flavonoids are
quercetin (present in onions as well as most citrus
fruits and berries), catechins (from green tea and cocoa/
dark chocolate), and luteolin (in broccoli, olive oil, and

Fig. 4. Structures of phytochemicals that can activate adaptive stress response pathways. See the text for descriptions of pathways activated by these
phytochemicals.
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green peppers). As reviewed elsewhere, these and
other flavonoids have demonstrated therapeutic effects
in experimental models of cancer (Romagnolo and
Selmin, 2012) and cardiovascular disease (Siasos et al.,
2013). There are numerous examples of neuroprotective/
therapeutic effects of flavonoids in various cell culture
and animal models of neurodegenerative disorders.
Treatment of cultured primary neurons with epicate-
chin increased their resistance to being killed by ex-
posure to oxidized low-density lipoprotein (Schroeter
et al., 2001). Treatment with epigallocatechin gallate
(EGCG) reduced levels of lipid peroxidation and protein
oxidation in neurons exposed to advanced glycation end
products (Lee and Lee, 2007). EGCG also protected
cultured spiral ganglion neurons against hydrogen
peroxide (Xie et al., 2004) and cultured motor neurons
against oxidative stress induced by a mutation in
SOD1 that causes an inherited form of amyotrophic
lateral sclerosis (ALS) (Koh et al., 2004). When
cultured primary neurons were treated with relatively
low concentrations of quercetin prior to exposure to
Ab1–42, their accumulation of oxidative damage
(4-hydroxynonenal, protein carbonyls, and nitrotyro-
sine) was reduced (Ansari et al., 2009). However,
consistent with a hormesis-based mechanism of action,
higher concentrations of quercetin damaged the neu-
rons. Midbrain neurons in culture were protected from
apoptosis induced by hydrogen peroxide, rotenone,
1-methyl-4-phenylpyridine (MPP+), and 6-OHDA when
they were pretreated with catechin (Mercer et al., 2005).
Similarly, luteolin protected cultured PC12 cells against
death induced by 6-hyroxydopamine (Guo et al., 2013).
Luteolin protected cultured primary rat cerebral cortical
neurons from being killed by exposure to hydrogen
peroxide (Zhao et al., 2011).

B. Metabolic Stress

Abnormalities in the regulation of whole-body and
cellular energy metabolism are key factors in the path-
ogenesis of numerous major disorders, including
obesity, diabetes, cardiovascular disease, and neurode-
generative disorders. Although their relative impact is
much less than dietary energy restriction and exercise
(Mattson, 2012), some phytochemicals can improve
energy metabolism and such actions of phytochemicals
may contribute to their beneficial effects on health. In
keeping with a focus on the nervous system, we briefly
summarize the roles of perturbed cellular energy
metabolism in the pathogenesis of neurologic disor-
ders, and then describe examples of phytochemicals
that can improve neuronal bioenergetics in one or more
experimental models. Analyses of glucose uptake and
mitochondrial function in human patients, as well as in
animal and cell culture models, suggest that vulnera-
ble neuronal populations experience deficits in ATP
and NAD+ in AD, PD, and Huntington disease (HD)
(Kapogiannis and Mattson, 2011; Exner et al., 2012;

Johri et al., 2013). Genetic mutations that cause early
onset inherited forms of AD (Mattson, 2004), PD
(Trancikova et al., 2012), and ALS (Faes and Callewaert,
2011) compromise mitochondrial function and render
neurons vulnerable to energetic stress. Ischemic stroke,
a major cause of disability and death worldwide, dam-
ages and kills neurons by depriving them of glucose and
oxygen.

Sulforaphane administration results in reduced
brain damage in neonatal rats subjected to hypoxic/
ischemic injury, a model relevant to cerebral palsy
(Ping et al., 2010). When the diet of gerbils was sup-
plemented with curcumin for 2 months and they were
then subjected to transient global cerebral ischemia,
death of CA1 hippocampal neurons was significantly
less than in gerbils that did not receive curcumin
(Wang et al., 2005a). Curcumin protected cultured
neuronal cells against death induced by iodoacetate, an
inhibitor of glycolysis (Reyes-Fermín et al., 2012). Cur-
cumin treatment also reduced neuronal and microvessel
degeneration in the retina in a rat model of ischemia–
reperfusion injury (Wang et al., 2011c). Catechins pro-
tected cultured neurons against death induced by the
mitochondrial toxin 3-nitropropionic acid (3NP) (Nath
et al., 2012). Administration of luteolin to rats for 13 days
beginning immediately after experimental stroke resul-
ted in increased survival of neurons in the ischemic
cerebral cortex and improved functional outcome (Zhao
et al., 2011). The flavonol kaempferol protected human
neuroblastoma cells and culture primary rodent neurons
against apoptosis induced by the mitochondrial complex
I inhibitor rotenone by a mechanism involving enhanced
autophagic removal of damaged mitochondria (Filomeni
et al., 2012). These findings provide evidence that neu-
roprotective actions of some phytochemicals involve up-
regulation of cellular stress resistance.

C. Proteotoxic Stress

A common theme in the pathogenesis of chronic
diseases is the abnormal aggregation and accumula-
tion of misfolded and oxidatively modified proteins in-
side and/or outside of cells. The protein aggregates
assemble into fibrillary amyloid structures in some
cases (e.g., amylin in diabetes, Ab in AD), whereas in-
tracellular inclusions form in other disorders (e.g.,
huntingtin in HD and prion proteins in prion disorders).
There is increasing evidence that some phytochemicals
can inhibit the production, aggregation, and/or cytotox-
icity of pathogenic proteins. In this section, we illustrate
the potential for phytochemicals to prevent or reverse
sproteotoxic stress in models of neurodegenerative
disorders.

When injected into the brain of mice or rats, aggre-
gating Ab damages neurons and can cause learning
and memory deficits. Using the latter model of AD, treat-
ment of mice with sulforaphane ameliorated cognitive
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deficits without affecting the aggregation of Ab (Kim
et al., 2007). Overexpressed a-synuclein results in neu-
rodegeneration in Drosophila, which can be prevented
when the flies’ food is supplemented with sulforaphane
(Trinh et al., 2008). Biophysical analyses suggest that
curcumin can reduce a-synuclein aggregation and tox-
icity, in part, by binding directly to a-synuclein (Singh
et al., 2013). However, curcumin may also protect neu-
rons against proteopathic proteins by bolstering stress
resistance. For example, Wang et al. (2010b) showed
that curcumin can protect human dopamine-producing
neuroblastoma cells against oxidative stress and death
induced by a-synuclein (Wang et al., 2010b). Similarly,
curcumin attenuated mitochondrial dysfunction and
oxidative stress in a culture cell model in which ex-
pression of mutant (A53T) a-synuclein is inducible (Liu
et al., 2011). In an experimental model of HD, the
accumulation of mutant huntingtin protein in cells was
attenuated by sulforaphane treatment by a mechanism
involving enhanced degradation of huntingtin in the
ubiquitin proteasome pathway (Liu et al., 2014).
Curcumin inhibited the formation of huntingtin aggre-
gates by modulating an endosomal sorting pathway
(Verma et al., 2012). Therefore, there are multiple mech-
anisms by which phytochemicals can protect neurons
against the accumulation and/or adverse effects of self-
aggregating neurotoxic proteins involved in AD, PD,
and HD.

D. Inflammatory Stress

Although the controlled surveillance and activity of
immune cells are critical for tissue homeostasis and
responses to pathogens and injury, chronic inflammation
contributes to the pathogenesis of numerous chronic
diseases, including neurodegenerative disorders (Schwartz
et al., 2013). Pathologic inflammation typically involves
sustained activation of cells involved in both innate
and adaptive components of immune responses. Macro-
phages (and microglia in the central nervous system)
accumulate at the site of pathology (joints in arthritis,
amyloid deposits in AD, ventral spinal cord in ALS,
etc.), where they produce proinflammatory cytokines
and ROS that can damage cells (Aktas et al., 2007;
Ransohoff and Brown, 2012). Monocytes and T lym-
phocytes are also often recruited to the site of pathology,
where they mediate autoimmune attack on self-
antigens (Wraith and Nicholson, 2012).
Numerous phytochemicals have been reported to

reduce inflammation in one or more disease models,
and reviews on this topic were recently published
(Leiherer et al., 2013; Madka and Rao, 2013). Mecha-
nisms by which some phytochemicals can suppress neu-
roinflammation are described in section V below. Here we
describe several examples of studies in which one or more
phytochemicals are shown to have beneficial effects in
experimental models of neurologic disorders that in-
volve chronic inflammation.

Ten flavonoids isolated from the tree Rhus verniciflua
were tested for their ability to protect cultured neural
cells against glutamate toxicity, and four (fisetin, sul-
furetin, butein, and butin) were found to bolster antioxidant
defenses (glutathione peroxidase and glutathione) (Cho
et al., 2012). The latter study further showed that the
flavonoids also inhibit lipopolysaccharide (LPS)-induced
NO production in a microglial cell line, indicating an
anti-inflammatory action of the flavonoids. In a model of
multiple sclerosis in which mice were injected with a
myelin peptide to stimulate the immune system to
“attack” myelinated axons, sulforaphane inhibited the
development of disease symptoms and reduced activa-
tion of Th17 cells, a specific type of T lymphocyte
implicated in the pathogenesis of multiple sclerosis
(Li et al., 2013a). Similarly, when administered orally,
epigallocatechin-3-gallate reduced myelin-reactive T cell
proliferation and tumor necrosis factor production, and
protected neurons against degeneration in a mouse model
of multiple sclerosis (Aktas et al., 2004). Inflammation of
cerebral vascular cells plays an important role in second-
ary infarction (stroke) in patients with subarachnoid
hemorrhage. In a mouse model of the latter disorders,
curcumin treatment reduced vascular inflammation and
vasospasm (Wakade et al., 2009). Old mice often exhibit
spatial working memory deficits associated with elevated
levels of inflammatory cytokines and activated microglia
in the hippocampus. When old mice were fed a diet sup-
plemented with luteolin, their spatial working memory
was improved and markers of inflammation in the
hippocampus were reduced (Jang et al., 2010a). When
APP mutant transgenic mice (a mouse model of AD)
were treated with curcumin, levels of Ab were reduced
in the brain and this was associated with reduced
local inflammation as indicated by reduced levels of
activated microglia and interleukin-1b (Lim et al.,
2001).

Although the kinds of cytoprotective actions of phy-
tochemicals described in this section are consistent
with them inducing adaptive stress responses, their
mechanism of action was not established in most cases,
and the authors assumed or speculated that the phy-
tochemicals acted as direct free radical scavengers in
many cases. However, as described in section V below,
most if not all of these phytochemicals activate one or
more adaptive stress response pathways, thereby bolster-
ing cellular resistance to dysfunction and degeneration.

V. Phytochemicals and Organismal
Stress Resistance

Organisms and their cells have evolved to maintain
homeostasis in constantly changing environments with
adaptive stress responses enabling survival and fitness.
In the previous section, we described evidence that some
phytochemicals can protect neural cells against oxida-
tive, metabolic, proteotoxic, and inflammatory stress. In
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this section, we describe effects of phytochemicals on the
vulnerability of organ systems to major/catastrophic
stressors with a continuing focus on the nervous system.
The evidence is consistent with the hypothesis that
numerous phytochemicals produced by commonly con-
sumed plants stimulate beneficial stress responses that
bolster stress resistance and enhance tissue repair.
Many of these adaptive responses are similar to those
occurring in response to exercise, dietary energy re-
striction, heat shock, and preconditioning ischemia
(Mattson, 2012; Milisav et al., 2012; Longo and Mattson,
2014).

A. Ischemia: Stroke and Myocardial Infarction

Blood carries oxygen and nutrients critical for the
function and viability of all tissues, which is particu-
larly crucial in highly aerobic tissues such as heart and
brain. Disruption of the blood supply, such as occurs in
myocardial infarction and stroke, can cause irrevers-
ible damage to the tissue in a short time period, with
cells dying by necrosis or apoptosis depending upon the
intensity and duration of the ischemia they experience.
Reperfusion injury involves additional oxidative dam-
age that occurs after restoration of blood supply. The
resistance of tissues to ischemic damage can be en-
hanced by ischemic preconditioning (IPC), a process in
which an organ is exposed to a short period of moderate
ischemia prior to a more severe ischemic insult. IPC
can occur during the evolution of atherosclerotic heart
disease or cerebrovascular disease in which repeated
transient ischemic episodes protect tissues during a
subsequent major ischemic event. Experimental IPC
has been widely used in studies of the heart (Murry
et al., 1986) and brain (Kitagawa et al., 1990). Broad
ranges of studies were performed to evaluate the ef-
fects of IPC and its mechanisms. Even more mild
physiologic intermittent energetic stresses, such as
intermittent fasting, can protect the heart and brain
against ischemic injury (Yu and Mattson, 1999). Might
phytochemicals mimic some of the effects of IPC?
Epidemiologic evidence suggests that high intakes of

fruits, vegetables, and polyphenol-rich foods such as
cocoa and green tea are associated with a lower risk of
death from coronary heart disease and stroke (Sudano
et al., 2012). Several phytochemicals have been reported
to protect the heart and brain against ischemic
damage. The herbal plant Scutellaria baicalensis con-
taining flavonoids (e.g., baicalein, baiclain, oroxylin A,
and norwogonin) can induce preconditioning of the
heart, thereby conferring a resistance to ischemia–
reperfusion injury (Whittenburg, 1990). Naringenin,
a major flavanone in grapefruit, significantly reduced
myocardial infarction heart damage by a mechanism
involving activation of mitochondrial potassium chan-
nels (Testai et al., 2013). Baiclein pretreatment protec-
ted chick cardiomyocytes against ischemia/reperfusion
in part by activating mitochondrial KATP channels

(Chang et al., 2013). Genistein, an isoflavone and
phytoestrogen present in soybeans and some medicinal
plants, is cardioprotective when administered at a low
dose in a coronary artery occlusion-reperfusion model
(Tissier et al., 2007), whereas a high dose can exacer-
bate ischemic damage (Imagawa et al., 1997). In
addition to protecting against ischemic injury, poly-
phenol phytochemicals have been reported to modify
the development of cardiac hypertrophy, ventricular re-
modeling, and fibrosis after myocardial infarction (Jiang
et al., 2010).

Dietary plant polyphenols also exert neuroprotective
effects and improve cognitive function in animal
models of cerebral ischemia. In addition to their an-
tioxidant, anti-inflammatory, and antiapoptotic actions,
phytochemicals can stabilize mitochondrial membranes,
enhance glutamate uptake, and normalize intracellular
calcium levels in neurons (Panickar and Jang, 2013). On
the basis of epidemiologic and experimental data, the
consumption of red wine and/or grapes can protect the
heart and brain against ischemic disease (Trinh et al.,
2008). Studies focused on resveratrol, which is enriched
in red wine and grapes, revealed neuroprotective efficacy
of this phytochemical in models of ischemic stroke
(Huang et al., 2001; Sinha et al., 2002; Inoue et al.,
2003). Resveratrol was found to mimic IPC neuro-
protection against cerebral ischemia by a mechanism
involving activation of sirtuin (SIRT) 1 (Raval et al.,
2006). Recent findings further suggest that resveratrol
administration can reduce ischemic brain damage by
protecting the endothelium of the cerebrovasculature
(Clark et al., 2012).

Turmeric has traditionally been used in South Asia for
the treatment of diseases associated with vascular injury
and inflammation (Lodha and Bagga, 2000). Curcumin
has a broad spectrum of efficacy in inflammation-related
diseases. Several reports have shown that curcumin
has a neuroprotective effect against cerebral ischemia in
animal models, and these early studies attributed the
neuroprotective effect of curcumin to its intrinsic anti-
oxidative properties (Ghoneim et al., 2002; Thiyagarajan
and Sharma, 2004; Wang et al., 2005a). However, more
recent findings suggest that the transcription factor
nuclear factor erythroid 2-related factor 2 (Nrf2) and
HO1 upregulation (see section V.A.1. below) mediate
curcumin’s neuroprotective effect in ischemic stroke
models (Yang et al., 2009a). Several reports also sug-
gest that curcumin preserves the integrity of the
blood–brain barrier under ischemic conditions (Jiang
et al., 2007; Kaur and Ling, 2008; Wang et al., 2013).

Neuroprotective effects of green tea extract and its
active polyphenol, (2)-EGCG, have been widely reported
in ischemic brain injury models (Hong et al., 2000,
2001; Choi et al., 2004; Egashira et al., 2007). In ad-
dition, the amino acid L-theanine in the tea leaves also
shows a neuroprotective effect in animal models of
stroke (Park et al., 2010; Zukhurova et al., 2013). In
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addition to its antioxidant properties, the neuro-
protective effects of EGCG may involve matrix metal-
loproteinase (MMP)-9 inhibition and Nrf2/HO1 activation
(Sutherland et al., 2006; Park et al., 2010; Shah et al.,
2010). Epidemiologic data suggest an inverse relationship
of consumption of green tea and stroke incidence in the
Japanese population (Tanabe et al., 2008). Protective
actions of green tea polyphenols on the cerebrovascula-
ture were reported in the studies of blood–brain barrier
permeability and microvessel fragmentation in rats with
cerebral ischemia (Zhang et al., 2010b; Liu et al., 2013a).
Although individual phytochemicals can reduce brain

damage and improve functional outcome in stroke
models, complex mixtures of phytochemicals are con-
sumed in diets rich in vegetables, fruits, and herbs.
Future research should elucidate whether combina-
tions of phytochemicals exhibit additive or synergistic
(or antagonistic) effects on the vulnerability of organs
to ischemia. In addition, future therapeutic strategies
may include combinations of phytochemicals with drugs
to improve efficacy and/or reduce side effects of drugs.
For instance, combined treatment with memantine (an
N-methyl-D-aspartate–type glutamate receptor blocker
used to treat AD patients) and tea polyphenols was
more effective than memantine or the tea polyphe-
nols alone in protecting neurons in a mouse model of
excitotoxic neurodegeneration (Chen et al., 2008).
Likewise, combined treatment with curcumin and
candesartan (an angiotensin II receptor antagonist
used mainly for the treatment of hypertension) were
synergistic in protecting against ischemic brain
damage in mice (Awad, 2011).

B. Environmental Toxicants

Most organisms, including humans, are regularly
exposed to chemicals that have the potential to cause
damage. Such environmental toxicants include heavy
metals, volatile organic chemicals in exhaust from
burning of petroleum products, and human-made
chemicals (e.g., polychlorinated biphenyls, dioxins,
dichlorodiphenyltrichloroethane). These environmen-
tal toxicants are particularly damaging to the devel-
oping embryo as well as vulnerable populations of
adults. In many cases, the brain is highly sensitive to
toxicants, with exposure to lead, mercury, arsenic,
pesticides, and carbon monoxide being well known
examples (Grandjean and Landrigan, 2006; Williams
and Ross, 2007). Indeed, the hormesis-based biphasic
dose response is familiar to readers of murder mysteries
such as Arsenic and Old Lace. Phytochemicals can them-
selves be toxic when ingested in high amounts; however,
in many cases, those same phytochemicals can be bene-
ficial when ingested in lower amounts, effectively pro-
tecting against a range of toxicants. Here we describe
examples of studies in which administration of specific
phytochemicals to animals can protect the brain against
exposures to environmental toxins.

Exposure of cats to a high level of arsenic results in
oxidative stress and brain damage that can be amelio-
rated when the cats are pretreated with resveratrol
(Cheng et al., 2013). In a rat model of arsenic toxicity,
quercetin treatment protected the liver and brain
against oxidative damage (Ghosh et al., 2009). Curcu-
min treatment attenuated arsenic-induced depletion of
monoamine neurotransmitters in the striatum, hippo-
campus, and cerebral cortex of rats (Yadav et al., 2010).
Oral administration of nanoparticulate curcumin re-
duced arsenic-induced oxidative damage in the kidney
and brain of rats (Sankar et al., 2013). Naturally
occurring excitotoxins such as kainic acid and domoic
acid can cause severe epileptic seizures and degener-
ation of hippocampal neurons (Bruce-Keller et al.,
1999). Curcumin treatment protected hippocampal
neurons in mice against kainic acid–induced damage
(Shin et al., 2007). Several types of fungi produce a
chemical called 3NP that is a potent inhibitor of mi-
tochondrial succinate dehydrogenase. Exposure of rats
and mice to 3NP causes selective degeneration of
medium spiny neurons in the striatum and associated
motor symptoms similar to those of patients with HD
(Bruce-Keller et al., 1999). Rats treated with curcumin
were relatively resistant to 3NP-induced striatal dam-
age and exhibited preservation of mitochondrial func-
tion compared with vehicle-treated rats exposed to
3NP (Sandhir et al., 2014) 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) was originally identified
as a contaminant of heroin that was responsible for
the rapid development of PD-like symptoms in several
young drug users. MPTP causes a highly selective de-
generation of dopaminergic neurons in the substantia
nigra of mice and monkeys and has therefore been
widely used to model PD in these animals (Duan and
Mattson, 1999; Maswood et al., 2004) Treatment of mice
with curcumin protected dopaminergic neurons against
MPTP-induced degeneration by a mechanism involving
reduced inflammation (Ojha et al., 2012). Sulfora-
phane administration also protected mice against
MPTP-induced degeneration of substantia nigra dopa-
minergic neurons, and suppressed gliosis and inflamma-
tion (Jazwa et al., 2011). Similarly, theaflavin treatment
attenuated dopamine depletion and ameliorated behav-
ioral deficits in MPTP-treated mice (Anandhan et al.,
2012).

Endocrine-disrupting chemicals (EDCs) have posed
a growing concern for human health. The US Environ-
mental Protection Agency has defined EDCs as agents
that interfere with the synthesis, secretion, transport,
metabolism, binding actions, or elimination of natural
blood-borne hormones that are present in the body
and are responsible for homeostasis, reproduction, and
development processes. These substances have been
shown to adversely affect the reproductive and nervous
systems (Diamanti-Kandarakis et al., 2009). Animal
studies have shown that EDCs such as bisphenol
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A (BPA) and phthalates, key ingredients in modern
plastics, can disrupt the delicate endocrine system,
leading to altered cognitive developmental and behav-
ioral problems in the nervous system (Schantz and
Widholm, 2001; Dessì-Fulgheri et al., 2002; Laviola
et al., 2005; Xu et al., 2012; Jurewicz et al., 2013).
These EDCs were designed to be less sensitive to the
decay and degradation that reduce the amount of the
chemicals released from the plastics on the one hand,
but keep them present in the environment on the other
hand. It remains to be established whether the levels of
BPA to which humans are being exposed are causing
health problems. However, a recent study showed that
environmental exposure to BPA was associated with
maladaptive behavior and learning problems in school-
aged children (Hong et al., 2013).
There are several natural chemicals found in

soybean products that can act as EDCs in laboratory
animals, including coumestans, phenylflavonoids, and
isoflavones such as genistein. Such phytoestrogens
provide a prominent example of phytochemicals that
have beneficial effects at low concentrations but ad-
verse effects at higher concentrations. Thus, low amounts
of phytoestrogens can protect against various cancers
such as prostate, breast, bowel, and other cancers
(Adlercreutz, 2002; Zhao and Mu, 2011). Moreover, soy
isoflavones, including genistein and daidzein, can
protect neurons in animal models of ALS, stroke,
chronic sciatic nerve injury, and PD (Trieu and Uckun,
1999; Liu et al., 2008; Valsecchi et al., 2008; Chinta
et al., 2013). Interestingly, findings suggest that soy
isoflavones can improve cognitive function in postmeno-
pausal women (Kritz-Silverstein et al., 2003). These
beneficial effects of soy isoflavone might be mediated by
estrogen receptor (ER)–mediated processes. However, at
higher concentrations, genistein inhibits tyrosine kinases
(Akiyama et al., 1987), some of which are involved in
long-term potentiation and cognitive function. Studies of
the effects of soy isoflavones on cognitive function in men
are as yet inconclusive (Lund et al., 2001; Lee et al.,
2004). Therefore, it can be postulated that soy phytoes-
trogens may enhance cognitive function at low doses,
but impair cognitive function when ingested in higher
amounts. The amounts of diet-derived phytoestrogens
typically consumed may be below the concentration
range that inhibits tyrosine kinases (Lee et al., 2005).
Similar to genistein, biphasic effects of curcumin on the
nervous system have also been reported (Wang et al.,
2010b; Singh et al., 2013), including a biphasic dose-
response effect on hippocampal neurogenesis in mice
(Kim et al., 2011a).

C. Psychologic Stress

Stress can be defined broadly as a psychologic and
physical response of the body that occurs whenever
an individual has to adapt to changing conditions. It
is well known that chronic uncontrolled psychologic

stress is detrimental for overall health and mental
health in particular (Kessler, 1997; Hammen, 2005).
Psychologic stress occurs when an individual perceives
that environmental demands tax or exceed his or her
adaptive capacity (Cohen et al., 2007). However, mild
stress may be desired, beneficial, and protective, as is
clear from the many health benefits of exercise and
fasting (Mattson, 2012; Longo and Mattson, 2014).
Extract of the Hypericum perforatum plant (St. John’s
wort) is a herbal treatment for depression (Nahrstedt
and Butterweck, 2010), with some studies suggesting
an efficacy similar to or greater than the widely pre-
scribed antidepressant fluoxetine (Fava et al., 2005).
The major components of St. John’s wort (quercetin,
hyperforin, and hypericin) may inhibit serotonin reup-
take, as does fluoxetine (Singer et al., 1999; Butterweck,
2003). Other phytochemicals reported to have antide-
pressant effects in animal models include curcumin
(Lopresti et al., 2012; Hurley et al., 2013) and res-
veratrol (Xu et al., 2010b). Interestingly, a large
longitudinal study showed that caffeinated coffee con-
sumption is associated with a reduced risk of de-
pression (Lucas et al., 2011). It was also reported that
ingestion of green tea has a preventative effect on the
development of depression in mice and humans (Liu
et al., 2013b; Zhang et al., 2013). Therefore, there is
considerable evidence that some dietary phytochem-
icals protect the brain against stress.

Orally administered anthocyanins were reported to
protect dopaminergic neurons against oxidative stress
caused by psychologic or emotional distress (Rahman
et al., 2008). Green tea polyphenols can also attenuate
the cognitive dysfunctions induced by psychologic
stress (Chen et al., 2009d). Ferulic acid (4-hydroxy-
3-methoxycinnamic acid), a phenolic phytochemical in
extracts of medicinal plants, spices, chocolate, and cof-
fee, has an antidepressant-like effect in the tail sus-
pension test through the activation of neurotrophic and
neurogenic signaling pathways (Zeni et al., 2012).

Adult hippocampal neurogenesis is negatively asso-
ciated with depression and anxiety, and both exercise
and antidepressant drugs stimulate neurogenesis, in
part by increasing the production of brain-derived
neurotrophic factor (BDNF) (Castrén, 2004; Warner-
Schmidt and Duman, 2006). Several studies reported
that dietary phytochemicals affect adult hippocampal
neurogenesis, suggesting a potential role in treating
depression and anxiety disorders (Park and Lee, 2011;
Dias et al., 2012). A diet enriched in polyphenols and
polyunsaturated fatty acids induces neurogenesis in
the hippocampus of adult mice (Valente et al., 2009).
The flavone baicalein, derived from the root of
S. baicalensis, enhances hippocampal neurogenesis
in adult rats and mice (Oh et al., 2013; Zhuang et al.,
2013). Similarly, the green tea polyphenol EGCG
stimulates the proliferation of neural progenitor cells
and enhances adult hippocampal neurogenesis by a
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mechanism involving the sonic hedgehog (Shh) sig-
naling pathway (Yoo et al., 2010; Wang et al., 2012d).
Epicatechin also increases the number of dendritic
spines and stimulates angiogenesis in the hippocam-
pus, and improves learning and memory performance
in mice (van Praag et al., 2007). Curcumin can also
stimulate neurogenesis (Kim et al., 2008), albeit with
a biphasic dose response in which high concentrations
inhibit neurogenesis (Park and Lee, 2011). Whether
stimulation of neurogenesis by phytochemicals is a
manifestation of a stress response remains to be
established.
Depression has been linked to dysregulation of the

hypothalamic-pituitary-adrenal (HPA) axis, and some
antidepressants may act in part by normalizing HPA
axis function (Pariante, 2003). Similar to antidepres-
sant drugs, phytochemicals can block or reverse the
stress-induced changes typical of HPA axis dysfunc-
tion. For example, curcumin stimulated BDNF and
phosphorylated cAMP response element-binding pro-
tein (CREB) signaling in the hippocampus, suggesting
an antidepressant therapeutic potential of this phyto-
chemical (Xu et al., 2006b). Interestingly, a flavonoid
derivative containing 7,8-dihdyroxyflavone activates
the BDNF receptor TrkB and has been shown to have
therapeutic efficacy in an animal model, suggesting
a potential for such neurotrophic phytochemicals in
some neurologic disorders (Liu et al., 2012b).

D. Aging

Aging can be defined as the progressive changes in
the structure and function of an organism that do not
result from disease or other gross accidents and that
eventually lead to the increased probability of death.
Aging of unicellular or multicellular eukaryotic organ-
isms is a highly complex biologic phenomenon that has
led to numerous theories of aging, none of which alone
explain why aging occurs. Thus, aging is a multifacto-
rial process influenced by both genetic and environ-
mental factors (Yu and Chung, 2006).
Aging is an evolved characteristic or adaptation that

developed through the process of evolution in the same
manner as any structural or functional characteristic
of an animal (Goldsmith, 2008). Aerobic life evolved
through adaptive processes for survival in an oxygen
environment, which lead to the free radical theory of
aging (Liu et al., 2011). In this respect, aging is closely
related with elevated oxidative stress; thus, the hy-
pothesis that the antioxidant and/or radical-scavenging
properties of phytochemicals can endow them with
“antiaging” properties was not unreasonable (González-
Vallinas et al., 2013; Park et al., 2014). In addition,
since Franceschi et al. (2000) first postulated that
increased proinflammatory status is a driving force in
the aging process, considerable evidence supports cross-
amplifying effects of oxidative stress and chronic in-
flammation in aging and age-related diseases (Chung

et al., 2009; Cevenini et al., 2010; Singh and Newman,
2011). Phytochemicals, particularly flavonoids and ter-
penoids, can attenuate the inflammation and oxidative
stress induced by nuclear factor-kB (NF-kB) signaling in
cells of the innate immune system. Epidemiologic
evidence indicates that the Mediterranean diet enriched
with polyphenols from regular consumption of fruits,
vegetables, and red wine can inhibit inflammatory
responses and attenuate many chronic age-associated
diseases, including cancer as well as cardiovascular and
inflammatory disorders (Liu, 2003; Pérez-Martínez
et al., 2011; Singh and Newman, 2011).

Phenolic components of berries responsible for their
color and flavor likely evolved in part to protect the
plants against infections, physical damage, UV radia-
tion, and other damaging factors (Paredes-López et al.,
2010). Whole apple extracts can increase the lifespan of
Caenorhabditis elegans in a dose-dependent manner,
and improve the healthspan of the worms as indicated
by increased mobility at older ages (Vayndorf et al.,
2013). Açai palm fruit (Euterpe oleracea Mart.) was
reported to antagonize the detrimental effect of a high-
fat diet and oxidative stress on aging (Sun et al., 2010).
The antiaging effects of the four dietary plant poly-
phenols tannic acid, gallic acid, ellagic acid, and
catechin were tested in C. elegans, and lifespan assays
showed that all four compounds prolonged lifespan, but
only tannic acid and catechin protected against specific
stressors (Saul et al., 2011). An oregano-cranberry
mixture was shown to have a prolongevity effect in the
Mexican fruit fly (Mexfly) (Zou et al., 2010, 2012a).
Cocoa supplementation increases the lifespan of the
fruit fly Drosophila melanogaster under oxidative stress
conditions (Bahadorani and Hilliker, 2008). Curcumin-
induced lifespan extension was reported in Drosophila
and C. elegans, but not in mouse models (Suckow and
Suckow, 2006; Liao et al., 2011; Shen et al., 2013a,b).

Relatively few studies have reported extension of
lifespan by phytochemical treatment in rodent models.
Long-term consumption of EGCG increased the aver-
age life span without affecting the maximum life span,
and resulted in lower levels of age-related deteriora-
tion of the kidneys and liver in Wistar rats (Niu et al.,
2013). Rapamycin, a chemical originally isolated from
bacteria in a soil sample from Easter Island, is an
inhibitor of the mammalian target of rapamycin (mTOR).
Rapamycin extended lifespan in genetically heteroge-
neous mice and normal inbred 129/Sv mice (Anisimov
et al., 2011; Miller et al., 2011). Although resveratrol can
extend the life span of various invertebrates including,
Saccharomyces cerevisiae,C. elegans, andD.melanogaster,
resveratrol failed to increase overall survival or maxi-
mum life span in mice in the context of the standard diet
(Pearson et al., 2008; Miller et al., 2011). An interesting
study by Aires et al. (2012) investigated the potentiation
of dietary restriction–induced life span extension by
polyphenols. In the latter study, polyphenols from
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blueberry, pomegranate, and green tea extracts further
extended the lifespan of intermittently fed mice and
reduced inflammatory markers (Aires et al., 2012).
Dietary supplements of fruit and vegetable extracts

were shown to retard age-related declines in neuronal
and cognitive function. Extracts from strawberry,
spinach, and blueberry slowed and reversed age-related
declines in cognitive and motor function in Fischer 344
rats (Joseph et al., 1998, 1999). In addition, increasing
evidence suggests that dietary phytochemicals are also
associated with reduced risk of disorders such as AD
and PD (Son et al., 2008; Perry and Howes, 2011).
Coffee and green tea polyphenols exhibited beneficial
effects in treating age-related depression and cognitive
decline, suggesting a potential therapeutic role of such
phytochemicals in brain aging (Liu et al., 2014). Coffee
has positive effects on cognition and psychomotor be-
havior during aging, which may involve both caffeine-
mediated and caffeine-independent mechanisms (Chen
et al., 2009d). The abilities of polyphenolics such as
curcumin, resveratrol, and proanthocyanidins to en-
hance cognitive function in animal models was pre-
viously reviewed (Ogle et al., 2013).

VI. Molecular Mechanisms

Two major mechanisms by which phytochemicals
exert beneficial effects on the nervous system include
stimulating one or more adaptive cellular stress
response signaling pathways, as well as inducing the
expression of neurotrophic factors. In this section, we
focus on the major molecular pathways by which
phytochemicals are currently known to promote neural
stress resistance and plasticity.

A. Adaptive Stress Responses

More than 50 years ago, Milkman (1962) reported
that exposure of developing Drosophila to heat shock
can protect them against more severe stress. This led
to the discovery of heat shock proteins (Hsps) and
related protein chaperones that help prevent the ac-
cumulation of misfolded/damaged proteins in cells
subjected not only to heat stress but also to oxidative
and metabolic stress (Naidoo, 2009; Doyle et al., 2013).
Since then, it has become clear that cells possess
a broad range of mechanisms that protect them against
stressful conditions they encounter in the normal
course of their lives, as well as more severe conditions
that include tissue injury, diseases, and exposure to
toxins. Here we highlight several such adaptive stress
response mechanisms that can be triggered by phyto-
chemicals and may mediate health-promoting actions
of some vegetables and fruits.
1. Nuclear Factor Erythroid 2-Related Factor 2

Activation. Oxidants and electrophiles are ubiquitous
and constantly generated in aerobic organisms where
they arise from ongoing metabolism and xenobiotic

challenges (Kensler et al., 2007; Ma and He, 2012; Ma,
2013). Accordingly, cells have evolved internal defense
mechanisms to cope with oxidative and electrophilic
stress. Nrf2 belongs to the Cap‘n’Collar subfamily of
basic leucine zipper transcription factors (Moi et al.,
1994), and is a master regulator of cellular adaptation
to redox stress. Under basal conditions, Nrf2 is kept
transcriptionally inactive because it resides in cyto-
plasm. In response to oxidative and electrophilic stress,
Nrf2 is stabilized and translocates into the nucleus,
where it binds to the cis-acting enhancer antioxidant
response element sequence (consensus core sequence:
59-TGACnnnGC-39) (Fig. 5). Nrf2 heterodimerizes with
members of the small musculoaponeuotic fibrosarcoma
oncogene family of proteins, binds antioxidant re-
sponse element sequences, and thereby induces de-
toxifying proteins, antioxidant enzymes, and proteins
involved in ubiquitin-mediated proteolysis pathways
(Ma, 2013; Shelton and Jaiswal, 2013). Accordingly,
Nrf2 knockout mice exhibit increased vulnerability to
oxidative stress and toxins (Motohashi and Yamamoto,
2004; Kensler et al., 2007; Ma and He, 2012; Ma, 2013).
Activation of the Nrf2 signaling with phytochemicals
such as sulforaphane can protect animals against ox-
idative stress (Talalay et al., 2003).

When levels of oxidative stress are low, Nrf2 is
maintained in an inactive form in the cytoplasm as
the result of binding to the cysteine-rich protein
Kelch-like ECH-associated protein 1 (Keap1). Keap1 is
tethered to the actin cytoskeleton in the cytosol, where
it binds Nrf2 and serves as an adaptor to bring Nrf2
into the Cullin (Cul) 3–based E3 ubiquitin ligase com-
plex (Itoh et al., 1999; Dhakshinamoorthy and Jaiswal,
2001; Kang et al., 2004). In addition to keeping Nrf2 in
the cytoplasm, Keap1 facilitates ubiquitin-mediated
proteolysis of Nrf2 (Cullinan et al., 2004; Kobayashi
et al., 2004; Zhang et al., 2004a; Furukawa and Xiong,
2005). Keap1 is a molecular sensor of ROS and
genotoxic chemicals that react with specific cyste-
ine residues in Keap1 (Cys151, Cys273, Cys288, or
Cys613), which triggers a conformational change in the
Nrf2/Keap1/Cul3-based E3 complex that releases Nrf2
that then translocates to the nucleus (Eggler et al.,
2005; Kobayashi et al., 2006; Tong et al., 2006). Thus,
knockdown or knockout of Keap1 results in constitu-
tive activation of Nrf2 (Itoh et al., 1999; Wakabayashi
et al., 2003). The subcellular localization of Nrf2 is
further regulated by its nuclear localization signal se-
quence and nuclear export signal sequence (Jain et al.,
2005; Li et al., 2005b, 2006; Theodore et al., 2008).
Oxidative conditions can inactivate the Nrf2 nuclear
export by modification of a redox-sensitive cysteine,
which promotes the nuclear retention of Nrf2 (Li
et al., 2006).

Genes induced by Nrf2 encode proteins of two major
categories: antioxidant enzymes and phase 2 detoxifica-
tion enzymes (Joshi and Johnson, 2012). The antioxidant
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enzymes include HO1, NQO1, catalase, glutathione
peroxidase, thioredoxin, and peroxiredoxin. Phase
2 enzymes induced by Nrf2 include glutathione
S-transferases, which catalyze the conjugation of xeno-
biotic electrophiles and reactive alkenals to glutathione;
the conjugates are then exported from cells by multi-
drug resistant protein 1.
Emerging findings suggest that Nrf2 activation is

one mechanism whereby phytochemicals may exert
cytoprotective effects on neurons (Table 1). Examples
of phytochemicals demonstrated to activate Nrf2 and
upregulate Nrf2 target genes include sulforaphane,
curcumin, ferulic acid, oleanolic acid, ursolic acid, the
triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic
acid, and plumbagin. In addition, well known toxic
agents can activate Nrf2 even at low concentrations
that induce hormetic responses. Examples include NO,
dopamine, peroxides, 4-hydroxynonenal, acrolein, arse-
nic, and paraquat (Dinkova-Kostova et al., 2004; Ma
and He, 2012; Ma, 2013; Turpaev, 2013). Nrf2 activators

have few common structural properties, but most or all
of them react with thiols of Keap1 (Dinkova-Kostova
et al., 2001). Many of these Nrf2 activators have been
shown to be effective in experimental carcinogenesis
models, and their chemopreventive actions are abol-
ished in Nrf2-deficient mice, indicating that their effects
are mediated by Nrf2 (Ramos-Gomez et al., 2001; Shen
et al., 2006; Xu et al., 2006a; Yates et al., 2006). Several
pharmacological and genetic studies have also demon-
strated neuroprotective effects of Nrf2-activating phy-
tochemicals in animal models of AD, PD, HD, and ALS
(Burton et al., 2006; Jakel et al., 2007; Kraft et al.,
2007; Kanninen et al., 2008, 2009; Vargas et al., 2008;
Chen et al., 2009c; Dumont et al., 2009; Yang et al.,
2009b).

2. Hypoxia-Inducible Factor 1. Hypoxia can lead to
rapid adaptive changes in cells, and the transcription
factor hypoxia-inducible factor (HIF)-1 plays critical
roles in such responses to hypoxia. HIF-1 was origi-
nally identified as a transcriptional activator of the

Fig. 5. Modification of the Nrf-2 and NF-kB signaling pathways by phytochemicals upregulates antioxidant and detoxification enzymes and
suppresses inflammation. The Nrf2 pathway can be activated by the phytochemical sulforaphane in at least two ways, one involving interaction of
sulforaphane with the SHs between Keap1 and Nrf2, and the other involving phosphorylation of Nrf2. Once freed from Keap1, Nrf2 translocates into
the nucleus, where it induces the expression of genes encoding proteins involved in glutathione synthesis, antioxidant enzymes, phase 2 detoxification
enzymes, and proteins involved in NADPH synthesis. Oxidative stress and ligands for TNFRs and TLRs activate upstream IKKs, resulting in
phosphorylation of IkB that is normally bound to the inactive NF-kB dimer (p50 and p65) in the cytoplasm. IkB is then targeted for proteasomal
degradation and NF-kB then moves into the nucleus, where it induces the expression of inflammatory cytokines as well as genes encoding proteins
such as SOD2 and Bcl2 involved in adaptive stress responses. Curcumin can inhibit NF-kB in inflammatory immune cells, whereas other
phytochemicals may activate NF-kB in some cell types (e.g., neurons) to enhance stress resistance. ARE, antioxidant response element; IKK, Ik-B
kinase; Maf, musculoaponeurotic fibrosarcoma oncogene homolog; NEMO, NF-kB essential modulator; NLS, nuclear localization signal; TLR, Toll-like
receptor; TNFR, tumor necrosis factor receptor; Ub, ubiquitin.

Phytochemicals and Adaptive Responses 829



erythropoietin gene in hepatoma cells (Semenza and
Wang, 1992). It is expressed widely in mammalian
cells, and is evolutionarily conserved (Wang and
Semenza, 1993b; Firth et al., 1994; Loenarz et al.,
2011; Ratcliffe, 2013). HIF-1 is related to the family of
basic-helix-loop-helix transcription factors, which are
responsible for cellular and tissue adaptation to low
oxygen tension. HIF-1 is composed of two subunits,
an oxygen-regulated a subunit (HIFa), and a constitu-
tively expressed aryl hydrocarbon nuclear translocator
also named HIF-1b (Maxwell, 2004; Metzen and
Ratcliffe, 2004). These isoforms interact with histone
acetyltransferases, such as CREB-binding protein (CBP),
p300, and SRC-1 to activate the transcription of target
genes (Wang et al., 1995a; Gu et al., 1998; Wenger,
2002; Maynard et al., 2003). The basic-helix-loop-helix
and Per-Arnt-Sim domains are required for dimeriza-
tion of HIF-1a with HIF-1b as well as for binding to
hypoxia-response elements comprising a consensus se-
quence 59-RCGTG-39 within or near HIF-1 regulated
genes. In addition to the binding to DNA and coactiva-
tors, HIF-1a interacts with factors regulating its stabil-
ity such as Hsp90 (Brahimi-Horn et al., 2005; Fandrey
et al., 2006). Transcription and translation of HIF-1a
occurs constitutively, but the stability and activity of
this protein is dependent on oxygen levels, whereas HIF-1b

expression and the protein stability are independent of
oxygen levels (Wang and Semenza, 1995; Kallio et al.,
1998). HIF-1 regulates an array of genes that partici-
pate in angiogenesis, iron and glucose metabolism, cell
proliferation, and cell survival (Shi, 2009; Singh et al.,
2012).

Under normoxic conditions (normal oxygen tension),
HIF-1a is hydroxylated on at least one of two conserved
proline residues (either P403 or P564 in human HIF-1a)
within the oxygen-dependent degradation domain by
specific prolyl hydroxylases (PHDs) (Ivan et al., 2001;
Jaakkola et al., 2001; Masson et al., 2001; Koh and
Powis, 2012). Functional activity of PHDs requires
the cofactors iron (Fe2+) and ascorbate as well as the
cosubstrates oxygen (O2) and 2-oxoglutarate (Corcoran
and O’Connor, 2013). Oxygen-dependent prolyl hydrox-
ylation of HIF-1a enables binding of the b-domain of von
Hippel-Lindau tumor suppressor protein (pVHL), the
recognition subunit of an E3 ubiquitin ligase complex
(Elongin BC/Cul2/pVHL) that ubiquitinates HIF-1a and
thereby targets it for degradation in the 26S proteasome
(Kaelin and Ratcliffe, 2008). In hypoxic conditions, prolyl
hydroxylation of HIF-1a and its consequent recogni-
tion by the pVHL ubiquitin–ligase complex are abro-
gated, and HIF-1a proteins accumulate in the nucleus
where they dimerize with the constitutively expressed

TABLE 1
Phytochemicals that activate the Nrf2 signaling pathway

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

Carnosol Rat pheochromocytoma
PC12 cells

Attenuate oxidative stress Activation of Nrf2/ARE
signaling

Martin et al. (2004)

Curcumin Vascular smooth
muscle cells

Inhibition of cell growth Translocation of Nrf2
into the nucleus

Pae et al. (2007)

EGCG Endothelial cells Reduce oxidative stress Upregulation of Nrf2 in
the nucleus

Wu et al. (2006)

Hydroxytyrosol Human retinal pigment
epithelial cells

Block mitochondrial dysfunction
and apoptosis

Nrf2 activation Zou et al. (2012b)

Mollugin Human oral squamous
carcinoma cells

Cell growth inhibition and
apoptosis

Activation of Nrf2 Lee et al. (2013)

Mouse hippocampal
HT22 cells and microglial
BV cells

Suppression of cell death and
inflammation

Nuclear accumulation
of Nrf2

Jeong et al. (2011)

Phytochemical-rich
diets

Hypertensive rats Reduce heart failure
progression

Increased cardiac Nrf2
activity

Seymour et al.
(2013)

Phytochemical
combination

HL-1 cardiomyocytes Increase antioxidant defenses
and protect heart cells

Induced Nrf2 activation
and phase II enzymes

Reuland et al.
(2013)

Human liver hepatoma cells Cancer chemopreventive
activity

Enhanced Nrf2/ARE
pathway

Saw et al. (2011)

Procyanidin HepG2 human hepatocarcinoma
cells

Anticarcinogenic effect Induction of Nrf2/ARE
pathway

Bak et al. (2012b)

Resveratrol Human erythroleukemia
K562 cells

Induce detoxification
reactions by activation
of Nrf2/ARE/NQO1

Phosphorylation of Nrf2 Hsieh et al. (2006)

Silymarin Human A549 adenocarcinoma
cells

Reduce paraquat-induced
toxicity

Induction of Nrf2 Podder et al.
(2012)

Sulforaphane Rat lymphocytes Chemoprevention Increased Nrf2 and target
genes

Wang et al. (2012b)

Rat cardiomyocytes Cardiac cell survival Nrf2 phosphorylation Leoncini et al.
(2011)

COPD Restore bacteria recognition
and phagocytosis

Activation of Nrf2 Harvey et al.
(2011)

Human bladder cells
and tissue

Inhibit carcinogen-induced
DNA damage

Activation of Nrf2 Ding et al. (2010)

ARE, antioxidant response element; COPD, chronic obstructive pulmonary disease.
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HIF-1b subunit (Kaelin and Ratcliffe, 2008). In addition
to oxygen, the stability of HIF-1a is also regulated by
metabolic status because the tricarboxylic acid cycle
intermediate a-ketoglutarate is also a substrate for
PHDs. These hydroxylases insert one oxygen atom into
a proline residue, and the other oxygen atom is inserted
into a-ketoglutarate to generate CO2 and succinate
(Semenza, 2013). Several tricarboxylic acid cycle inter-
mediates such as succinate and fumarate, as well as
ROS such as NO, can impair PHD activity leading to
stabilization and activation of HIF-1a (Selak et al.,
2005; Kaelin and Ratcliffe, 2008). This aberrant stabili-
zation of HIF-1a independent of the oxygen tension is
termed pseudohypoxia. Pseudohypoxia-mediated HIF
activity may be a cause of tumors associated with the
mutations in VHL and tricarboxylic acid cycle enzymes
(Semenza, 2013).
Systemic hypoxia quickly increases the nuclear level

of HIF-1a protein in brain cells (Stroka et al., 2001;
Bernaudin et al., 2002). HIF-1 responds to reduced ox-
ygen tension in cerebral ischemia (Stroka et al., 2001;
Singh et al., 2012). Both detrimental and neuroprotec-
tive roles of HIF-1 have been reported in ischemic
stroke models (Helton et al., 2005; Baranova et al.,
2007; Chen et al., 2007; Shi et al., 2009; Xin et al., 2011).
Neuron-specific deficiency of HIF-1a increases brain
injury and mortality in a mouse model of transient focal
cerebral ischemia, implicating a neuroprotective function
of HIF-1a (Baranova et al., 2007). Moreover, hypoxic
preconditioning induces stroke tolerance in mice via
HIF-1a signaling (Liu et al., 2005; Wacker et al.,
2012). Other studies, however, show that deletion or
inhibition of HIF-1a resulted in reduced brain damage
after ischemic stroke or hypoxic conditions, suggest-
ing a detrimental role of HIF-1a (Helton et al., 2005;
Chen et al., 2009a; Cheng et al., 2014).
The HIF signaling cascade is regulated transcrip-

tionally by NF-kB and post-translationally by PHDs
(van Uden et al., 2008). Stabilized HIF-1 increases
several genes to promote cell survival in low-oxygen
conditions including glycolysis enzymes, which allow
ATP synthesis in an oxygen-independent manner, and
vascular endothelial growth factor, which promotes
angiogenesis (Lee et al., 2007). A naturally occurring
estrogen metabolite 2-methoxyestradiol was shown to
inhibit tumor growth and angiogenesis by disrupting
microtubules, HIF-1a translation, and its nuclear
translation (Mabjeesh et al., 2003a). The interaction
between Hsp90 and HIF-1a is required for HIF-1a
stabilization (Gradin et al., 1996). The Streptomyces
hygroscopicus metabolite geldanamycin binds to the
ATP/ADP binding pocket of Hsp90, resulting in inhibition
of HIF-1 activation by promoting pVHL-independent pro-
teasomal degradation of HIF-1a protein (Isaacs et al.,
2002). The plant isoflavone genistein inhibits HIF-1 by
blocking the induction of HIF-1a protein (Wang et al.,
1995b). Various HIF-1 inhibitors have been identified

from natural product libraries and activity-guided frac-
tionation using plants and marine organisms, including
sodwanone and yardenone triterpenes from themarine sponge
Axinella, manassantin B and 4-O-demethylmanassantin
B from Saururus cernuus, laurenditerpenol from the
marine alga Laurencia intricate, and terpenoid tetrahy-
droidoquinoline alkaloids emetine, klugine, and isocephae-
line (Xia et al., 2012). Manassantin-type dineolignans
(manassantin B and 4-O-demethylmanassantin B) are
among the most potent small molecule HIF-1 inhib-
itors discovered (IC50 values of 3–30 nM), and selectively
inhibit the activation of HIF-1 by hypoxia (Hodges et al.,
2004). However, systemic administration of HIF-1 inhib-
itors for cancer therapy is contraindicated in patients
who also have ischemic cardiovascular or cerebrovas-
cular diseases, in which HIF-1 activity is protective
(Semenza, 2012).

Phytochemicals may affect HIF-1 activity by oxygen
level–independent mechanisms including generation of
ROS (Prabhakar and Semenza, 2012). HIF-1 has been
proposed to mediate the adaptive stress responses and
beneficial mechanisms of several phytochemicals in the
regulation of metabolism and stress resistance. HIF-1
activating agents may be able to prevent ischemia/
reperfusion injuries and help recovery from tissue
ischemia (Nagle and Zhou, 2006). In addition, some
preconditioning strategies that induce HIF-1 have
been applied for myocardial infarction and for ischemic
rescue in the brain (Rodríguez-Jiménez and Moreno-
Manzano, 2012). The iron chelator, deferoxamine, is
the first natural product shown to activate HIF-1
(Wang and Semenza, 1993a); chelation of iron by
deferoxamine stabilizes HIF-1a by disrupting the hy-
droxylation of HIF-1a by inhibition of PHD (Dendorfer
et al., 2005). The b-diketone dibenzoylmethane found in
licorice (Glycyrrhiza glabra) stabilizes HIF-1a protein
and increases expression of vascular endothelial growth
factor (Mabjeesh et al., 2003b). The flavonoid quercetin
activates HIF-1a by inhibition of factor-inhibiting HIF,
an asparaginyl hydroxylase that modifies and inacti-
vates HIF-1a protein (Welford et al., 2003). Green tea
catechin EGCG increases the level of nuclear HIF-1a
protein and activates the expression of HIF-1 down-
stream genes (Zhou et al., 2004). The structurally
related fungal sesquiterpenes pycnidione, epolone A,
and epolone B induce erythropoietin expression via
HIF-1a activation (Cai et al., 1998; Wanner et al.,
2000). In a study of cultured dorsal root ganglia, it
was found that neuronal NO induces the HIF-1–
dependent expression of erythropoietin in adjacent
Schwann cells, and the erythropoietin in turn protects
axons of the neurons against neurotoxin-induced de-
generation (Keswani et al., 2011). In contrast with the
Nrf2 stress response pathway, far fewer studies have
investigated the effects of phytochemicals on the HIF-1
pathway (Table 2). It will be of considerable interest to
identify phytochemicals that affect the latter pathway
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and the potential interactions of Nrf2 and HIF-1 path-
ways in cellular responses to individual phytochemicals
and to combinations of phytochemicals normally present
in plants.
3. Nuclear Factor-kB. NF-kB is a protein complex that

regulates the expression of genes involved in a range
of biologic processes including innate and adaptive
immunity, inflammation, cellular stress responses,
cell survival, and proliferation. NF-kB is ubiquitously
expressed in almost all animal cell types, where it is
located in the cytoplasm in an inactive form bound to
an inhibitory protein (IkB) that masks the nuclear
localization signal of the NF-kB transcription factor
dimer (typically p65 and p50 subunits) (Jacobs and
Harrison, 1998). In response to stimuli including in-
flammatory cytokines, ionizing radiation, or bacterial
or viral antigens, IkB is phosphorylated by the IkB
kinase complex and is ubiquitinated and degraded by
the proteasome, allowing NF-kB to translocate into
the nucleus and regulate gene expression (Karin,
1999; Mankan et al., 2009) (Fig. 5). Because NF-kB is
involved in critical biologic signaling in controlling immu-
nity, inflammation, and cell survival, aberrant regulation
of NF-kB activity is implicated in the pathogenesis of
diseases ranging from inflammatory and autoimmune
diseases to septic shock, viral infection, tumorigenesis
and neurodegenerative disorders (Li and Verma, 2002;

Blaschke et al., 2004; Monaco et al., 2004; Aud and Peng,
2006; Mankan et al., 2009).

NF-kB controls many genes involved in immune
responses and inflammation, and chronically active
NF-kB is found in many inflammatory diseases.
Therefore, the regulation of NF-kB is often considered
a therapeutic target for inflammatory diseases and,
in this regard, numerous phytochemicals that affect
NF-kB activity have been identified. Anti-inflammatory
effects of isoeleutherin, a phytochemical isolated from
the flowering plant Eleutherine bulbosa, are mediated
by inhibiting NF-kB in LPS-treated macrophages
(Song et al., 2009). Capsaicin suppressed obesity-
induced inflammation in adipose tissue macrophages,
which was associated with inactivation of NF-kB and
activation of peroxisome proliferator–activated recep-
tor (PPAR)-g (Kang et al., 2007). Resveratrol reduced
NF-kB activity and obesity-related inflammation markers
in adipose tissue of genetically obese rats (Gómez-Zorita
et al., 2013). Resveratrol also attenuated LPS- and
Ab-induced microglial inflammation by inhibiting the
NF-kB signaling cascade, apparently by interfering
with IkB kinase and IkB phosphorylation (Capiralla
et al., 2012). Several studies reported that anti-
inflammatory effects of curcumin are mediated by
suppression of NF-kB activation. In an osteoarthritis
model, curcumin suppressed inflammatory cytokines

TABLE 2
Phytochemicals that modify the HIF-1a signaling pathway

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

EGCG Nonsmall cell lung
cancer cells and A549
xenografted tumors
of nude mice

Inhibit angiogenesis Inhibition of HIF-1a He et al. (2013)

Human pancreatic
carcinoma cells

Inhibit cell proliferation Inhibition of HIF-1a Zhu et al. (2012)

Rat kidney Block iron uptake Prevented HIF-1a
hydroxylation by
prolyl hydroxylase
inhibition

Manalo et al. (2011)

3,39-
diindolylmethane

Hypoxic tumor cells Interact mitochondrial
F1 F0-ATPase and
increased ROS and O2

Reduced HIF-1a Riby et al.
(2008)

Ferulic acid HUVECs Augment angiogenesis Upregulation of HIF-1a Lin et al. (2010)
Honokiol HUVECs Promote angiogenesis Inhibition of HIF pathway Vavilala et al. (2012)
Luteolin Human retinal

microvascular
endothelial cells

Inhibit retinal
neovascularization

Suppressed HIF-1a
expression

Park et al. (2012b)

Naringenin and
quercetin

Hypoxia-induced
mice model

Ameliorate hypoxia-induced
brain dysfunction

Decreased HIF-1a Sarkar et al. (2012)

Salvia miltiorrhiza Human gastric cancer
cells and human
hepatocarcinoma cells

Anticancer activity Suppressed HIF-1a
accumulation

Dat et al. (2007)

Silibinin SKH1 hairless mice Prevent UVB-induced
photocarcinogenesis

Decreased HIF-1a Gu et al. (2007)

Ischemic stroke model Reduce infarct volume
and brain edema

Upregulation of HIF-1a Wang et al. (2012a)

Soy-containing diets Acute stroke in female rats Decrease the expression
of apoptotic mediator

Inhibition of HIF-1a
activity

Ma et al. (2013)

Quercetin Human breast cancer cells Inhibit cell proliferation
and invasion

Suppressed the expression
of HIF-1a

Li et al. (2013b)

Gastric cancer cells Induce apoptotic cell death Modulation of HIF-1a Wang et al. (2011b)
Wogonin Acute UVB-irradiated

hairless mice
Reduce skin damage Inhibition of HIF-1a Kimura and Sumiyoshi

(2011)

HUVEC, human umbilical vein endothelial cell.
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and NF-kB activation in chondrocytes treated with
advanced glycation end products (Yang et al., 2013).
Curcumin also reduced expression of cyclooxygenase-2
(COX-2) and MMP-9 in human articular chondrocytes
by suppressing NF-kB activation (Shakibaei et al.,
2007). Avenanthramides, phenolic compounds present
in oats, reduced local inflammation in murine models
of contact hypersensitivity by a mechanism involving
reduced phosphorylation of the p65 subunit of NF-kB
(Sur et al., 2008).
NF-kB is also important in regulating genes that

control cell proliferation and survival (Fig. 5). Aberrant
NF-kB activation occurs in many different types of
human tumors, resulting in elevated expression of genes
that promote cell proliferation and survival (Sethi et al.,
2008). Accordingly, blocking NF-kB can suppress tumor
cell proliferation and trigger apoptosis, particularly when
combined with treatment with chemotherapeutic agents
or radiation. Curcumin suppresses NF-kB activity in
human pancreatic carcinoma cell lines, which renders
them vulnerable to apoptosis (Li et al., 2005a). Curcumin
was also shown to sensitize breast cancer cells to
chemotherapeutic drugs via NF-kB modulation (Royt
et al., 2011). Genistein inhibited cell proliferation and
induced apoptosis, and soy phytochemicals reduced
tumorigenesis, which is associated with induction of
tumor cell apoptosis and inhibition of tumor angio-
genesis in an orthotopic tumor model. Both in vitro
and in vivo anticancer effects of soy phytochemicals
are mediated by suppressed NF-kB activity (Singh
et al., 2006). The botanical chemical isosilybin A
triggered apoptotic death and decreased nuclear trans-
location of NF-kB in three different human prostate
cancer cell lines (Deep et al., 2010). The flavonoid quer-
cetin inhibited cell proliferation and induced mitochondria-
mediated apoptosis in human cervical cancer cells
through p53 induction and NF-kB inhibition (Vidya
Priyadarsini et al., 2010). Because NF-kB promotes
cell survival, inhibition of NF-kB can adversely affect
normal cells; therefore, NF-kB inhibitors have con-
siderable potential for unwanted side effects of cancer
therapies.
Long-term activation of NF-kB in microglia and

astrocytes results in the production of proinflammatory
cytokines and ROS that can damage neurons. Because
NF-kB–mediated glial cell hyperactivation contributes
to the pathogenesis of stroke, traumatic brain injury,
and neurodegenerative disorders, there has been in-
terest in identifying natural products and developing
drugs that inhibit NF-kB. On the other hand, activa-
tion of NF-kB in neurons promotes cell survival and
can protect neurons in experimental models of acute
and chronic neurodegeneration (Camandola andMattson,
2007). In the remainder of this section, we provide
examples of the roles of NF-kB in neuroinflam-
matory and neurodegenerative conditions, and re-
view evidence that some phytochemicals can modify

neurologic disease processes, in part, by modifying NF-kB
activity.

Several studies have reported that phytochemicals
that inhibit NF-kB in glial cells can protect neurons
and brain against neuroinflammation and neurodegen-
eration (Table 3). Anthocyanin-rich açai (Euterpe oleracea)
fruit pulp mitigated LPS-induced inflammatory stress
and NF-kB activation in mouse brain BV2 microglial
cells (Poulose et al., 2012). Ammonia-induced neurotox-
icity including oxidative stress and increased cytokine
release in astrocytes was inhibited by resveratrol by
reducing NF-kB activation (Bobermin et al., 2012).
Luteolin blocked LPS-induced NF-kB activation and
inflammation responses in BV2microglia, and improved
neuron survival in a model of neuroinflammation (Zhu
et al., 2011). Langiferin and morin were found to protect
neurons against excitotoxic neuronal death, which was
associated with downregulation of NF-kB (Campos-
Esparza et al., 2009). Isoquercetin protected cultured
cortical neurons from oxygen-glucose deprivation via
suppression of the Toll-like receptor 4/NF-kB signaling
pathway (Beckman et al., 2013). A neuroprotective
effect of silymarin on LPS-induced neurotoxicity was
reported in mesencephalic mixed neuron-glia cultures.
Silymarin attenuated the LPS-induced microglial acti-
vation and the production of inflammatory cytokines
through the inhibition of NF-kB activation, and reduced
the damage to dopaminergic neurons (Wang et al., 2002).
In cultures containing rat cerebral cortical neurons and
glial cells, the flavonoid hyperoside protected the neurons
against oxygen/glucose deprivation and reduced NF-kB
activation (Liu et al., 2012a). Soybean isoflavones alle-
viated the cytokine cascade and glial inflammatory
response induced by Ab1–42, and improved spatial
learning and memory by downregulation of NF-kB activity
in rats (Ding et al., 2011). EGCG also ameliorated Ab1–
42–induced memory dysfunction and activation of NF-kB
in mice (Lee et al., 2009). EGCG inhibits T-cell pro-
liferation by suppressing cyclin-dependent kinase 4
and upregulating IkB, and oral administration of
EGCG protected the brain in an experimental autoim-
mune encephalomyelitis animal model of multiple sclero-
sis by reducing T cell–related neuroinflammation (Aktas
et al., 2004). In a gerbil model of transient global cerebral
ischemia, oral administration of Crataegus flavonoids re-
duced activity of inflammatory glia by a mechanism
involving reduction of NF-kB activation (Zhang et al.,
2004b). The flavonoid wogonin also suppressed the
inflammatory activation of microglia and LPS-induced
NF-kB activation, and was neuroprotective in animal
models of transient global ischemia and excitotoxic
seizures (Lee et al., 2003).

In neurons, NF-kB is activated in response to ongoing
excitatory synaptic transmission, and is believed to play
important roles in synaptic plasticity, learning, and
memory (Kaltschmidt et al., 1994, 2006; Albensi and
Mattson, 2000; Meffert et al., 2003; O’Mahony et al.,
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2006; Ahn et al., 2008; Boersma et al., 2011). In
addition to stimuli that activate NF-kB in peripheral
tissues, NF-kB in the nervous system can be stimu-
lated by neurotrophic factors, such as BDNF and nerve
growth factor (NGF) as well as the neurotransmitter
glutamate (O’Neill and Kaltschmidt, 1997). Activation
of N-methyl-D-aspartate inotropic glutamate receptors

induces BDNF expression by a NF-kB–dependent
pathway, implying that NF-kB is required for activity-
dependent neuronal survival and long-term memory
(Levenson et al., 2004; Marini et al., 2004). Numerous
studies have demonstrated that activation of NF-kB in
neurons can protect against dysfunction and degenera-
tion in cell culture and animal models of acute and

TABLE 3
Phytochemicals that modify NF-kB signaling

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

Capsaicin Adipose tissues macrophages
of obese mice

Suppress the inflammatory
responses

NF-kB inactivation Kang et al. (2007)

Resveratrol Adipose tissue of Zucker
(fa/fa) rats

Body fat reduction and anti-
inflammatory activity

Reduced NF-kB and
inflammatory responses

Gómez -Zorita
et al. (2013)

Murine RAW 264.7 macrophages
and microglial BV-2 cells

Inhibit microglial activation Suppressed NF-kB
signaling

Capiralla et al.
(2012)

Curcumin AGE-treated rabbit chondrocytes Block inflammation by inhibition
of I-kBa phosphorylation

Inhibition of NF-kB
activation

Yang et al. (2013)

Human articular chondrocytes Reduce inflammatory responses Suppressed NF-kB
activation

Shakibaei et al.
(2007)

T cell Anti-inflammatory and
immunosuppressive function

Suppressed NF-kB
activation

Kliem et al. (2012)

MSC-like progenitor cells Facilitate chondrogenesis of
MSC-like progenitor cells

Suppressed NF-kB
activation

Buhrmann et al.
(2010)

Silibinin SKH-1 hairless mice Protect UVB-induced inflammation
and photocarcinogenesis

Decreased phosphorylation
of p65 subunit

Gu et al. (2007)

Curcumin Human pancreatic carcinoma cells Inhibit pancreatic carcinoma
growth and tumor angiogenesis

Decreased NF-kB activity Li et al. (2005a)

Breast cancer cells Downregulate the expression of
tumor markers

Decreased NF-kB Royt et al. (2011)

Human pancreatic carcinoma
cells and murine xenograft
models

Suppress pancreatic carcinoma
growth and tumor angiogenesis

Downregulation of NF-kB Li et al. (2004)

Genistein 253J B-V human bladder
cancer cells and orthotopic
tumor model

Inhibit cell proliferation and
induce apoptosis

Downregulation of NF-kB Singh et al. (2006)

Quercetin Human cervical cancer (HeLa) cells Induce G2/M phase cell cycle
arrest and mitochondrial apoptosis

NF-kB inhibition Vidya Priyadarsini
et al. (2010)

EGCG T24 human bladder cancer
cells

Suppress invasion and metastasis Inactivation of NF-kB Qin et al. (2012)

Mollugin Human oral squamous
cell carcinoma cells

Induce apoptotic cell death Suppressed activation
of NF-kB

Lee et al. (2013)

Resveratrol Hepatocellular carcinoma Inhibit tumor growth and
angiogenesis

Suppression of the
activation of NF-kB

Yu et al. (2010a)

Anthocyanin-
rich açai

BV-2 mouse microglial cells Mitigate LPS-induced oxidative
stress and inflammation

Suppression of NF-kB Poulose et al.
(2012)

Resveratrol C6 astroglial cells and primary
cultured cortical astrocyte

Modulate inflammatory stress by
ammonia-induced neurotoxicity

Decreased ERK and NF-kB
signaling

Bobermin et al.
(2012)

Luteolin BV-2 mouse microglial cells Inhibit LPS-induced
neuroinflammation

Blocked NF-kB activation
and inflammatory
molecules

Zhu et al. (2011)

Kaempferol Transient focal stroke rat model Prevent ischemic brain injury
and neuroinflammation

Inhibition of STAT3 and
NF-kB activation

Yu et al. (2013)

Naringenin Rat model of focal cerebral
ischemia/reperfusion injury

Elevate the endogenous
antioxidant level and inhibit
the activation of glial cells

Inhibition of NF-kB
activation

Raza et al. (2013)

Mangiferin
and morin

Primary cultured cortical neurons Reduce excitotoxic-induced
neuronal cell death

Inhibited the nuclear
translocation of NF-kB

Campos-Esparza
et al. (2009)

Silymarin Mesencephalic mixed
neuron-glia cultures

Reduce microglial activation
and inflammatory mediators
by LPS

Inhibition of NF-kB
activation

Wang et al. (2002)

Soybean
isoflavone

Ab-injected rat brain Improve spatial learning and
memory

Inhibited TLR4 and NF-kB Ding et al. (2011)

EGCG Ab-injected mice brain Prevent loss of learning and
memory and apoptotic neuronal
cell death

Inhibited ERK and NF-kB
activation

Lee et al. (2009)

Autoimmune encephalomyelitis
mice model

Reduce neuroinflammation and
neuronal cell damage

Intracellular accumulation
of IkBa and inhibition
of NF-kB activation

Aktas et al. (2004)

Wogonin BV-2 mouse microglial cells Inhibit inflammatory activation Decreased NF-kB
activation

Lee et al. (2003)

Caffeic acid Primary cultured rat
cerebellar granule neurons

Decrease apoptotic cell death Blocked NF-kB and
caspase activity

Amodio et al.
(2003)

AGE, advanced glycation end product; MSC, mesenchymal stem cell; STAT3, signal transducer and activator of transcription 3; TLR4, Toll-like receptor 4.

834 Lee et al.



chronic neurodegenerative conditions, including severe
epileptic seizures (Yu et al., 1999), AD (Barger et al.,
1995), and HD (Yu et al., 2000). Mice lacking the p65
NF-kB subunit develop a PD-like disease characterized
by degeneration of dopaminergic neurons and motor
dysfunction as they age, suggesting a critical role for
NF-kB in neuronal maintenance during aging (Baiguera
et al., 2012). Activation of NF-kB induces the expression
of SOD2, which protects mitochondria under conditions
of oxidative and metabolic stress (Mattson et al., 1997).
Although the available data suggest that NF-kB activa-
tion in neurons can enhance synaptic plasticity and is
neuroprotective, the identification of phytochemicals that
activate NF-kB in neurons is as yet unexplored.
4. Peroxisome Proliferator–Activated Receptors.

The PPARs are ligand-activated transcription factors
belonging to a nuclear receptor family that regulates
target gene expression through binding to peroxisome
proliferator response elements (PPREs). Three types of
PPARs have been identified (a, b/d, and g), which are
encoded by different genes. PPARa, the first PPAR
identified, was shown to induce peroxisome prolifera-
tion (Issemann and Green, 1990). In rodents, PPARa
is expressed mainly in tissues with high metabolic
activity, including liver, kidney, heart, skeletal muscle,
brain, and brown adipose tissue. PPARa is an impor-
tant fatty acid sensor of metabolic state; PPARa
activates fatty acid catabolism and stimulates gluco-
neogenesis and ketone-body synthesis as adaptive
responses to fasting (Berger and Moller, 2002; Michalik
et al., 2004). Interestingly, PPARa may also inhibit
inflammatory pathways in macrophages and aortic
smooth muscle cells by inhibiting NF-kB signaling
(Chinetti et al., 1998; Staels et al., 1998). PPARb/d is
expressed in a wide range of tissues and cells, with
high expression levels in brain, adipose tissue, and
skin. PPARb/d may have roles in embryonic develop-
ment, lipid metabolism, and cell proliferation, differen-
tiation, and survival (Berger and Moller, 2002; Michalik
et al., 2004).
PPARg has two isoforms (PPARg1 and PPARg2) due

to alternative RNA splicing. PPARg2 is expressed
mainly in adipose tissue, whereas PPARg1 is ex-
pressed in all tissues (Fajas et al., 1997). PPARg plays
pivotal roles in adipocyte differentiation, fatty acid
storage, and glucose metabolism. Mice lacking PPARg
only in fat cells exhibit abnormalities in the formation
and function of adipose tissue and fail to generate
adipose tissue when fed a high-fat diet (Jones et al.,
2005). In addition, PPARg regulates several genes
involved in the insulin signaling pathway and also
exerts anti-inflammatory actions (Berger and Moller,
2002). PPARg dysfunction is implicated in several
metabolic and inflammatory diseases, and activation of
PPARg is being pursued as a treatment approach for
obesity, diabetes, and atherosclerosis (Berger and Moller,
2002; Giannini et al., 2004; Michalik et al., 2004).

Thiazolidinediones, including rosiglitazone and pioglita-
zone, are PPARg agonists used to treat type 2 diabetes
(Sood et al., 2000; Moller and Greene, 2001).

Several phytochemicals have been shown to activate
PPARs (Table 4). Curcumin suppressed oleic acid–
induced lipid accumulation and reduced oxidative
stress by increasing PPARa in hepatocarcinoma cells
(Kang et al., 2013). Curcumin also activated PPARg
and ameliorated hyperglycemia in diabetic KK-Ay mice
(Kuroda et al., 2005; Nishiyama et al., 2005). In
addition, curcumin activated PPARg and suppressed
hyperglycemia-induced hepatic stellate cell activation
to reduce hepatic fibrosis (Shapiro and Bruck, 2005).
Diosgenin, extracted from the Dioscorea wild yam,
reduced oxidative stress and lipid accumulation in
a rat type 2 diabetes model, and in silico docking
studies revealed a direct interaction of diosgenin with
PPARa and PPARg (Verma et al., 2012). Although the
active phytochemical(s) was not established, adminis-
tration of whole grape powder to rats increased cardiac
PPARa and PPARg DNA-binding activity and de-
creased NF-kB DNA-binding activity resulting in down-
regulation of inflammatory cytokines (Seymour et al.,
2010). Dehydroabietic acid is a potent activator of both
PPARa and PPARg, and inhibits macrophage activa-
tion (Kang et al., 2008a). Modified derivatives of the
phytochemicals betulinic acid and glycyrrhetinic
acid were shown to have PPARg agonist activity
(Chintharlapalli et al., 2007a,b). Moreover, it was recently
reported that a novel synthetic phenolic compound MHY
966 [2-bromo-4-(5-chloro-benzo[d]thiazol-2-yl) phenol]
can act as a PPARa/PPARg dual agonist and suppresses
UV radiation–induced inflammatory responses and lipid
peroxidation (Park et al., 2013).

PPARg activation can suppress neuroinflammation,
and may confer neuroprotective effects in stroke and
neurodegenerative diseases such as AD and PD. Neu-
roprotective effects of the PPARg agonists rosiglitazone,
pioglitazone, and 15-deoxy-prostaglandin J2 were
reported in studies of animal models of ischemic stroke
(Bordet et al., 2006; Culman et al., 2007). It was shown
that long-term treatment with pioglitazone improved
cognitive deficits and AD-related pathology in a mouse
model of AD (Sato et al., 2011; Gupta and Gupta, 2012;
Searcy et al., 2012; Xiang et al., 2012). Neuroprotective
effects of PPAR agonists have also been demonstrated
in experimental models of PD (Chaturvedi and Beal,
2008; Ridder and Schwaninger, 2012). The PPAR-g
agonist pioglitazone was shown to be protective in
MPTP-induced PD monkey and mouse models (Breidert
et al., 2002; Dehmer et al., 2004; Quinn et al., 2008;
Swanson et al., 2011). Resveratrol activated both
PPARa and PPARg in primary cortical neurons and
vascular endothelial cells, and protected the brain against
ischemic stroke; neuroprotection by resveratrol and the
PPARa agonist fenofibrate was abolished in PPARa
knockout mice (Inoue et al., 2003). Resveratrol was
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TABLE 4
Phytochemicals that activate PPAR signaling

Phytochemical Target Tissue/Cells Effects Involved Molecular
Mechanism Reference

Curcumin Human hepatoma HepG2 cells Inhibit oleic acid–induced
hepatic lipogenesis and
hepatic antioxidative
ability

Increased the expression of
PPARa

Kang et al. (2013)

Type 2 diabetic KK-Ay mice Exhibit hypoglycemic effects
and stimulated human
adipocyte differentiation

Activated PPARg Nishiyama et al. (2005);
Kuroda et al. (2005)

HSCs Activated PPARg Shapiro and Bruck (2005)
Eker rat–derived uterine

leiomyoma cell lines
Inhibit of cell proliferation Acted as PPARg ligand Tsuiji et al. (2011)

Diosgenin STZ-induced type 2 diabetes
model of rats

Modulate glucose level and
decreased oxidative stress
and lipid accumulation

Interacted PPARa and
PPARg

Sangeetha et al. (2013)

Whole grape powder Dahl salt-sensitive
hypertensive rats

Reduce blood pressure,
cardiac hypertrophy, and
diastolic dysfunction

Enhanced cardiac PPARa
and PPARg, but decreased
NF-kB

Seymour et al. (2010)

Betulinic acid and
glycyrrhetinic acid

Human colon and pancreatic
cancer cells

Induce cytotoxicity Activated PPARg Chintharlapalli et al.
(2007a,b)

MHY 966 Melanin-possessing hairless
mice 2

Modulate UVB-induced
inflammatory responses

Activated PPAR a and
PPARg

Park et al. (2013)

Resveratrol MCAO stroke mice model Reduce brain infarct volume Activated PPARa and
PPARg

Inoue et al. (2003)

Primary cultured cortical
neurons

Inhibit MMP-9 and protected
neurons from OGD injury

Upregulation of PPARa Cheng et al. (2009)

Genistein Primary cultured cortical
astrocytes

Decrease inflammatory
responses to Ab

Increased PPARg expression Valles et al. (2010)

Daidzein OGD from rat cortical
neurons

Decrease cell death and
improve synaptic function

Increased PPARg activity in
the nucleus

Hurtado et al. (2012)

Naringenin Human hepatocyte carcinoma
Huh7 cell line

Increase fatty acid oxidation
and decrease cholesterol
and bile acid production

Activated PPARa and
PPARg

Goldwasser et al. (2010)

Curcumin Rat middle cerebral artery
occlusion model

Decrease the infarct volume,
neuronal damage and
improve neurologic deficits

Upregulated PPARg
expression and PPARg
activity

Liu et al. (2013c)

Primary cultured astrocytes Decrease Ab-induced
inflammatory mediators

Activated PPARg Wang et al. (2010a)

Mice intracerebroventricular
STZ-induced dementia
model

Improve STZ-induced
memory deficits and
modulate AChE activity
and oxidative stress

Activated PPARg Rinwa et al. (2010)

HSCs Inhibit ERK activity and
stimulate the trans-activity
of PPARg

Activated PPARg Lin et al. (2012a)

HSCs Eliminate effects of AGEs Activated PPARg Lin et al. (2012b)
Inhibit al(l)-collagen gene

expression and CTGF
Activated PPARg and

interrupted TGF-b
Zheng and Chen (2006)

HSCs Increase TNF-a expression Activated PPARg Siddiqui et al. (2006)
RAW 264 (macrophages) and

septic animals
Attenuate oxidative stress,

suppressed of Ob-R gene
expression

Activated PPAR and
interrupted of leptin
signaling

Tang et al. (2009)

HSCs Evaluate ox-LDL and
suppress Lox-1 expression

Activated PPARg and
interrupting Wnt
signaling

Kang and Chen (2009)

HSCs Suppress glut2 expression
and attenuate oxidative
stress

Activated PPARg Lin and Chen (2011)

Hesperetin (from
a citrus)

THP-1 (macrophages) Increase ABCA1 expression
and activate LXRa

Activated PPARg Iio et al. (2012)

ABA 3T3-L1 (adipocytes) and
db/db mice

Decrease fasting blood
glucose concentration
and ameliorate glucose
tolerance

Activated PPARg Guri et al. (2007)

PGF THP-1 (differentiated
macrophage cells) and
Zucker diabetic fatty rats
and Zucker lean rats

Decrease GLUT-4 and improve
the insulin receptors

Activated PPARg Huang et al. (2005)

Grapes Grape-fed rat Decrease cardiac TNF-a,
TGF-b protein expression,
and cardiac fibrosis and
increase IkBa expression

Activated PPARg and
NF-kB

Seymour et al. (2010)

ABA, abscisic acid; ABCA1, ATP binding cassette 1; AChE, acetylcholinesterase; AGE, advanced glycation end product; CTGF, connective tissue growth factor; GLUT,
glucose transporter; HSC, hepatic stellate cells; LDL, low-density lipoprotein; LXR, liver X receptor; MCAO, middle cerebral artery occlusion; Ob-R, leptin receptor; OGD,
oxygen–glucose deprivation; PGF, Punica granatum flower; STZ, streptozotocin; TGF, transforming growth factor; THP-1, a human monocyte cell line; TNF, tumor necrosis
factor.
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also shown to inhibit MMP-9 expression by upregu-
lating PPARa expression in cortical neurons subjected
to oxygen and glucose deprivation (Cheng et al., 2009).
The soy isoflavone genistein was effective in prevent-
ing Ab-associated inflammation, which was associ-
ated with increased PPARg expression, in primary
cultured astrocytes (Valles et al., 2010). Interestingly,
the phytoestrogen daidzein protected cortical neurons
in an experimental in vitro stroke model; this neuro-
protection was due to an increased PPARg activity
without direct binding to the receptor (Hurtado et al.,
2012). The flavanone naringenin activates both PPARa
and PPARg, and induces PPRE-driven gene expression
in human hepatocytes (Goldwasser et al., 2010). A
recent study reported that naringenin can protect the
brain and prevent oxidative stress and NF-kB–mediated
inflammation in a rat model of focal ischemic stroke
(Raza et al., 2013). Curcumin, known as a potent PPARg
agonist, protected neurons and suppressed neuroinflam-
matory responses in a rat stroke model (Liu et al., 2013c).
Curcumin reduced Ab-induced inflammatory responses
in primary cultured astrocytes and attenuated memory
deficits in a mouse dementia model (Rinwa et al., 2010;
Wang et al., 2010a). The latter two studies showed that
PPARg antagonists significantly abolished the beneficial
effects of curcumin.
Abnormal inflammatory and cytotoxic processes are

often involved in neuropsychiatric diseases such as
depression and schizophrenia; thus, considering the
pleiotropic effects of PPARg, its pharmacological acti-
vation might be a new therapeutic target in psychiatric
disorders (García-Bueno et al., 2010). Several phyto-
chemicals known to activate PPARg were reported to
ameliorate depression-like behaviors in mouse models.
For example, curcumin treatment significantly reduced
the duration of immobility in both the forced swim test
and tail suspension test (Xu et al., 2005). Curcumin
treatment also reversed depressive behaviors in amouse
model of neuropathic pain–induced depression by a
mechanism requiring serotonergic signaling (Zhao et al.,
2013b). However, a role for PPARg was not established
in either of the latter studies. The PPAR agonist
rosiglitazone was recently reported to reverse depression-
like behavior (forced swim test), but not psychosis-like
behavior (prepulse inhibition test), in diabetic mice
(Sharma et al., 2012). Although the mechanisms by which
PPAR agonists improve mood remain to be established,
possibilities include enhancement of hippocampal synap-
tic plasticity and neurogenesis (Kobilo et al., 2011).
Further studies of the modulation of PPAR activity
by phytochemicals should be pursued with the goal of
developing novel therapeutic interventions for neurode-
generative and neuropsychiatric disorders.

B. Trophic Signaling Pathways

Studies in the field of developmental neurobiology
have identified signaling pathways that regulate the

outgrowth of axons and dendrites, synapse formation
and maintenance, and cell survival. In many instances,
these pathways involve neurotrophic factors, which are
proteins released by neurons and/or glial cells, often in
response to neuronal activity or tissue injury. Neuro-
trophic factors can activate one or more downstream
signaling pathways involving kinases such as Akt,
Ca2+-calmodulin–dependent kinases, and mitogen-
activated protein kinases (MAPKs). Conversely, there
are phosphatases and some kinases that antagonize
trophic signaling pathways; examples include phos-
phatase and tensin homolog, glycogen synthase kinase
(GSK)-3b, and c-Jun N-terminal kinase (JNK). Several
hormones also exert neurotrophic actions, with insulin
being a prominent example. In this section, we describe
examples of phytochemicals that have been shown to
activate trophic signaling pathways in neurons and
therefore have potential for use in neuroregenerative
medicine.

1. Neurotrophic Factors. Major neurotrophic factors
include the neurotrophins (BDNF, NGF, and neuro-
trophin 3), fibroblast growth factor 2, insulin-like
growth factors (IGF-1 and IGF-2), and glial cell line–
derived neurotrophic factor (GDNF). The biologic
activities and mechanisms of action of these neuro-
trophic factors were previously reviewed (Krieglstein,
2004; Spedding and Gressens, 2008; Fernandez and
Torres-Alemán, 2012; Terwisscha van Scheltinga et al.,
2013; Marosi and Mattson, 2014). The receptors for
a neurotrophic factor are widely expressed in many or
all types of neurons in some cases, (e.g., the BDNF
receptor TrkB, and the fibroblast growth factor 2 and
IGF-1 receptors), whereas the receptors have a more
limited distribution in other cases (GDNF and neuro-
trophin 3 receptors). A prominent function of these
neurotrophic factors is that they mediate adaptive re-
sponses of neurons to stress. Abundant preclinical
evidence supporting the potential for neurotrophic
factor–based therapeutic interventions in disorders
ranging from stroke and traumatic brain injury to AD
and PD. As described in this section, some phytochem-
icals have been shown to induce the expression of one
or more neurotrophic factors, or to activate neuro-
trophic factor receptors, which may represent adap-
tive stress responses to the phytochemicals.

Endogenous and environmental stimuli that cause
cellular stress can stimulate production and release of
BDNF, as well as activation of TrkB (Fig. 6). Activation
of excitatory glutamatergic synapses results in Ca2+

influx and activation of the transcription factors CREB
and NF-kB, each of which induces BDNF production
(Tao et al., 1998; Marini et al., 2004). There are several
studies reporting that beneficial effects of dietary
phytochemicals are mediated by BDNF. Grape powder
treatment prevented anxiety, memory impairment,
and hypertension induced by oxidative stress in rats by
a mechanism involving CREB activation and BDNF
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production (Allam et al., 2013). By activating a BDNF
survival pathway, cocoa polyphenol extract was neuro-
protective against Ab-induced toxicity (Cimini et al.,
2013). Olive polyphenols increased the levels of BDNF
and NGF in the limbic system and olfactory bulb (De
Nicoló et al., 2013). Long-term administration of green
tea polyphenols reduced age-related oxidative stress in
the hippocampus of rats, which was associated with
increased BDNF expression (Assunção et al., 2010). A
blueberry-supplemented diet for 21 weeks improved
age-related memory impairment of spatial working
memory by a mechanism involving activation of hip-
pocampal CREB and upregulation of BDNF production
(Williams et al., 2008).
Neurotrophic signaling cascades can be triggered by

specific phytochemicals (Table 5). Rutin (3,3,4,5,7-
pentahydroxyflavone-3-rhamnoglucoside), a flavonol
found in buckwheat, passion flower, apple, and tea,
significantly increased levels of extracellular signal-
regulated kinase (ERK)-1, CREB, and BDNF gene

expression in the hippocampus of rats (Moghbelinejad
et al., 2014). Chronic stress-induced depression decreases
BDNF and phosphorylated CREB levels in the hippo-
campus and frontal cortex in rats, and curcumin
treatment prevents the suppression of BDNF levels
(Xu et al., 2006b). Curcumin was also effective in
preventing Ab-induced cognitive impairment, neuro-
inflammation, and impaired BDNF signaling (Hoppe
et al., 2013). Interestingly, it was recently shown that
curcumin can protect mice against cognitive impair-
ment resulting from neuroinflammation by a mecha-
nism involving BDNF upregulation and requiring
tumor necrosis factor-a signaling (Kawamoto et al.,
2013). By utilizing specific inhibitors in cultured
cortical neurons, it was shown that BDNF, TrkB,
MAPK, phosphoinositol 3 kinase (PI3K), and CREB
mediate neuroprotective actions of curcumin (Wang
et al., 2010c). However, it was reported that curcumin
is a specific inhibitor of the CBP/p300 acetyltransfer-
ase (Balasubramanyam et al., 2004), and a recent

Fig. 6. BDNF and insulin signaling pathways activated by phytochemicals. Several phytochemicals, including those indicated, have been shown to
activate the BDNF and/or insulin signaling pathways. Receptors for BDNF and insulin are similar in structure and couple to similar downstream
signaling pathways. The BDNF receptor TrkB and the insulin receptor have a tyrosine kinase domain in their cytoplasmic region. Binding of ligand
results in receptor dimerization and trans-autophosphorylation (p) of the receptors that then recruits adaptor proteins and activates several
downstream proteins kinases as indicated. A prominent transcription factor activated by BDNF is CREB, which induces the expression of genes
encoding proteins involved in synaptic plasticity (e.g., Arc), cellular energy metabolism (e.g., PGC-1a, which induces mitochondrial biogenesis), and
stress resistance (e.g., the DNA repair enzyme APE1). Activation of both TrkB and the insulin receptor can also activate the PI3K (p85–p110) Akt
kinase signaling resulting in the inhibition of GSK-3b and FOXO, thereby protecting neurons against degeneration. Activation of the Grb/SOS, Ras,
Raf, MEK, and ERK pathways can enhance cellular stress resistance and increase insulin sensitivity. Akt, Akt kinase; APE1, apurinic/apyrimidinic
endonuclease 1; CaMK, calcium/calmodulin-dependent kinase; Grb2, growth factor receptor bound protein 2; MAPKK, mitogen-activated protein
kinase kinase; PGC-1a, PPARg coactivator 1a; PIP2, phosphatidylinositol bisphosphate; PIP3, phosphatidylinositol trisphosphate; SOS, son of
sevenless homolog 1.
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study proposed that CBP/p300 activation by a small
molecule synthesized from salicylic acid increases
maturation and differentiation of adult neuronal progen-
itors and long-term memory by inducing BDNF expres-
sion (Chatterjee et al., 2013). Moreover, curcumin
administration blocked the upregulation of BDNF tran-
scription and analgesic tolerance in a model of chronic
morphine administration (Matsushita and Ueda, 2009).

Therefore, effects of curcumin on BDNF signaling may be
context dependent.

Resveratrol can increase GDNF and BDNF expres-
sion in astrocytes through the activation of ERK1/
ERK2 and CREB (Zhang et al., 2012a). Resveratrol-
induced BDNF expression and its beneficial effects were
reported in studies of animal models of depression
(Moriya et al., 2011; Hoppe et al., 2013; Madhyastha

TABLE 5
Phytochemicals that modify neurotrophic factor signaling

Phytochemical Target Tissue/Cells Effects Involved Molecular
Mechanism Reference

Rutin Frontal cortex of rat brain Neuroprotective effects against
neurotoxicity of Ab

Increased BDNF,
pCREB

Moghbelinejad
et al. (2014)

Curcumin Hippocampus and frontal cortex Effects on the neurotrophin factor
expression

Increased BDNF,
pCREB

Xu et al. (2006b)

b-amyloid–induced rats Prevent behavioral impairments,
neuroinflammation, and t
hyperphosphorylation

Increased BDNF and
Akt/GSK-3b

Hoppe et al.
(2013)

TNFR1 and TNFR2 double
knockout mice

Protect cultured neurons against
glutamate-induced excitotoxicity
by TNFR2 activation

Increased BDNF Kawamoto et al.
(2013)

Increase levels of phosphor-ERK
and Akt

Increased BDNF,
pCREB

Wang et al.
(2010c)

Resveratrol Prefrontal cortex and hippocampus Effective in promoting astroglia-
derived neurotrophic factor
release

Increased BDNF,
GDNF

Zhang et al.
(2012a)

Hippocampus of prenatally
stressed rat

Improve the expression of DCX-
positive neuron

Increased BDNF Madhyastha et al.
(2013)

Hippocampus neural progenitor
cells

Deficits in hippocampus-dependent
spatial learning and memory

Decreased BDNF-
pCREB signaling

Park et al. (2012a)

Ferulic acid Hippocampus (CORT-treated
mice and stress-induced
depression-like behavior of mice)

Effects on the mood disorders
such as depression

Increased BDNF
mRNA

Yabe et al. (2010)

Lancemaside A Hippocampus Ameliorate memory and learning
deficits

Increased BDNF,
pCREB

Jung et al. (2012)

Heptamethoxyflavone Hippocampus after ischemia Induce BDNF production in
astrocytes and enhance
neurogenesis after brain ischemia

Increased BDNF,
pCREB

Okuyama et al.
(2012)

Oroxylin A Primary cortical neuronal
culture cell

Responsible for the neuroprotective
or memory-enhancing effects

Increased BDNF
expression

Jeon et al. (2011)

Hippocampus Attenuate the memory impairment
and show neuroprotective effects

Increased BDNF,
pCREB

Kim et al. (2006)

Procyanidins Hippocampus and cerebral cortex Enhance CREB-dependent
transcription through the
activation of ERK signaling
pathway

Increased pCREB Xu et al. (2010a)

Bilobalide and
quercetin

Mice model of AD (hippocampus) Increase cell proliferation in the
hippocampal neurons/enhance
neurogenesis and synaptogenesis

Increased pCREB Tchantchou et al.
(2009)

Catechin Senescence-accelerated mouse
prone-8 (hippocampus)

Prevent spatial learning and
memory decline of SAMP8 mice
by decreasing Ab (1-42) oligomers
and upregulating synaptic
plasticity-related proteins

Increased BDNF,
pCREB

Li et al. (2009)

Olive polyphenols Hippocampus, olfactory, striatum,
and frontal cortex

NGF and BDNF elevation in the
hippocampus and olfactory bulbs
and a decrease in the frontal cortex
and striatum

Increased BDNF, NGF De Nicoló et al.
(2013)

C-dideoxyhexosyl
flavones

PC12 cells Neurite outgrowth enhancing
activities

Increased NGF Xu et al. (2013)

Baicalein C17.2 cells hippocampus Protect NPCs against irradiation-
induced necrotic cell death and
the spatial learning and
memory retention deficits
after whole-brain irradiation

Increased BDNF-
pCREB signaling

Oh et al. (2013)

Diallyl disulfide Hippocampus NPC Decreased the proliferation of NPCs
in the dentate gyrus adverse
effects on hippocampal
neurogenesis and neurocognitive
functions

Decreased BDNF-
pCREB signaling

Ji et al. (2013)

CORT, corticosterone; DCX, doublecortin; NPC, neural progenitor cell; pCREB, phosphorylated CREB; TNFR, tumor necrosis factor receptor.
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et al., 2013). On the other hand, resveratrol can down-
regulate CREB activity and BDNF production in the
hippocampus of unstressed mice (Park et al., 2012a).
This suggests that resveratrol might differentially
regulate BDNF expression depending upon the level of
stress encountered by neurons. Finally, in addition to
stimulating production of neurotrophic factors by in-
ducing adaptive stress response signaling pathways,
some phytochemicals may directly activate neurotrophic
factor receptors. For example, recent findings suggest
that 7,8-dihydroxyflavone is a TrkB agonist and can
mimic neuroprotective actions of BDNF (Jang et al.,
2010b; Liu et al., 2012b). Further research will likely
identify more phytochemicals that stimulate neurotro-
phic factor signaling, and will pursue their development
as therapeutic interventions for conditions that may
benefit from enhanced neurotrophic signaling.
2. Sirtuins. Silent information regulator 2, the first

member of a family of NAD+-dependent protein
deacetylases termed sirtuins, was identified in
S. cerevisiae and was originally described as a regulator
of transcriptional silencing of mating-type loci in the
yeast (Haigis and Sinclair, 2010; Guarente, 2011). In
mammals, there are seven sirtuins (SIRT1–SIRT7)
that have different enzymatic activities and can be
divided into four classes (class I, SIRT1–SIRT3; class
II, SIRT4; class III, SIRT5; and class IV, SIRT6 and
SIRT7) (Frye, 2000). SIRT1–SIRT6 possess NAD+-
dependent deacetylase activity. SIRT4 and SIRT6 are
also known for ADP-ribosyl transferase activity, and
SIRT5 displays an NAD+-dependent protein lysine
desuccinylase and demalonylase activity (Imai and
Guarente, 2010; Du et al., 2011; Guarente, 2011; Peng
et al., 2011). Sirtuins have discrete subcellular local-
izations that contribute to their diverse functions
(Donmez, 2012; Hall et al., 2013). SIRT1, SIRT6, and
SIRT7 reside predominantly in the nucleus and reg-
ulate transcription through modification of transcrip-
tion factors, histones, and cofactors (Chalkiadaki and
Guarente, 2012). SIRT3–SIRT5 are primarily found in
mitochondria, and have a role in regulation of oxidative
stress and the activities of metabolic enzymes (Verdin
et al., 2010; Bell and Guarente, 2011). SIRT2 is located
primarily in the cytoplasm and has functions in cell
cycle regulation, oligodendrocyte differentiation, and
programmed cell death (Dryden et al., 2003; Li et al.,
2007b; Narayan et al., 2012).
Sirtuins are NAD+-dependent protein deacetylases

that remove acetyl groups from lysine residues by an
enzymatic mechanism that splits NAD+ and releases
nicotinamide, O-acetyl-ADP-ribose, and the deacetyla-
ted substrate (Imai et al., 2000). NAD+ is an important
cofactor responsible for maintaining redox balance with
NADH, and is a rate-limiting substrate for sirtuins. The
intracellular concentration of NAD+ oscillates in response
to the nutritional availability of the cell (Houtkooper et al.,
2010). When NAD+ levels are increased, such as during

calorie restriction or fasting, the enzymatic activity of
sirtuins is increased. SIRT1 activation results in a co-
ordinated reprogramming of cellular energy metabolism
through deacetylation of many transcription factors and
cofactors including PPARg coactivator 1a, forkhead box
subgroup O (FOXO), and nuclear receptors (Brunet et al.,
2004; Motta et al., 2004; Rodgers et al., 2005; Li et al.,
2007c) (Fig. 7). Deacetylation of the latter transcription
factors induces the expression of genes that stimu-
late mitochondrial biogenesis and fatty acid oxidation
(Purushotham et al., 2009). SIRT1 also regulates other
key pathways that are likely to be involved in cellular
stress resistance, including HIF-1a, Hsp1, and DNA re-
pair proteins such as Ku70 and Werner (Donmez et al.,
2010; Baur et al., 2012).

Sirtuins, particularly SIRT1, have been extensively
studied for their roles in calorie restriction–induced life
span extension, as well as the prevention of aging-
associated pathologies including metabolic dysfunction
(type 2 diabetes and obesity), cardiovascular disease,
cancer, and neurodegeneration. There has been a recent
flurry of evidence suggesting that activation of SIRT1
and other sirtuins can protect neurons in experimental
models of neurodegenerative disorders (for a review,
see Duan, 2013). For example, in models relevant to
AD, deacetylation of retinoic acid receptor-b by SIRT1
activates transcription of the ADAM metallopeptidase
domain 10 gene, which encodes a-secretase, resulting
in nonamyloidogenic processing of the APP (Donmez
et al., 2010). SIRT1 was also shown to deacetylate and
destabilize t protein, thereby reducing its aggregation,
which suggests that SIRT1 can prevent the formation
of neurofibrillary tangles (Min et al., 2010). In models
of HD, SIRT1 counteracts the adverse effects of mutant
huntingtin on BDNF expression and dopamine pro-
duction (Jiang et al., 2012).

The search for phytochemicals and synthetic drugs
that specifically activate sirtuins is underway in
laboratories throughout the world (Table 6). Resvera-
trol has received widespread attention because it can
increase SIRT1 activity in various cell types, and has
been suggested to be the phytochemical that mediates
health benefits of red wine, grapes, and berries
(Houtkooper et al., 2012; Villalba and Alcaín, 2012).
Findings suggest that resveratrol can prevent the del-
eterious effects of a high-fat diet on metabolism and
increases survival of obese mice (Baur et al., 2006;
Lagouge et al., 2006). Resveratrol elicits gene expres-
sion profiles that strongly resemble those induced by
calorie restriction (Pearson et al., 2008). Synthetic
analogs of resveratrol have been developed as novel
sirtuin activators, and some of these compounds have
been reported to be neuroprotective and promote synap-
tic plasticity in animal models (Gräff et al., 2013). The
activation of SIRT1 by resveratrol and other phytochem-
icals may not be the result of a direct molecular in-
teraction of the phytochemical with SIRT1. Instead,
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SIRT1 activation may occur in response to stress induced
by the phytochemicals. Pretreatment was required in
many reported studies in which resveratrol was demon-
strated to be neuroprotective, which is consistent with
a preconditioning/hermetic mechanism of action (Kim
et al., 2007; Della-Morte et al., 2009; Khan et al., 2012).
In addition to resveratrol, several other phytochemicals
have been reported to activate SIRT1, including butein
and fisetin (Howitz et al., 2003; Bauer et al., 2004; Wood
et al., 2004), and are neuroprotective in one or more
models (Burdo et al., 2008; Cho et al., 2012). Although
activation of SIRT1 by phytochemicals can be neuro-
protective, because SIRT1 activity consumes NAD+, it
may hasten the demise of neurons under conditions of
limited energy availability as may occur during cerebral
ischemia (Liu et al., 2009).
3. Mitogen-Activated Protein Kinase Activation.

MAPKs are serine/threonine kinases that mediate
cellular responses to a wide variety of stimuli, in-
cluding growth factors, cytokines, and environmental
stressors (osmotic, heat shock, radiation, and metabolic
stress). MAPK cascades are divided into those that
signal through ERKs, JNKs, or p38 MAPKs (Cossa
et al., 2013; Klein et al., 2013). ERK1 and ERK2 are

responsive to growth factors, cytokines, viral infection,
transforming agents, and carcinogens that activate the
Ras/Raf/MEK/ERK pathway to regulate cell prolifera-
tion, survival, differentiation, motility, and metabolism
(Kolch, 2005). Deregulation of the ERK pathway is
common in cancers, and anticancer properties of some
phytochemicals are mediated by inhibition of this path-
way. For example, EGCG inhibits cell proliferation
and epidermal growth factor-dependent activation of
ERK1/ERK2 in immortalized cervical cells (ECE16-1)
(Sah et al., 2004). The green tea catechins (EGCG and
epicatechin gallate) inhibit hepatocyte growth factor-
induced Met phosphorylation and downstream acti-
vation of Akt and ERK to suppress invasive cancer
growth in breast carcinoma and prostate cancer cells
(Bigelow and Cardelli, 2006; Duhon et al., 2010).
Green tea polyphenols and caffeine inhibited cell
proliferation, enhanced apoptosis, and lowered levels
of c-Jun and phosphorylated ERK1/ERK2 in a lung
tumor progression model of mice (Lu et al., 2006). The
isoflavone metabolite 6-methoxyequol exhibits anti-
angiogenic activity by targeting the phosphorylation
of MEK1/MEK2 and its downstream substrate
ERK1/ERK2 (Bellou et al., 2012). A final example is

Fig. 7. Activation of SIRT1 modifies multiple downstream target proteins involved in adaptive cellular stress responses. Exposure of cells to several
different phytochemicals (resveratrol, EGCG, quercetin, and others) results in the activation of the NAD+-dependent histone deacetylase SIRT1.
Numerous SIRT1 protein targets have been identified, and many of them are likely involved in adaptive stress responses. Some of the target proteins
are activated by SIRT1 (MyoD, RARb, t, PGC-1a, and FOXO), whereas other deacetylation by SIRT1 inhibits the function of other proteins (SREBP-1,
UCP-2, p53, NF-kB, and PPARg). Consequences of activation or inhibition of the SIRT1 target proteins are shown; for example, activation of MyoD
stimulates myogenesis, inhibition of SREBP-1 reduces lipogenesis and cholesterol synthesis, and so forth. Ac, acetyl group; ADAM10, ADAM
metallopeptidase domain 10; MyoD, a protein that regulates muscle cell differentiation; NAM, nicotinamide; NAMPT, nicotinamide phosphoribosyltransfer-
ase; PGC-1a, PPARg coactivator 1a; RARb, retinoic acid receptor b; SREBP-1, serum response element-binding protein 1; UCP-2, uncoupling protein 2.
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TABLE 6
Phytochemicals that modify SIRT signaling

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

Resveratrol (from
a red wine)

Human health stem cells Abolish protein deacetylation
and autophagy

Inhibited SIRT 1 Pietrocola et al.
(2012)

SH-HY5Y cells and PC12 cells Protect against rotenone-induced
apoptosis, enhanced
degradation of a-synucleins,
and decreased of protein
level of LC3-II

Inhibited SIRT 1 and AMPK Wu et al. (2011)

Dopaminergic neurons Prevent accumulation of ROS
and depletion of cellular
glutathione

Activated SIRT 1 Okawara et al.
(2007)

Mild ischemic stroke–induced rat Decrease blood–brain barrier
disruption and edema and
increase viability

Inhibited SIRT 1 Clark et al. (2012)

3T3-L1 adipocytes Reduces triacylglycerol content,
C/EBPb and increase ATGL,
CPT-1, and PGC1-a expression

Activated SIRT 1 Lasa et al. (2012)

Soleus muscle Maintain soleus mitochondrial
capacity, born mineral density,
and strength of the femur

Preserved SIRT 1 Momken et al.
(2011)

Decrease MCP-1, ICAM-1 in the
retina, retinal 8-OHdG
generation, nuclear
NK-kB p65

Activated SIRT 1 Kubota et al.
(2009)

Increase cysteine and decrease
glutathione, b-amyloid
plaque formation, and
oxidative stress

Activated SIRT 1 Karuppagounder
et al. (2009)

GSPE HUVECs BAT Increase eNOS expression and
NO production

Activated SIRT 1 and AMPK
Inhibited SIRT 1

Cui et al. (2012)

EGCG PC12 cells Increase cell viability, PGC-1a,
SOD1, and GPX1 expression
and decrease ROS production

Activated SIRT 1 Ye et al. (2012)

Red wine
polyphenols

HUVECs Increase p21 protein, eNOS,
and COX-2 expression

Inhibited SIRT 1 Botden et al. (2012)

Silibinin Pancreatic b cells and STZ-
induced diabetic mice

Decrease glycosylated
hemoglobin A1C, serum
triglyceride, cholesterol, blood
glucose, autophagy, and
apoptosis ratio

Activated SIRT 1 Wang et al. (2012c)

Rat neonatal cardiac myocytes Decrease LDH release and
MDA production and increase
SOD and Bcl-2 expression

Activated SIRT 1 Zhou et al. (2007)

Myocardial cells Increase SOD, mitochondrial
membrane potential, and
Bcl-2 expression, and decrease
Bax expression

Activated SIRT 1 Zhou et al. (2006)

Baicalin SH-SY5Y cells Increase cell viability and reduce
the contents of LDH, NO, and
Caspase-3

Activated SIRT 1 Chen et al. (2011a)

Naringenin (from
grapefruit)

L6 myotubes and skeletal muscle
cells

Increase glucose uptake Activated SIRT 1 and AMPK Zygmunt et al.
(2010)

Icariin Neurons Scavenging effect on free radicals
and activate cellular
antioxidant enzymes including
catalase

Activated SIRT 1 Zhang et al.
(2010a)

Neurons and middle cerebral
artery occlusion in mice

Increase PGC1-a Activated SIRT 1 Zhu et al. (2010)

Neurons Increase neuronal viability and
suppress neuronal death
after oxygen and glucose
deprivation

Activated SIRT 1 and
MAPK/p38 pathway

Wang et al. (2009)

Quercetin Quercetin-fed mice Increase mRNA expression of
PGC-1a, mtDNA, and
cytochrome c

Activated SIRT 1 Davis et al. (2009)

Elastase/LPS-exposed mice Decrease levels of thiobarbituric
acid, lung inflammation,
goblet cell metaplasia, mRNA
expression of proinflammatory
cytokines and muc5AC and
activity of MMP-9 and MMP-12

Activated SIRT 1 Ganesan et al.
(2010)

(continued )
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that Epstein–Barr virus–associated B cell malignan-
cies are attenuated by resveratrol in association with
induction of p38 MAPK phosphorylation and suppres-
sion of the ERK1/ERK2 signaling pathway (De Leo
et al., 2011).
ERK1/ERK2 activation promotes cell survival and

synaptic plasticity in neurons (Grewal et al., 1999), and
an increasing number of phytochemicals are being
identified that activate ERKs in neural cells (Table 7).
Neuroprotective effects of the citrus flavanone hesper-
etin are mediated by ERK1/ERK2 activation (Rainey-
Smith et al., 2008). Hesperetin can prevent neuronal
apoptosis by a mechanism involving the activation of
both Akt and ERK1/ERK2 in cortical neurons (Vauzour
et al., 2007). L-Theanine attenuated both rotenone- and
dieldrin-induced DNA fragmentation and apoptosis in
human neuroblastoma cells by preventing downregu-
lation of ERK1/ERK2 phosphorylation (Cho et al.,
2008). The phenolic phytochemical gastrodin can pro-
tect primary cultured rat hippocampal neurons against
Ab-induced neurotoxicity via the ERK1/ERK2/Nrf2
pathway (Zhao et al., 2012). In addition, several studies
suggested that neurotrophic and neurogenic actions of
phytochemicals are mediated by ERK1/ERK2. Resver-
atrol increased BDNF and GDNF production while
increasing the phosphorylation of ERK1/ERK2 and
CREB in astrocytes (Zhang et al., 2012a). Moreover,
the antidepressant-like effect of resveratrol was sug-
gested to be mediated through increased ERK phos-
phorylation and BDNF expression (Davis et al., 2013).
Oroxylin A, a flavone from the medicinal plant Scutellaria
baicalensis and the treeOroxylum indicum, also increases
BDNF production by activation of the ERK/CREB
signaling pathway in rat primary cortical neurons
(Jeon et al., 2011). It was also shown that ERK1/ERK2
activation mediates neurite outgrowth induced by
honokiol (a lignin isolated from Magnolia trees) in pri-
mary rat cortical neurons (Zhai et al., 2005). We found
that curcumin stimulates the proliferation of neural
progenitor cells and adult hippocampal neurogenesis
by a mechanism involving ERK activation (Kim et al.,
2008). Moreover, the citrus flavonoid heptamethoxy-
flavone increased BDNF production and neurogenesis
in the hippocampus after cerebral global ischemia in
mice (Okuyama et al., 2012). Although several different

phytochemicals can stimulate ERK1/ERK2 activation to
promote neuronal survival, neurite outgrowth, and
neurogenesis, in no case has the molecular mechanism
by which the phytochemicals activate ERKs been es-
tablished. Although direct interactions with the ERKs
have not yet been ruled out, less specific mechanisms
involving induction of mild cellular stress are perhaps
as likely or more likely.

In contrast with the ERK1/ERK2 pathway that pro-
motes cell survival and growth, the activation of p38
MAPK and JNK pathways often triggers programmed
cell death (Harper and LoGrasso, 2001). Both p38
MAPK and JNK signaling pathways are activated by
a variety of environmental or cellular stress stimuli,
including inflammatory cytokines, UV irradiation, heat
shock, osmotic shock, and DNA-damaging agents. JNK
and p38 play a critical role in the “decision” of neurons
to undergo apoptosis, perhaps to avoid dying by
necrosis (Harper and LoGrasso, 2001; Malemud, 2007;
Huang et al., 2009). Activation of p38 MAPK and JNK
signaling pathways was proposed to explain antiproli-
ferative and proapoptotic effects of natural phytochem-
icals in cancer cells. For example, EGCG induced
apoptotic cell death in HT-29 human colon cancer cells
through JNK activation (Chen et al., 2003). The flavo-
noid isoorientin decreased cell viability in HepG2 cells
in a dose- and time-dependent manner by induction of
apoptosis, which involved suppression of ERK1/ERK2
and activation of JNK and p38 MAPK (Yuan et al.,
2013). Similarly, 29-nitroflavone induced apoptosis
in hematologic cancer cells and activated p38 MAPK
and JNK but decreased phosphorylation levels of
ERK1/ERK2 (Cárdenas et al., 2012). Luteolin, a dietary
flavonoid, triggered apoptosis in Neuro-2a mouse neu-
roblastoma cells through endoplasmic reticulum stress
and mitochondrial membrane permeability transition,
which are mediated by activation of JNK and p38
MAPK (Choi et al., 2011). EGCG-induced apoptosis
was mediated by p38 MAPK and JNK activation in
chondrosarcoma cells (Yang et al., 2011b). Anticancer
effects of trichostatin were potentiated by curcumin
treatment in breast cancer cells, and it was proposed
that apoptosis induced by a combination of curcumin
and trichostatin involves JNK activation (Yan et al.,
2013). Likewise, it was shown that JNK pathways are

TABLE 6—Continued

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

Genistein Prostate cancer cells Activate TSGs and attenuated
phosphorylated-Akt and
NF-kB

Inhibited SIRT 1 Kikuno et al.
(2008)

Silymarin (from
a milk thistle)

A375-S3 cells (UV-irradiated
human malignant melanoma)

Decrease Bax expression and
cytochrome c and increase
ICAD and PARP

Activated SIRT 1 Li et al. (2007a)

AMPK, AMP-activated protein kinase; ATGL, adipose triacylglycerol lipase; BAT, brown adipose tissue; CPT, carnitine palmitoyltransferase; C/EBP, CCAAT-enhancer-
binding protein; eNOS, endothelial nitric-oxide synthase; GPX, glutathione peroxidase; GSPE, grape seed proanthocyanidin extract; HUVEC, human umbilical vein
endothelial cell; ICAD, inhibitor of caspase activated DNAse; ICAM, intercellular adhesion molecule; LC3-II, microtubule-associated protein 1 light chain 3-II; LDH, lactate
dehydrogenase; MCP, monocyte chemotactic protein; MDA, malondialdehyde; mtDNA, mitochondrial DNA; PARP, poly(ADP-ribose) polymerase; PGC-1a, PPARg coactivator
1a; STZ, streptozotocin; TSG, tumor suppressor gene.
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TABLE 7
Phytochemicals that modify MAPK signaling

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

EGCG Cervical cells Increase p53, p21(WAF-1), and
p27(KIP-1) levels, reduce cyclin
E level, and reduced CDK2
kinase activity

Inhibited EGFR-dependent
activation of the MAPKs
ERK1/ERK2

Sah et al. (2004)

MCF10A cell line, MDA-
MB-231 cell line

Inhibitory effect toward HGF/Met
signaling

Repressed ERK phosphorylation Bigelow and
Cardelli (2006)

DU145 cells Prevent phosphorylation of
tyrosine 1234/1235

Reduced the HGF-induced
phosphorylation of ERK

Duhon et al.
(2010)

ARO cells Inhibit the growth of the cells Suppressed phosphorylation of
ERK1/ERK2, JNK, and p38

Lim and Cha
(2011)

RLE cells Inhibit gap junctional
intercellular communication
and phosphorylation of Cx43

Phosphorylation of ERK1/ERK2 Kang et al.
(2008b)

PC-3 cell Inhibit the cell proliferation Activation ERK1/ERK2 pathway Albrecht et al.
(2008)

NHBE cells Downregulation of NF-kB-
regulated proteins cyclin D1

Inhibited phosphorylation of
ERK1/ERK2, JNK, and p38
MAPKs

Syed et al. (2007)

HT-29, HCA-7 cell line Inhibit NF-kB, decreased COX-2
promoter activity

Downregulated the ERK1/ERK2 Peng et al. (2006)

DU145, LNCaP cells Decrease the levels of PI3K
and p-Akt

Increase ERK1/ERK2 Siddiqui et al.
(2004)

Polyphenon E, caffeine Female A/J mice Inhibit cell proliferation Lowered levels of c-Jun and
Erk 1/Erk2 phosphorylation

Lu et al. (2006)

6-ME) HUVECs Inhibit angiogenesis and suppress
tumor growth

Inhibited VEGF-induced
phosphorylation of ERK1/
ERK2 MAPK

Bellou et al.
(2012)

Resveratrol EBV-positive BL cells Arrest cell cycle progression
in G(1) phase

Induction of p38 MAPK
phosphorylation and
suppression of ERK1/ERK2
signaling pathway

De Leo et al.
(2011)

MCF-7 cells Lead to apoptosis Inhibited activation of ERK1/
ERK2

Lin et al. (2006)

A375 cell line Inhibit growth and induce
apoptosis

Induced phosphorylation of
ERK1/ERK2

Niles et al. (2003)

THP-1 cells Inhibit LPS-induced IL-8
production

inhibited ERK and p38 MAPK
phosphorylation

Oh et al. (2009)

Curcumin Hepatic stellate cells Abrogate the membrane
translocation of GLUT2 and
suppress GLUT2 expression

Interrupting the p38 MAPK
signaling pathway abrogate
the membrane translocation

Lin and Chen
(2011)

B16 cells (melanoma) Inhibit melanin synthesis and
cellular tyrosinase activity

Activation of ERK and p38
MAPK

Tu et al. (2012)

3T3-L1 cells Restore nuclear translocation of
b-catenin

Inhibited ERK, JNK, and p38 Ahn et al. (2010)

Chalcones A549 cells Induce cytotoxicity and inhibit
NF-kB

Activation of ERK1/ERK2 and
JNK

Warmka et al.
(2012)

Sappanchalcone Oral cancer cells Suppress the cells growth and
induce apoptosis

Activation of p38, ERK, and
JNK

Lee et al. (2011b)

Butein (3,4,29,49-
tetrahydroxychalcone)

MDA-MB-231 cells Inhibit the proliferation of breast
cancer cell and promote
apoptosis

Decreased the phosphorylation
of ERK, increased p38 activity

Yang et al. (2012)

Extra virgin olive oil HER2-gene amplified JIMT-
1 cell line

Inhibit mitosis to promote G2/M
cell cycle arrest

Activated the p38 MAPK Oliveras-Ferraros
et al. (2011)

Fisetin HeLa cells Reduce tumor growth and induce
apoptosis

Activation of the
phosphorylation of ERK1/
ERK2

Ying et al. (2012)

Genistein Caco-2 cells Increase Nrf2 mRNA and protein
expression

Activated the ERK1/ERK2 Zhai et al. (2013)

Grape seed procyanidin A2780/T cells Inhibit P-gp expression Inhibited MAPK/ERK pathway Zhao et al.
(2013a)

Hydroxytyrosol Human colon
adenocarcinoma cells

Block cell cycle G2/M Strong inhibition of ERK1/ERK2 Corona et al.
(2009)

Kaempferol U-2 OS cells Inhibit metastasis of cells Attenuated the MAPK signaling
pathway

Chen et al. (2013)

Myricetin T24 cells Lead to G2/M cell cycle arrest
and induce apoptosis

Phosphorylation of p38 MAPK Sun et al. (2012)

Red ginseng essential
oil

HepG2 cells Diminish oxidative stress and
restore the activity and
expression of SOD, catalase,
GPx

Inhibited the phosphorylation of
upstream MAPKs

Bak et al. (2012a)

Hesperetin Postmitotic neuron cells Partially reverse staurosporine-
induced cell death

Increases in the level of ERK1/
ERK2 phosphorylation

Rainey-Smith
et al. (2008)

Cortical neurons Prevent neuronal apoptosis Activation of both Akt and
ERK1/ERK2

Vauzour et al.
(2007)

(continued )

844 Lee et al.



involved in resveratrol-induced p53 activation and
induction of apoptosis in the JB6 mouse epidermal
cells (She et al., 2002).
Whereas some phytochemicals activate JNK and p38

MAPKs to trigger death of cancer cells, phytochemicals
can also promote survival of neurons and suppress
neuroinflammation by inhibiting these MAPKs. The
flavone scutellarin suppressed LPS-induced activation
of microglial cells by inhibiting JNK and p38 MAPK
activation without affecting the activity of ERK (Wang
et al., 2011d). Anti-inflammatory effects of the flavo-
noid icariin in microglia are also mediated by suppres-
sion of JNK/p38 MAPK pathways (Zeng et al., 2010).
Baicalein reduced endoplasmic reticulum stress–induced

p38 MAPK and JNK pathways and apoptosis in
murine hippocampal neuronal cells (Choi et al., 2010).
Inhibition of JNK and p38 MAPK mediates the pro-
tective action of luteolin against Ab in rat cortical
neurons, a model relevant to AD (Cheng et al., 2010).
Resveratrol and its derivatives were shown to have
protective effects against 6-OHDA–induced neurotoxic-
ity in human neuroblastoma cells, and attenuated the
phosphorylation of JNK and c-Jun triggered by 6-OHDA
(Chao et al., 2008, 2010). Curcumin treatment amelio-
rated behavioral deficits and prevented dopaminergic
neuronal death in a mouse PD model. Moreover,
curcumin effectively inhibited MPTP/MPP+-induced
phosphorylation of JNK1/JNK2 in vivo (Yu et al.,

TABLE 7—Continued

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

L-Theanine SH-SY5Y cells Attenuate both rotenone- and
dieldrin-induced DNA
fragmentation and apoptotic
death

Rotenone- and dieldrin-induced
downregulation of ERK1/
ERK2 phosphorylation

Cho et al. (2008)

Resveratrol Rat primary astroglia Increase BDNF and GDNF
production

Induced the phosphorylation
of ERK1/ERK2

Zhang et al.
(2012a)

Oroxylin A Rat cortical neurons Increase BDNF production Activated ERK1/ERK2 MAPK Jeon et al. (2011)
Honokiol Rat cortical neurons Neurite outgrowth ERK1/ERK2 activation Zhai et al. (2005)
Curcumin Neural progenitor cells Promote cell proliferation

and adult hippocampal
neurogenesis

Activated ERK and p38 kinases Kim et al. (2008)

Heptamethoxyflavone Transient global ischemia
mouse

Increase BDNF and neurogenesis Induced the phosphorylation
of ERK1/ERK2

Okuyama et al.
(2012)

Calycopterin PC12 cells Inhibit H2O2-induced nuclear
translocation of NF-kB

Suppressed ERK, JNK,
and p38 MAPK
phosphorylation

Farimani et al.
(2011)

Koshu (grape seed
extract)

Neonatal mouse
hippocampal neurons

Neuroprotective effects against
excitotoxicity

Inactivation of ERK1/ERK2 Narita et al.
(2011)

Mollugin Mouse hippocampal HT22
cell line, BV2 cells

Increase expression of HO1,
activate HO

Activated the p38 MAPK
pathway

Jeong et al.
(2011)

EGCG HT-29 cells Induce apoptotic cell death Inhibition of JNK pathway Chen et al. (2003)
Human chondrosarcoma

cells
Induce apoptosis Induced p38 and JNK

phosphorylation
Yang et al.

(2011b)
Isoorientin HepG2 cells Induce mitochondria-mediated

apoptosis
Suppressed ERK1/ERK2, and

activation of JNK and p38
MAPK

Yuan et al. (2013)

Luteolin Neuro-2a mouse
neuroblastoma cells

Induce apoptosis through ER
stress and mitochondrial
dysfunction

Activation of JNK, p38, and
ERK

Choi et al. (2011)

Curcumin, tricostatin A Breast cancer cells Decrease cell viability Increased phosphorylated JNK
and phosphorylated p38

Yan et al. (2013)

Resveratrol JB6 mouse epidermal cell
line

Induce p53 activation and induce
apoptosis

Activated JNKs She et al. (2002)

Quercetin HepG2 cells Induce cell death Activation of the JNK pathway Granado-Serrano
et al. (2010)

Baicalein HT22 cells Reduce endoplasmic reticulum
stress–induced apoptosis

Modulated the endoplasmic
reticulum stress-mediated
activation of p38 MAPK
and JNK pathways

Choi et al. (2010)

Luteolin Rat cortical neurons Neuroprotective effect Protective mechanism is
mediated by preventing
of p38 MAPK and JNK
pathways and caspase-3
activations

Cheng et al.
(2010)

Oxyresveratrol SH-SY5Y cells Neuroprotective effects against PD Attenuated 6-OHDA–induced
phosphorylation of JNK
and c-Jun

Chao et al. (2008)

Curcumin PD mouse model Improve behavioral deficits and
prevent dopaminergic neuronal
death

Inhibited MPTP/MPP
(+)-induced phosphorylation
of JNK1/JNK2

Yu et al. (2010b)

Apigenin BV-2 cell line Inhibit the production of NO
and prostaglandin E2

Suppressed p38 MAPK, JNK
phosphorylation

Ha et al. (2008)

6-ME, 6-methoxyequol; CDK, cyclin-dependent kinase; EBV, Epstein–Barr virus; EGFR, epidermal growth factor receptor; GLUT, glucose transporter; HGF, hepatocyte
growth factor; P-gp, P-glycoprotein.
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2010b). Although the mechanisms by which phyto-
chemicals differentially modify the activation states
of ERK1/ERK2, JNKs, and p38 MAPKs remain to be
clarified, the available evidence does suggest the thera-
peutic potential of phytochemicals in neuroinflammatory
and neurodegenerative disorders.
4. Glycogen Synthase Kinase-3b. GSK-3 is a serine-

threonine kinase that was initially named for its
ability to phosphorylate and inactivate glycogen syn-
thase. In mammals, there are two highly homologous
forms of GSK-3: GSK-3a and GSK-3b. Mice lacking
GSK-3b die during embryonic development or as ne-
onates, whereas no significant abnormalities are
evident in GSK-3a knockout mice (Hoeflich et al., 2000;
MacAulay et al., 2007). GSK-3b is involved in signaling
pathways that regulate cellular bioenergetics, prolifer-
ation, migration, apoptosis, inflammation, and immune
responses. Since GSK-3b has been implicated in glucose
homeostasis, including the phosphorylation of insulin
receptor substrate (IRS)-1 and of the gluconeogenic
enzymes, GSK-3b inhibitors have therapeutic potential
for treating type 2 diabetes (Lochhead et al., 2001).
Several phytochemicals can inhibit GSK-3b activity
(Table 8). The beneficial effects of EGCG against the
metabolic syndrome are mediated, in part, by GSK-3b
inhibition, which enhances insulin sensitivity and
activates enzymes involved in glycogen synthesis and
lipogenesis (Kim et al., 2013b). Administration of
green tea polyphenols decreases GSK-3b and the
detrimental effects of a high-fructose diet on insulin
signaling, lipid metabolism, and inflammation in the
cardiac muscle of rats (Qin et al., 2010). It was
reported that the antiadipogenic activity of Citrus
aurantium flavonoids was mediated by the inhibition
of GSK-3b phosphorylation (Kim et al., 2012).
Recent findings suggest that GSK-3b plays an

important role in regulating inflammatory processes.
GSK-3b participates in a number of signaling path-
ways in the immune response that promote the
production of inflammatory molecules and cell migra-
tion. GSK-3b inactivation can suppress inflammation
by increasing anti-inflammatory cytokine production
while concurrently suppressing the production of pro-
inflammatory cytokines (Jope et al., 2007; Wang et al.,
2011a). Although there are several studies reporting
that phytochemicals were effective to reduce proin-
flammatory cytokines and GSK-3b expression, the data
are not sufficient to conclude that anti-inflammatory
properties of phytochemicals are directly mediated
through GSK-3b inhibition (Ahn et al., 2010; Qin et al.,
2010).
GSK-3b is involved in signaling pathways that affect

cell proliferation and apoptosis. A prominent substrate
of GSK-3b is b-catenin, a key protein in the canonical
Wnt signaling pathway that regulates cell prolifera-
tion. GSK-3b also participates in a number of apoptotic
signaling pathways by phosphorylating transcription

factors that regulate apoptosis; GSK-3b acts as a tumor
suppressor in some cancers while potentiating growth
of others (Jope et al., 2007; Mills et al., 2011). GSK-3b
inhibitors effectively induced apoptosis in pancreatic
cancer and glioma cells (Kotliarova et al., 2008; Marchand
et al., 2012). Ellagic acid, a plant-derived polyphenol,
induced apoptosis in an animal model of oral oncogenesis
by preventing the constitutive activation of Wnt pathway
through downregulation of Fz, Dvl-2, GSK-3b, and
nuclear translocation of b-catenin (Anitha et al.,
2013). Black tea polyphenols substantially reduced IGF-
I–mediated growth of prostate cancer cells by decreas-
ing downstream effects of Akt activation including
phosphorylation of GSK-3b (Klein and Fischer, 2002).
EGCG reduced the viability of human skin cancer cells,
and its cytotoxic effects were associated with inactiva-
tion of b-catenin signaling (Singh and Katiyar, 2013).

Recent findings suggest that GSK-3b plays impor-
tant roles in the pathogenesis of neurodegenerative
and psychiatric disorders. GSK-3b is relatively abun-
dant in the adult brain (Woodgett, 1990; Grimes and
Jope, 2001). Lithium, an inhibitor of GSK-3b, has been
shown to have therapeutic potential in several neuro-
logic disorders and indeed is widely prescribed to
patients with bipolar disorder (Chiu et al., 2013).
Because it phosphorylates t and may contribute to the
formation of neurofibrillary tangles, GSK-3b is also
a potential target for AD. Puerarin, an isoflavone
glycoside from Kudzu root (Pueraria lobata), protected
primary hippocampal neurons against Ab-induced stress
by inhibiting GSK-3b signaling (Zou et al., 2013).
Pretreatment with (6)-catechin protected dopaminer-
gic neurons against MPTP-induced death in mice by a
mechanism involving inhibition of GSK-3b (Ruan
et al., 2009). The citrus bioflavonoid luteolin reduced
Ab generation in “Swedish” mutant APP transgene-
bearing neuron-like cells and primary neurons, and
diosmin (a semishynthetic drug modified from hes-
peridin) significantly reduced Ab pathology, reduced
GSK-3 activity, and disrupted the association of prese-
nilin 1 with APP (Rezai-Zadeh et al., 2009). In addition,
EGCG prevented oxidative stress–induced death of
motor neurons expressing a mutant form of SOD1
that causes ALS, by activating PI3K/Akt and inhibit-
ing GSK-3b (Koh et al., 2004)

Studies relevant to AD have shown that GSK-3b
activity promotes Ab production and that GSK-3b
directly phosphorylates t, resulting in the formation of
neurofibrillary tangle-like filaments (Alonso et al.,
2001). Abnormal increases of GSK-3b levels and ac-
tivity occur in brain cells of patients with AD, and are
associated with neuronal death, t pathologies, and a
decline in cognitive function (Bhat et al., 2004). There-
fore, the identification and characterization of GSK-3b
inhibitors is an active area of investigation in the AD
research field (Bhat et al., 2004; Hooper et al., 2008;
Gao et al., 2012). The bis-indole indirubin, an active
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ingredient of traditional Chinese medicines, was
reported to be a powerful GSK-3b inhibitor that pre-
vents t phosphorylation at AD-specific sites (Leclerc
et al., 2001). A structure–activity relationship study
suggested that indirubins bind to the ATP-binding
pocket of GSK-3b in a manner similar to their binding
to cyclin-dependent kinases (Bertrand et al., 2003;
Polychronopoulos et al., 2004). We previously reported
that the flavonol morin effectively inhibited GSK-3b
activity and blocked GSK-3b–induced t phosphorylation
in vitro, and attenuated t hyperphosphorylation and
paired helical filament-like immunoreactivity in hip-
pocampus of triple transgenic AD mice in vivo (Gong

et al., 2011). A pharmacophore model based on a
computational approach revealed that morin has high
potential complementarity to fit into the ATP-binding
pocket of GSK-3b (J. Lee and D. Park, unpublished
data). Although many phytochemicals were shown to
have antidepressant effects, there are few studies of
the application of phytochemicals to bipolar disorder.
One study proposed that baicalin is a new prodrug
inhibitor of prolyl oligopeptidase, which has been
associated with schizophrenia, bipolar affective disor-
der, and related neuropsychiatric disorders (Tarragó
et al., 2008). Given the established efficacy of lithium
for bipolar disorder, phytochemicals that inhibit GSK-3b

TABLE 8
Phytochemicals that modify GSK-3b signaling

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

EGCG HepG2 cells Inhibit lipogenesis Metabolic syndrome were
mediated by GSK-3b inhibition

Kim et al.
(2013b)

Green tea
polyphenols

Cardiac muscle in insulin-
resistant rats

Reduce detrimental effects of
a high-fructose diet on insulin
signaling, lipid metabolism, and
inflammation

Decreased GSK-3b Qin et al. (2010)

Citrus aurantium
flavonoids

3T3-L1 cells Inhibit adipogenesis Mediated by the inhibition of
GSK-3b phosphorylation

Kim et al.
(2012)

Curcumin 3T3-L1 cells Inhibit adipogenic
differentiation

Reduced differentiation-
stimulated expression of
GSK-3b

Ahn et al.
(2010)

Ellagic acid Hamster buccal pouch
carcinogenesis model

Induce apoptosis Preventing the constitutive
activation of Wnt pathway
through downregulation of
GSK-3b

Anitha et al.
(2013)

Black tea
polyphenols

PrEC and Du145 prostate
carcinoma cells

Inhibit IGF-I–mediated prostate
cancer incidence

Decreased downstream
effects of Akt activation
including phosphorylation of
GSK-3b

Klein and
Fischer
(2002)

EGCG Human skin cancer cell line Reduce cell viability and increased
cell death

Reduced phosphorylation
of GSK-3b

Singh and
Katiyar
(2013)

3,39-
Diindolylmethane

VSMC neointima formation in
a carotid injury model

G0/G1 phase cell cycle arrest,
inhibit infiltration of
inflammatory cell

Activities of downstream signaling
molecules including GSK-3b

Guan et al.
(2012)

Oral squamous cell carcinoma Suppress the viability of the
cells by inducing apoptosis
and G2/M arrest

Inhibit downstream effectors of
the GSK-3b

Weng et al.
(2012)

Genistein PC3 cells Decrease expression of b-catenin Increased GSK-3 Liss et al.
(2010)

Nimbolide HepG2 cells Abrogate canonical NF-kB and
Wnt signaling to induce
caspase-dependent apoptosis

Apoptosis evasion by evaluating
members of GSK-3b

Kavitha et al.
(2012)

Quercetin BEAS-2B cells Decrease the viability of the
cells via apoptosis

Inactivated GSK-3b Lee and Yoo
(2013)

Puerarin Primary hippocampal neurons Neuroprotection against Ab Inhibited GSK-3b signaling Zou et al.
(2013)

(6)-Catechin Mice Protect dopaminergic neurons Modulate the rapid activation
of GSK-3b against MPTP-
induced dopaminergic
neurotoxicity

Ruan et al.
(2009)

Luteolin “Swedish” mutant APP transgene-
bearing neuron-like cells and
primary neurons

Significantly reduce Ab
pathology and disrupt PS1-APP
association

Reduced GSK-3 activity Rezai-Zadeh
et al. (2009)

EGCG Mutant hSOD1 gene (G93A)
motoneuron cells

Prevent oxidative stress–induced
death

Inhibition of GSK-3b Koh et al.
(2004)

bis-Indole indirubin Sf9 cells Inhibit t phosphorylation at
AD-specific sites

Powerful GSK-3b inhibitor Leclerc et al.
(2001)

Morin Hippocampus of 3xTg-AD mice Block GSK-3b–induced t
phosphorylation, and
attenuate t
hyperphosphorylation
in 3xTG-AD mice

Inhibited GSK-3b activity Gong et al.
(2011)

3xTg-AD, triple transgenic AD; PS1, presenilin 1; VSMC, vascular smooth muscle cell.
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would be attractive candidate interventions for this
disorder.
5. Insulin Signaling. The insulin signaling path-

way controls blood glucose levels by stimulating the
transport of glucose into muscle, liver, and other
insulin-responsive cells, and by inhibiting gluconeo-
genesis. Insulin binds to the extracellular a-subunits of
the insulin receptor causing a conformational change
in the insulin receptor, a transmembrane glycoprotein
with intrinsic tyrosine kinase activity. The activated
receptor stimulates the phosphorylation of the receptor
itself and downstream substrates (Fig. 6), including
IRS-1. Rather than have a direct interaction with SH2
proteins, insulin receptors propagate the signal through
IRS-1 on multiple tyrosine residues, which in turn rec-
ognize and bind to the SH2 domains in signal trans-
duction proteins, including PI3K, growth factor receptor
bound protein 2/son of sevenless homolog 1 (p21ras

pathway), and SH/protein tyrosine phosphatase 2
(tyrosine phosphatase pathway) (White and Kahn,
1994).
Insulin signaling responds dynamically and adap-

tively to metabolic states, including feeding, fasting,
exercise, and stress. Disturbances of insulin signaling
occur in several pathologic conditions, including type 1
diabetes (insulin deficiency), type 2 diabetes (insulin
resistance), and the metabolic syndrome. A sedentary
gluttonous lifestyle promotes the metabolic syndrome
and type 2 diabetes that, in turn, increase the risk of
cardiovascular disease, stroke, obesity, cancers, and
AD. Several phytochemicals exhibit antidiabetic ac-
tions (Table 9). Several dietary flavonoids can improve
pancreatic b-cell function and insulin secretion, and can
increase the insulin sensitivity of muscle, liver, and fat
cells (Babu et al., 2013). Curcumin improved insulin
resistance in skeletal muscle of diabetic rats induced by
a high-fat diet plus streptozotocin administration (Na
et al., 2011). Curcumin improved insulin resistance and
glucose tolerance in type 2 diabetic db/db mice but not
in nondiabetic db/+ mice (Seo et al., 2008). Green tea
extract containing EGCG markedly improved glucose
tolerance and increased glucose-stimulated insulin se-
cretion by preserving islet structure in diabetic db/db
(leptin receptor mutant) mice (Wolfram et al., 2006;
Ortsäter et al., 2012). The natural flavonoids quercitrin,
quercetin, and genistein attenuated hyperglycemia and
increased insulin sensitivity in a mouse model of di-
abetes (Lee, 2006; Kobori et al., 2009; Babujanarthanam
et al., 2010).
Beneficial properties of dietary phytochemicals were

also shown in diet-induced obesity and metabolic syn-
drome in animal and human studies, probably by
enhancing insulin production and insulin sensitivity
(Panickar, 2013). Resveratrol treatment ameliorates
abnormal insulin secretion and morphologic changes of
pancreatic b cells in mice fed a high-fat diet and
improves insulin resistance in rats fed fructose and in

mice on a high-calorie diet (Baur et al., 2006; Bagul
et al., 2012; Zhang et al., 2012a). A recent study
showed that dietary supplementation with resveratrol
increases insulin sensitivity and improves glucose
tolerance in a nonhuman primate, the gray mouse
lemur (Microcebus murinus) (Marchal et al., 2012).
Curcumin treatment was evaluated in mice fed a high-
fat diet and was shown to prevent insulin resistance
and obesity by attenuating lipogenic gene expression in
the liver and inflammatory responses in adipose tissue
(Shao et al., 2012). Beneficial effects of EGCG were
demonstrated in a model of Western diet–induced in-
sulin resistance (Bose et al., 2008; Chen et al., 2009b,
2011b). Although these studies suggest that some
phytochemicals can reverse insulin resistance and
enhance insulin signaling, the molecular mechanisms
have not been established.

Insulin-sensitizing properties of phytochemicals may
involve IGFs. In rat models of diabetes, curcumin
restored IGF-I signaling and ameliorated a learning
and memory deficit (Isik et al., 2009). In another study,
green tea polyphenols decreased serum IGF-I and
leptin levels in a model of diet-induced obesity, which
is consistent with an enhancement of IGF-1 and leptin
sensitivity (Shen et al., 2012). IGF-I affects cells in
complex ways that are tissue specific. Although IGF-I
acts as a neurotrophic factor and is generally consid-
ered beneficial for the brain, it can cause skeletal
muscle hypertrophy and cancer cell proliferation. In-
creased soy consumption was associated with elevated
circulating levels of IGF-I in postmenopausal women at
high risk for developing breast cancer, indicating the
increased risk for cancer growth (McLaughlin et al.,
2011). By contrast, repeated doses of resveratrol re-
duced levels of IGF-I in healthy volunteers, suggesting
a potential for resveratrol in cancer prevention (Brown
et al., 2010). Because both soy isoflavones and resver-
atrol can improve insulin sensitivity in models of di-
abetes and metabolic disorders, differential regulation of
IGF-I signaling might contribute to the different effects
of these polyphenols on proliferative cells.

Insulin/IGF-1–like receptor signaling pathways have
a strong influence on aging processes in organisms
ranging from worms and flies to humans (Apfeld and
Kenyon, 1998; Barbieri et al., 2003; Barzilai and Bartke,
2009). Studies have shown that dietary phytochemicals
can extend the lifespan in worms and flies by mecha-
nisms involving modulation of insulin-like signaling and
upregulation of adaptive stress response pathways. For
example, C. elegans fed blueberry polyphenols exhibit
an extended lifespan and are more resistant to heat
stress (Wilson et al., 2006). The life span of worms is
also extended by dietary resveratrol, by a mechanism
requiring AMP-activated protein kinase (Greer and
Brunet, 2009). In the nervous system, IGF-I plays im-
portant roles in neurogenesis, synaptic plasticity, and
neuronal survival and is neuroprotective in a range of

848 Lee et al.



TABLE 9
Phytochemicals that modify insulin signaling

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

Curcumin Skeletal muscle of
diabetic rats

Improve insulin resistance Mediated through LKB1-AMPK Na et al. (2011)

Epicatechin gallate db/db mice Reduce the number of
pathologically changed islets
of Langerhans and increase
the number and the size of
islets

Enhanced glucose tolerance and
glucose-stimulated insulin
secretion

Ortsäter et al.
(2012)

db/db mice Increase glucokinase mRNA
expression in the liver

Enhanced glucose tolerance and
glucose-stimulated insulin
secretion

Wolfram et al.
(2006)

Quecitrin and quercetin Diabetic rats Exhibit a protective role on the
pancreatic islets

Increased insulin sensitivity Babujanarthanam
et al. (2010)

Diabetic mice Improve liver and pancreas
functions by enabling the
recovery of cell proliferation

Increased insulin sensitivity
through the inhibition of
Cdkn1a expression

Kobori et al. (2009)

Genistein Diabetic mice Increase blood glucose,
antioxidant enzyme activities,
and lipid profile

Increased insulin sensitivity Lee (2006)

Resveratrol Caucasian (blood) Improve insulin sensitivity and
decrease insulin resistance

Decreased oxidative stress and
more efficient insulin
signaling via the Akt pathway

Brasnyó et al.
(2011)

Piceatannol db/db mice Antidiabetic effect Improved glucose tolerance Minakawa et al.
(2012)

Bilberry anthocyanins Enhance insulin sensitivity Increased AMPK
phosphorylation

Takikawa et al.
(2010)

Hesperidin and naringin db/db mice PEPCK and G6Pase expression Increased plasma insulin Jung et al. (2004)
Epicatechin gallate C2C12 mouse

skeletal muscle
cell

Antiobesity and anti-type 2
diabetes mellitus

Attenuated insulin resistance Deng et al. (2012)

Flavonoid composition of
cranberry extract

Liver and muscle
(mice)

Downregulation of the hepatic
cholesterol synthesis pathway

Amelioration of insulin
resistance

Shabrova et al.
(2011)

Troxerutin Hippocampus (mice) A possible candidate for the
prevention and therapy of
cognitive deficits in T2D

Enhanced insulin signaling
pathway

Lu et al. (2011)

Resveratrol High-fat diet–fed
mice

Protect islets from abnormal
insulin secretion

Promoted the expression of
SIRT1 in islets and Bcl-2/Bax
and levels of malondialdehyde/
glutathione peroxidase

Zhang et al.
(2012b)

Fructose-fed rats Increase nuclear level of NRF2 Attenuated insulin resistance Bagul et al. (2012)
High-fat diet–fed

mice
Produce changes associated

with longer lifespan
Increased insulin sensitivity,

reduced insulin-like growth
factor-1

Baur et al. (2006)

Gray mouse lemurs Beneficial effects on metabolic
alterations

Increased insulin sensitivity by
improving the glucose
tolerance

Marchal et al.
(2012)

Curcumin High-fat diet–fed
mice

Inhibit lipogenic gene expression
in the liver and blocked
and the inflammatory
response in the adipose tissue

Induced insulin resistance Shao et al. (2012)

Epicatechin gallate High-fat diet–fed
mice

Attenuate levels of plasma
cholesterol, MCP-1, CRP,
IL-6, and GCSF

Improved glucose tolerance
Insulin resistance

Chen et al. (2011b)

High-fat diet–fed
rats

Increase markers of
thermogenesis and
differentiation in adipose
tissue

Increased glucose tolerance Chen et al. (2009b)

High-fat diet–fed
rats

Decrease liver weight, liver
triglycerides, and mesenteric
fat weight and blood glucose
compared with high-fat–fed
control mice

Attenuated insulin resistance Bose et al. (2008)

Cinnamon Mouse 3T3-L1
preadipocyte

Regulate the expression of
multiple genes in adipocytes

Increased insulin signaling Cao et al. (2010)

Resveratrol HC-fed mice Reduce IGF-I levels/increased
AMPK, PGC-1a activity, and
mitochondrial number

Increased insulin sensitivity,
reduced IGF-1

Baur et al. (2006)

Adipocyte (HF-rat) Improve the metabolic profile of
HF-fed offspring born from
pregnancies complicated by
IUGR

Ameliorated insulin resistance
and glucose intolerance

Dolinsky et al.
(2011)

Flavonoid compounds isolated
from Hyphaene thebaica
epicarp

Rat Antidiabetic effects Improved glucose and insulin
tolerance

Salib et al. (2013)

(continued )
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models of neuronal degeneration (Anlar et al., 1999;
Aberg et al., 2000; Torres-Aleman, 2000). Interestingly,
in the Avon longitudinal study of parents and children,
IGF-I levels in serum were positively associated with
the intelligence quotient in children aged 8 to 9 years
(Gunnell et al., 2005). Since IGF-I levels can be altered
by diet and other environmental factors, the authors of
the latter study proposed that IGF-1 may mediate
effects of the childhood environment on their brain
development. Dietary phytochemicals can affect IGF-1
signaling and cognitive function. For example, short-
term blueberry supplementation stimulated hippocam-
pal neurogenesis and ameliorated memory deficits in
aged rats by a mechanism involving increased IGF-1
and IGF-1 receptor levels (Casadesus et al., 2004).
FOXO transcription factors are negatively regulated

by the insulin/IGF-1 signaling pathway and have been
postulated to play important roles in apoptosis, cell
cycle regulation, energy metabolism, and oxidative
stress resistance. Only one FOXO gene was identified
in invertebrates (which is termed daf-16 in the nem-
atode C. elegans and dFOXO in the fruit fly), whereas
mammals have four FOXO genes (FOXO1, FOXO3,
FOXO4, and FOXO6). It is well known that daf-16 and
dFOXO are associated with longevity in the nematode
and the fruitfly, respectively (Greer and Brunet, 2005).
Although mammalian FOXO is also negatively regu-
lated by Akt in response to insulin/IGF stimulation, the
life-prolonging effect of FOXO appears to be minimal.
Rather, it was proposed that the antineoplastic effect of
dietary restriction is mediated by FOXO1 (Yamaza et al.,
2010). The activity of FOXO proteins is regulated by
several post-translational modifications, including phos-
phorylation, acetylation, and methylation. Several stud-
ies suggest the involvement of FOXO in age-related
neurodegenerative diseases. FOXO reduces the toxicity
associated with aggregation-prone proteins involved in
AD and HD (Morley et al., 2002; Cohen et al., 2006;
Parker et al., 2012). Interestingly, it was proposed that
the FOXO responses to oxidative stress are involved in
both insulin resistance and AD pathogenesis, and thus
FOXO could be a potential molecular target for these
disorders (Manolopoulos et al., 2010). Therefore, there is
a possibility that phytochemicals could alter FOXO
activity either through directly interacting with FOXO
or indirectly modulating the regulatory enzymes in-
volved in FOXO post-translational modifications. Taken

together, the available data suggest that phytochemicals
that modify the insulin/IGF-I/FOXO signaling pathway
have therapeutic potential for metabolic and neurode-
generative disorders.

VII. Phytochemical-Centric Computational Drug
Discovery and Design

One approach to phytochemical-based drug discov-
ery is to develop screens for activation of a specific
adaptive stress response pathway and then perform
medicinal chemistry around lead phytochemicals
emerging from the screen. Here is one example of such
an approach. A book entitled Insect Antifeedants by
Koul (2005) caught the attention of one of the authors
(M.P.M.) in 2009. The book includes .700 phytochem-
icals that have been isolated from a range of plant
species and are shown to exert noxious effects on
insects, in many cases at concentrations that the pests
might be exposed to in their natural environment.
Because the nervous system (e.g., taste receptors and
olfactory neurons) is particularly important for sensing
and responding to potentially toxic chemicals, it
seemed likely that some of the “natural pesticides”
would activate one or more adaptive cellular stress
response signaling pathways in neurons. To test this
hypothesis, a panel of phytochemicals was selected
from Koul’s (2005) compendium of insect antifeedants
that included a diverse array of structures and bo-
tanical sources. Luciferase reporter cell assays were
used to identify phytochemicals in the panel that could,
at sublethal concentrations, activate one or more of
three prominent stress responsive transcription fac-
tors: Nrf-2, NF-kB, and FOXO. The screen resulted in
several hits, and one naphthoquinone from the genus
Plumbago (plumbagin) was demonstrated to induce
a 15-fold increase in Nrf-2 transcriptional activity and
exhibited neuroprotective activity in a mouse model of
stroke (Son et al., 2010). Analogs of plumbagin were
synthesized and screened and several demonstrated
exhibited neuroprotective activity (Choi et al., 2012;
Son et al., 2013) and extended lifespan in C. elegans
by a hormetic mechanism (Hunt et al., 2011). This
provides a proof-of-principle example for the approach
of developing phytochemical “toxins” as potential ther-
apeutic agents. In the remainder of this section, we

TABLE 9—Continued

Phytochemical Target Tissue/Cells Effects Involved Molecular Mechanism Reference

Tetrahydro iso-a acids High-fat diet–fed
mice

Antidiabetic effects Increased insulin sensitivity Everard et al.
(2012)

Purple corn color anthocyanidin T2D mice Lipogenic gene expression Increased serum insulin level Roy et al. (2008)
Cyanidin-3-glucoside db/db mice and HF-

fed obese mice
Phosphorylation of Akt, FOXO1 Improved insulin sensitivity Guo et al. (2012)

AMPK, AMP-activated protein kinase; GCSF, granulocyte cell-stimulating factor; HC, high calorie; HF, high fat; IL, interleukin; IUGR, intrauterine growth restriction;
LKB-1, liver kinase B1; MCP, monocyte chemotactic protein; PEPCK, phosphoenolpyruvate carboxykinase; PGC-1a, PPARg coactivator 1a; T2D, type 2 diabetes mellitus.
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describe a different approach to phytochemical-based
drug discovery that utilizes molecular modeling.
A. Docking Simulation. Computational drug dis-

covery and design, particularly in silico structure-
based drug design, can provide valuable contributions
in hit- and lead-compound discovery (Kuntz, 1992).
Advanced computer-based techniques can assist in
both the discovery and optimization of lead compounds
(Jorgensen, 2004). Among computer-based techniques
for drug discovery and design, docking simulation and
pharmacophore analysis are regarded as the most
successful tools for elucidating molecular interactions
between small molecules and macromolecules (Cavasotto
and Orry, 2007). These applications provide valuable
starting points for establishing molecular targets of phy-
tochemicals as a complement to high-throughput screen-
ing of large compound collections. The approaches are
helpful in understanding how phytochemicals perturb
cellular stress pathways by modeling their interactions
with their target proteins (Lee et al., 2011a).
Docking simulation approaches use specialized com-

puter programs to find novel enzyme inhibitors and
other therapeutic agents in drug development stages.
The docking process involves the prediction of small
molecule conformation and positioning within the
pocket of macromolecules (Brooijmans and Kuntz,
2003). The docking process provides the best binding
orientation between a small molecule and a potential
target protein. Therefore, three-dimensional structures
of macromolecules are prerequisite essential informa-
tion for the docking simulation. An example of a suc-
cessful application of this approach is tacrine, which
inhibits acetylcholinesterase and thereby increases
synaptic acetylcholine levels to enhance cognitive func-
tion in AD (Harel et al., 1993). Other examples include
zanamivir, a neuroaminidase inhibitor that that inter-
acts with the influenza virus (Xu et al., 2008); various
human immunodeficiency virus protease inhibitors such
as saquinavir, ritonavir, and indinavir (Andrews et al.,
2006); and the COX-2 inhibitor celecoxib, which is used
to treat the chronic inflammatory disorder arthritis
(Price and Jorgensen, 2001).
The docking simulation generates a numerical score

that is used to rank predicted ligand conformations in
hit identification and lead optimization (Kitchen et al.,
2004). The docking simulation will not succeed if the
scores do not differentiate a correct ligand from in-
correct ligands. Scoring applied to docking simulation
can give an accurate estimate of the binding free
energy between small molecules and macromolecules,
although the score does not fully account for all phy-
sical factors that ultimately determine molecular
recognition. Free-energy simulation techniques have
been developed for the prediction of binding affinity
between small molecules and a macromolecular target
(Simonson et al., 2002). The information on binding
between target molecules and compounds, such as

those dominated by shape complementarity, can be
used to establish approximations of positioning and
scoring. In addition, it is also a common practice to
include more subjective visual inspection, which adds
another dimension to the selection process (Doman
et al., 2002).

Several studies have used computational docking
simulations to screen phytochemical libraries. For ex-
ample, 25,000 phytochemicals were evaluated to identify
potential inhibitors of ER-b (Zhao and Brinton, 2005). In
another study, the phytochemical ellagic acid was iden-
tified as an inhibitor to casein kinase 2, which is involved
in prostate cancer (Cozza et al., 2006). Plant-derived
SdiA-selective ligands were found to be antibacterial
agents with potential for treatment of urinary infections
(Ravichandiran et al., 2012). Collections of large num-
bers of phytochemicals for high-throughput screening
are available in academic and government laboratories
as well as in pharmaceutical companies. The following
databases of phytochemicals are available: PubChem
(pubchem.ncbi.nlm.nih.gov), ZINC (zinc.docking.org),
Asinex (www.asinex.com), and Dictionary of Natural
Products (dnp.chemnetbase.com). Such databases in-
clude structural information on many phytochemicals.
The ligand databases increase the probability of identi-
fying high-potency ligands.

We performed a docking simulation to evaluate the
reliability of phytochemical screening against target
macromolecules known to be affected by certain
phytochemicals, including Nrf2, mTOR, and GSK-3b.
Nrf2, a master redox switch that induces expression of
cytoprotective genes, is activated by curcumin, EGCG,
lycopene, sulforaphane, and resveratrol (Surh et al.,
2008). For docking simulation, we used the crystal
structure of Nrf2 taken from the Protein Data Bank
archives (2FLU). Using the Dock6 program, we
calculated the docking score between Nrf2 and three
phytochemicals (curcumin, EGCG, and sulforaphane).
The program predicted that all three phytochemicals
bound to Nrf2 with high binding scores as follows:
curcumin, 245.37 kcal/mol; EGCG, 237.16 kcal/mol;
and sulforaphane, 231.42 kcal/mol (Fig. 8). Interest-
ingly, the three phytochemicals were bound to different
pockets of Nrf2. The results could suggest that each
phytochemical has a different molecular site of action
to activate Nrf2, which provides insight for future
studies of the potential effects of phytochemical cock-
tails on Nrf2. In addition, we tested the docking
simulation between mTOR and two phytochemicals
(rapamycin and fisetin). Rapamycin had a higher
binding score (296.51 kcal/mol) compared with fisetin
(231.54 kcal/mol) (Fig. 9). The high binding score of
rapamycin is consistent with its known inhibitory
effect on mTOR. Therefore, the docking simulation
provides the opportunity to find other candidates from
phytochemical databases that have scores approaching
that of rapamycin. We also calculated the docking score
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of GSK-3b with two phytochemicals (kenpaullone and
morin). Kenpaullone is a paullone that is known to be
a selective inhibitor of GSK-3b with an IC50 value in
the nanomolar range (Leost et al., 2000; Bain et al.,
2003; Meijer et al., 2004). It was reported that the
flavonol morin effectively inhibits GSK-3b activity and
blocks GSK-3b–induced t phosphorylation (Gong et al.,

2011). A docking simulation model based on the
computational approaches revealed that both phyto-
chemicals have high potential complementarity to bind
into the structures of GSK-3b within the ATP-binding
pocket (Fig. 10). The results suggest that the ATP-
binding pocket is an important site of binding for
phytochemicals that inhibit GSK-3b activity (Leost
et al., 2000).

B. Pharmacophore-Based Screening. In ligand-
based drug screening, the most effective lead com-
pounds are detected using a pharmacophore search
(Reddy et al., 2007). Pharmacophore is the ensemble of
steric and electronic features of ligands for interacting
with macromolecules. The pharmacophore-based screen-
ing approach finds effective lead compounds from large
compound databases using several features of active
compounds such as hydrogen bond acceptor and donor,
positive and negative ionizable area, hydrophobic area,
and aromatic ring structure (Fig. 11). The pharmaco-
phore information is used to index functional groups or
molecular fragments within their structures (Harvey
et al., 2010). Traditionally, pharmacophore-based ap-
proaches have been used in drug discovery. However,
many drug candidates developed by the pharmacophore
approach failed in clinical trials. For this reason, recent

Fig. 8. Docking simulation between Nrf2 and three phytochemicals. The
crystal structure of Nrf2 was taken from the Protein Data Bank archives
(ID: 2FLU). For docking simulation, the Dock6 program and the tool’s
manual were used. Docking scores were calculated for the interactions of
the receptor and three phytochemicals (sulforaphane, curcumin, and
EGCG). The binding score of curcumin (magenta) was 245.37 kcal/mol.
The binding scores for sulforaphane (cyan) and EGCG (red) were 231.42
kcal/mol and 237.16 kcal/mol, respectively.

Fig. 9. Docking simulation between mTOR and two phytochemicals. The
crystal structure of the mTOR was taken from the Protein Data Bank
archives (ID: 1NSG). We calculated the docking score between the
receptor and two ligands (rapamycin and fisetin). The binding affinities
were 296.51 kcal/mol for mTOR with rapamycin (cyan) and 231.54 kcal/mol
for fisetin (magenta).

Fig. 10. Docking simulation between GSK-3b and two phytochemicals.
The crystal structure of the GSK-3b was taken from the Protein Data
Bank archives (ID: 1I09). The docking scores for the interaction of the
target protein and two ligands kenpaullone (magenta) and morin (cyan)
were 35.20 kcal/mol and 232.73 kcal/mol, respectively.
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Fig. 11. Approaches for identifying phytochemicals that interact with specific protein targets involved in adaptive cellular stress responses. (A)
Schema of the pharmacophore prediction approach. (B) Identification of the common pharmacophore for EGCG (left) and resveratrol (right). Red lines
and circles show the hydrogen bond acceptor and the green lines and circles denote hydrogen bond donors. The two compounds share three
pharmacophore sites (hydrogen bond acceptor and hydrogen bond donor). (C) The pharmacophore model was generated using the LigandScout 3.0
program. AR, aromatic ring; HBA, hydrogen bond acceptor; HBD, hydrogen bond donor.
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strategies focus on integrative profiling including the
following: pharmacophore mapping; absorption, distri-
bution, metabolism, and elimination toxicity profiling;
and docking simulation of new molecules to select op-
timal drug-like compounds for large molecular libraries
(Winiwarter and Hilgendorf, 2008; Wang and Skolnik,
2009). Furthermore, the docking results between the
ligand and target macromolecule can be verified using
a pharmacophore model (Pedretti et al., 2011).
Recent pharmacophore-based screenings of phyto-

chemical libraries have been reported. Rollinger et al.
(2004) used a structure-based pharmacophore model to
correctly retrieve active acetylcholinesterase inhibitors
from 11,000 natural products. Zhao and Brinton (2005)
carried out screening of a natural source chemical
collection containing 25,000 phytochemicals and deriv-
atives, and 12 representative hits were assessed for
their binding profiles to ERs, a drug target for breast
cancer; three phytochemicals displayed .100-fold
binding selectivity to ERb compared with ERa. Li et al.
(2013c) reported the screening of nine flavonoids from
the ZINC and PubChem databases (which include 2092
flavonoids) against the xanthine oxidase and COX-2
three-dimensional protein structures using docking
simulation and structure–activity relationships. In
addition, Tanrikulu et al. (2009) used pharmacophore
models to find potential PPARg agonists from approx-
imately 53,000 compounds found in plants used in
traditional Chinese medicine. Finally, Wolber and
Langer (2005) performed a pharmacophore-based anal-
ysis to determine the reliability of ligand-based drug
screening from phytochemicals using the LigandScout
3.0 program. The latter study showed that EGCG and
resveratrol share three pharmacophore features. The
pharmacophore analysis can therefore provide a frame-
work to study ligand–receptor interactions that should
assist in the discovery of phytochemicals that modify
adaptive cellular stress response pathways, and to
then rationally design analogs of those phytochemicals
for drug development.

VII. Conclusions and Future Directions

The realization that many of the major phytochem-
icals initially touted as exerting health benefits by
acting as free radical scavengers instead act by in-
ducing adaptive cellular stress responses is leading to
new approaches to disease prevention and treatment.
Evolutionary considerations and experimental evi-
dence have established that plants produce chemicals
that are noxious for insects and other pests as a
fundamental defense mechanism. In turn, insects and
higher organisms have evolved receptors and signal
transduction pathways that respond to the phytochem-
icals in ways that alert the organism to the presence of
the potentially toxic phytochemicals (e.g., olfactory and
taste receptors) and upregulate the expression of genes

encoding cytoprotective proteins. Moreover, animals
have evolved enzymes (principally P450s) that rapidly
metabolize and detoxify the phytochemicals. In this
way, the chemicals cause only a transient activation of
adaptive stress response pathways in cells. The ada-
ptive stress response pathways are highly conserved
from invertebrates to humans and include those in-
volving transcription factors such as Nrf2, NF-kB,
FOXO, and PPARs. Targets genes induced by hormetic
phytochemicals include antioxidant enzymes, protein
chaperones, and neurotrophic factors. Activation of these
pathways in neurons can increase their resistance to
oxidative, metabolic, and excitotoxic injury, resulting in
reduced damage and death of neurons in experimental
models of disorders ranging from AD and PD to stroke.

What is next? There is a considerable gap in our
understanding of the specific molecular mechanisms by
which phytochemicals stimulate adaptive cellular re-
sponses. In some cases, it is clear that a phytochemical
can activate a cell surface receptor in a highly specific
manner, with activation of the transient receptor
potential vanilloid receptor 1 by capsaicin (from hot
peppers) and cannabinoid receptors by D9-tetrahydro-
cannabinol (from Cannabis sativa) being prominent
examples (Croxford, 2003; Brederson et al., 2013).
However, in most cases in which phytochemicals have
been shown to activate adaptive cellular stress re-
sponse pathways, the molecular mechanism by which
they activate the pathway is unknown. Whereas some
phytochemicals may bind and activate specific recep-
tors, others may elicit a less specific response by
inducing oxidative or metabolic stress. From an evo-
lutionary perspective, dose-dependent nonspecific cel-
lular stress responses to a phytochemical may have
been sufficient to limit amount of the plant consumed
by the forager, while at the same time bolstering
cellular defenses.

A second largely untouched area of phytochemical-
mediated hormesis is to identify the specific phyto-
chemicals in vegetables, fruits, nuts, and grains that
may improve health and disease resistance by stimu-
lating adaptive stress responses. There has been much
focus on a small number of phytochemicals (particu-
larly resveratrol, curcumin, and sulforaphane) that
likely represent only the tip of the iceberg of bioactive
dietary phytochemicals. The current approaches in
natural products chemistry are rather laborious, and
there is thus a need to develop new approaches and
technologies for identifying beneficial phytochemicals.
One such approach is to develop high-throughput screens
to identify phytochemicals that activate specific adaptive
cellular stress response pathways.

With regard to phytochemical-based drug develop-
ment, it will be important to not only perform the
typical pharmacokinetic, safety, and target engage-
ment analyses, but to also include intermittent dosing
protocols into preclinical studies and clinical trials.
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Emerging evidence suggests that intermittent (e.g.,
every other day) exposure to mild stressors can pro-
mote optimal health and may be effective in forestal-
ling and treating a range of disorders. For example,
intermittent fasting and exercise can improve overall
health and reduce the risk of a range of chronic age-
related disorders (Mattson, 2012; Longo and Mattson,
2014). The data suggest that cycles of mild stress
followed by a recovery period are superior to continual
stress or no stress. It will therefore be important to
determine whether intermittent dosing with phyto-
chemicals provides health benefits beyond any that
occur with continuous dosing. When considering the
therapeutic efficacy of drugs that act by bolstering
cellular defenses against injury and disease, we would
expect that drugs administered intermittently will be
more effective than those dosed so as to achieve
a constant tissue level of the drug. This is so because
cycles of stress (e.g., recovery, stress, and then re-
covery) stimulate adaptive stress response pathways
during the stress period, and then allow the cells/
organism to grow stronger during the recovery period.
In this way, intermittent activation of adaptive stress
response pathways by phytochemicals can enhance
cellular resistance to injury and disease.
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